Addendum to MC68HC000 Low Power HCMOS 16-/32-Bit Microprocessor

This addendum applies to the *MC68HC000 Low Power HCMOS 16-/32-Bit Microprocessor Technical Summary* (BR275/D). The following preliminary tables correspond to the AC Electrical Characteristics of the new 16 MHz version of the MC68HC000 microprocessor available from Motorola. These tables are provided as additions to the current MC68HC000 AC Electrical Specifications.

PRELIMINARY AC ELECTRICAL SPECIFICATIONS — CLOCK TIMING

Num.	Characteristic	Symbol	16 MHz			
			Min	Max	Unit	
	Frequency of Operation		f	8	16.67	MHz
1	Clock Period		tcyc	60	125	ns
2,3	Clock Pulse Width Measured From 1.5 V to 1.5 V		tCL, tCH	27	62.5	ns
4,5	Clock Rise and Fall Times		tCr, tCf	_	5	ns

PRELIMINARY AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES

Num.	Characteristic	Symbol	16 MHz		11:4
		Symbol	Min	Max	Unit
6	Clock Low to Address Valid	^t CLAV	_	30	ns
6A	Clock High to FC Valid	tCHFCV	0	30	ns
7	Clock High to Address, Data Bus High Impedance (Maximum)	[†] CHADZ		50	ns
8	Clock High to Address, FC Invalid (Minimum)	^t CHAFI	0	_	ns
91	Clock High to AS, DS Asserted	[†] CHSL	3	30	ns
11 ²	Address Valid to AS, DS Asserted (Read)/AS Asserted (Write)	[†] AVSL	15	_	ns
11A ²	FC Valid to AS, DS Asserted (Read)/AS Asserted (Write)	†FCVSL	45	_	ns
12 ¹	Clock Low to AS, DS Negated	^t CLSH	3	30	ns
13 ²	AS, DS Negated to Address, FC Invalid	^t SHAFI	15	_	ns
14 ²	AS (and DS Read) Width Asserted	tSL	120	_	ns
14A ²	DS Width Asserted, Write	†DSL	60	_	ns
15 ²	AS, DS Width Negated	tSH	60	_	ns

— Continued —

PRELIMINARY AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES (Continued)

Num.	Characteristic		16 MHz		
ivuiii.	Characteristic	Symbol	Min	Max	Unit
16	Clock High to Control Bus High Impedance	tCHCZ		50	ns
17 ²	AS, DS Negated to R/W Invalid	tSHRH	15	_	ns
18 ¹	Clock High to R/W High	tCHRH	0	30	ns
201	Clock High to R/W Low	tCHRL	0	30	ns
20A ^{2,6}	AS Asserted to R/W Low (Write)	t _{ASRV}	_	10	ns
21 ²	Address Valid to R/W Low (Write)	t _{AVRL}	0	_	ns
21A ²	FC Valid to R/W Low (Write)	tFCVRL	30	4	ns
22 ²	R/W Low to DS Asserted (Write)	t _{RL} SL	30		ns
23	Clock Low to Data-Out Valid	tCLDO	_	30	ns
25 ²	AS, DS Negated to Data-Out Invalid (Write)	tSHDOI	15 <		ns
26 ²	Data-Out Valid to DS Asserted (Write)	tDOSL	15	_	ns
27 ⁵	Data-In Valid to Clock Low (Setup Time on Read)	†DICL	5	_	ns
28 ²	AS, DS Negated to DTACK Negated (Asynchronous Hold)	tSHDAH	C/O	110	ns
29	AS, DS Negated to Data-In Invalid (Hold Time on Read)	tshdii	0	_	ns
29A	AS, DS Negated to Data-In High Impedance	tSHDZ	_	90	ns
30	AS, DS Negated to BERR Negated	^t SHBEH	0		ns
31 ^{2,5}	DTACK Asserted to Data-In Valid (Setup Time)	^t DALDI		50	ns
32	HALT and RESET Input Transition Time	tRHr,f	_	150	ns
33	Clock High to BG Asserted	tCHGL	0	30	ns
34	Clock High to BG Negated	tCHGH	0	30	ns
35	BR Asserted to BG Asserted	^t BRLGL	1.5	3.5	Clks
36 ⁷	BR Negated to BG Negated	tBRHGH	1.5	3.5	Clks
37	BGACK Asserted to BG Negated	tGALGH	1.5	3.5	Clks
37A ⁸	BGACK Asserted to BR Negated	^t GALBRH	10	1.5	ns/Clks
38	BG Asserted to Control, Address, Data Bus High Impedance (AS Negated)	tGLZ	_	50	ns
39	BG Width Negated	^t GH	1.5	_	Clks
40	Clock Low to VMA Asserted	tCLVML	_	50	ns
41	Clock Low to E Transition	tCLET	_	35	ns
42	E Output Rise and Fall Time	t _{Er,f}	_	15	ns
43	VMA Asserted to E High	tVMLEH	80	_	ns
44	AS, DS Negated to VPA Negated	^t SHVPH	0	50	ns
45	E Low to Control, Address Bus Invalid (Address Hold Time)	^t ELCAI	10	_	ns
46	BGACK Width Low	^t GAL	1.5	_	Clks
47 ⁵	Asynchronous Input Setup Time	tASI	5	_	ns
48 ^{2,3}	BERR Asserted to DTACK Asserted	[†] BELDAL	10	_	ns
49 ⁹	AS, DS Negated to E Low	tSHEL	- 35	35	ns
50	E Width High	tEH	220	_	ns
51	E Width Low	tEL	340	_	ns
53	Data-Out Hold from Clock High	tCHDOI	0	_	ns
54	E Low to Data-Out Invalid	tELDOI	10		ns
55	R/W Asserted to Data Bus Impedance Change	†RLDBD	0		ns

— Continued —

PRELIMINARY AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES (Concluded)

Num.	Characteristic	Sumbal	16 MHz		
		Symbol	Min	Max	Unit
56 ⁴	HALT/RESET Pulse Width	tHRPW	10		Clks
57	BGACK Negated to AS, DS, R/W Driven	tGASD	1.5	_	Ciks
57A	BGACK Negated to FC, VMA Driven	tGAFD t	1		Clks
58 ⁷	BR Negated to AS, DS, R/W Driven	tRHSD	1.5	_	Clks
58A ⁷	BR Negated to FC, VMA Driven	tRHFD	1	_	Clks

NOTES:

- For a loading capacitance of less than or equal to 50 picofarads, subtract 5 nanoseconds from the value given in the maximum columns.
- 2. Actual value depends on clock period.
- 3. If #47 is satisfied for both DTACK and BERR, #48 may be ignored. In the absence of DTACK, BERR is an asynchronous input using the asynchronous input setup time (#47).
- 4. For powerup, the MC68HC000 must be held in the reset state for 100 milliseconds to allow stabilization of on-chip circuitry. After the system is powered up, #56 refers to the minimum pulse width required to reset the processor.
- 5. If the asynchronous input setup time (#47) requirement is satisfied for DTACK, the DTACK-asserted to data setup time (#31) requirement can be ignored. The data must only satisfy the data-in to clock low setup time (#27) for the following clock cycle.
- 6. When \overline{AS} and R/\overline{W} are equally loaded (±20%), subtract 5 nanoseconds from the values given in these columns.
- 7. The processor will negate \overline{BG} and begin driving the bus again if external arbitration logic negates \overline{BR} before asserting \overline{BGACK} .
- 8. The minimum value must be met to guarantee proper operation. If the maximum value is exceeded, BG may be reasserted.
- 9. The falling edge of S6 triggers both the negation of the strobes (AS and xDS) and the falling edge of E. Either of these events can occur first, depending upon the loading on each signal. Specification #49 indicates the absolute maximum skew that will occur between the rising edge of the strobes and the falling edge of the colock.

es the

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not authorized for use as components in life support devices or systems intended for surgical implant into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola shall determine availability and suitability of its product or products for the use intended. Motorola and A are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands Milton Keynes, MK145BP, England.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; P.O. Box 80300; Cheung Sha Wan Post Office; Kowloon Hong Kong.

