
External Programming for the Midland XTR radios

I updated this document 9/2019 trying to clarify how to interpret the programming data from the Midland XTR

series (.xtr) radios.

The basic program file (filename.xtr) produced by the Midland XTR is encoded in a proprietary format, basically

the core memory encapsulated in asci encoded character string starting with “S10”, and ending in a carriage return,

linefeed pair (CR/LF) This file may be read with most document viewers. (say Notepad). An example is:

S10B000012345678FFFFFABC2C

S10B0008DE080208068A00B9B3

S10B0010B0E0613F9A83BDF7E3

S10B0018FFFFFFBFD37FFFFFD0

S10B00200FFFFFF252A41C01C2

S10B0028C424D2FFFFF252AC24

S10B00300C01C42CF2FFFFF2E5

S10B003852B41401C434F0FFBA

S10B0040FFF252BC0C01C43CA8

S10B0048F0FFFFF2531C0B0151

S10B0050C49CF3FFFFF256A863

S10B00580C01C828F2FFFFF2BD

S10B006057100C01C890F3FFD6

S10B 00 68 FF F2 57 20 0C 01 C8 A0 AF

S10B0070F1FFFFF257380C0107

S10B0078C8B8FFFFFFF2579026…

The end of the file is simply the last of 1024 bytes of data, notice that the “S10” preamble does not change for the

end of record:

S10B03F0FFFFFFFFFFFFFFFF09

S10B03F8FFFFFFFFFFFFFFFF01

Dissecting a line: S10B 0000 12345678FFFFABC 2C (cr/lf)

S10B is some type of header.

0000 is the internal XTR memory address for the start of line data

12345678FFFABC are the hexadecimal data

And 2C is the line checksum.

The string is terminated with a carriage return/linefeed

The checksum is the one’s complement of the summation of each byte of string data, excluding the “S1”

S1 0B+ 00+ 00+ 12+ 34+ 56+ 78+ FF+ FF+ FA+ BC =4D3, D3 complement is 2C

An image of the XTR internal memory is constructed by decoding each line of file strings, and inserting the data

bytes into their respective buffer memory address, referred here as the “XTR buffer.”

So, the XTR buffer for the above examples is: (four lines only)

Addr data

0000 12 34 56 78 FF FF FA BC DE 08 02 08 06 8A 00 B9

0010 B0 E0 61 3F 9A 83 BD F7 FF FF FF BF D3 7F FF FF

MEMORY MAP OF INTERNAL XTR BUFFER

The following use the XTR buffer address, The actual address of the byte containing these data is in hexadecimal,

with the actual bits represented by ‘b’

Serial Num: 0h-3h BCD encoded

Customer ID 5h-8h BCD encoded

Date: Digits 9h-11h BCD encoded

1337?: 0=no, 1=yes –13h(xxxbxxxx)

Scan type– 19h(xxxxbbxx)

00=norm 01=mod

10=sec 11=ps

Aux key type: --20h(xxxxbbxx)

1=11 2=10

3=01 4=00

Enable chl rollover: –19h(xxxxxxbx)

Priority Mon. chl time:–22h(bbxxxxxx)

00=.5 01=.75

10=1 11=1.5

Priority Mon. chl cycle: 1to4=0, 1to8=1 ;–19h(xxxxxxxb)

[Priority two chl: 1=enabled, 0=disabled; –31h(xxxxxxxb)

Scan hold conditions: –19h(xxbbxxxx)

 OPN/NSQ=00 OPN/SIG=10

 BSY/NSQ=01 BSY/SOG=11

Scan hold on RX: –18h(bbxxxxxx)

 .3=00 5.0=10

 2.5=01 Infin.11

Scan hold after TX: --18h(xxbbxxxx)

 .3=00 5.0=10

 2.5=01 Infin.11

When table deleted: --19(bbxxxxxx)

pwr scan=00 pwr off=01

scan off=10 no clear=11

Scan stop w/mic: 0=enable, 1=disable ; --28h(xxxxxbxx)

Bsy chl lockout: --28h(bbxxxxxx)

NSQ=00 signaling=01

special=10 disable=11

TX timer timeout: --28h(xxbbbxxx)

 30=000 150=100 120=011

 60=001 180=101 infinite=111

 90=010 210=110

Beep Control: 0=disable, 1=enable ;22h(xxABCDxx)

The rest of the file are channel data, channel 1 starting at 21h, with 10 bytes of data each. This continues until the

end of the file.

Channel data stream: AA CCCR RRRR CCCT TTTT BK

Where AA are the Auxiliary bits 8-1; 0=disabled, 1=enabled

CCC are CTCSS codes (detailed below)

RRRRR (or TTTTT) are the received (or transmit) frequencies (explained below)

B are the channel control bits:

 Msb= power setting, 0=low, 1=high

 3lsb= enable scrambler=0

 2lsb= enable channel in scan A=0

 1lsb= enable channel in scan B=0

C is the data checksum:

Checksum is four bit two’s complement of each digit of RX and TX frequency

EX: C+0+A+8+9+F+3+0=39 2’s comp=F7, checksum digit= 7

How to encode RX and or TX frequencies:

IF frequencies: VHFL(10.7 Mhz) VHFM(45 Mhz) UHF(45 Mhz)

Frequency to Hex:

Decode:

If (RX) Fd= RRRRR

If (TX) Fd= TTTTT ;use encoded Tx freq

Fdc=((Fd & FFF80h)>>1)+(Fd & 0003Fh) ;stuffing used for synthesizer chip

Fo=Fdc*.0025 ;scaled by resolution.

If RX Fo=Fo-IF_Freq ;10.7Mhz for 6meter, 45 Mhz for 2meter

Examples RX = 252A4h

 Fdc=((252A4&fffc0h)>>1)+(252A4&0003fh) = (12940h)+(24h) = 12964h

 Fo=Fdc*.0025 = 76132d * .0025= 190.33

 Fo= Fo-IF freq =190.33-45 =145.33 (Mhz)

 Example TX =1C424h

 Fdc=((1C424&fffc0h)>>1)+(1C424&0003fh) = (E200h)+(24h) = E224h

 Fo=Fdc*.0025 = 57892d * .0025= 144.73 (Mhz)

 Hex to Frequency:

 Encode

 If(RX) Fo=operation freq+IF freq

 If(TX) Fo= operation freq

 Fdc=Fo/.0025

 Fd=((Fdc&FFFC0)<<1)+(Fdc&0003F)

 Example Fo=145.33 Mhz (RX)

 Fo=145.33+45 =190.33

 Fdc=190.33/.0025 =76132d (12964h)

 Fd=((12964h&FFFC0)<<1)+(12964h&0003f) = 25280h+24 =252A4h

CTCSS encoding:

RX digits 3-6 TX digits 11-13

67.0 =000 71.9 =010 74.4=020 77.0=030 79.7=040

82.5 =050 85.4 =060 88.5=070 91.5=080 94.8=090

97.4 =0A0 100.0 =0B0 103.5=0C0 107.2=0D0 110.9=0E0

114.8 =0F0 118.8 =100 123.0 =110 127.3=120 131.8=130

136.5 =140 141.3 =150 146.2 =160 151.4=170 156.7=180

162.2 =190 167.9 =1A0 173.8 =1B0 179.9=1C0 86.2=1D0

192.8 =1E0 203.5 =1F0 210.7=200 218.1= 210 225.7=220

233.6 =230 241.8=240 250.3=250 74.0 =260 69.3 = 270

198.0 =280 202.7 =290 206.5 =2A0 229.1= 2B0 254.1=2C0

Function encoding bits: digit nineteen

 Digit nineteen is bit encoded as:

 Msb= power setting, 0=low, 1=high

 3lsb= enable scrambler=0

 2lsb= enable channel in scan A=0

 1lsb= enable channel in scan B=0

Checksum encoding: digit twenty

Checksum is four bit two’s complement of each digit of RX and TX frequency’

EX: C+0+A+8+9+F+3+0=39 2’s comp=F7, checksum digit= 7

How to use these data to check an .xtr file content: Lacking any actual program to decode the .xtr file directly (any

programmers want to do it?) the data may accessed by viewing the .xtr file directly.

Here’s an example of a six meter radio .xtr file:

S10B0000FFFFFFFFFFFFFFFFFC

S10B0008FF110298028A00EFC7

S10B001048E061D7B8B13C8F50

S10B0018FFFFFFBFDF7FFF3F84

S10B00200FFFFFF0C8240B00E0

S10B0028A184FFFFFFF0C7A44F

S10B00300B00A104F0FFFFF036

S10B0038C9A40B00A304FCFFA2

The channel data starts at address 21h, so starting at the second byte of line S10B0020:

FFFFF0C8240B00A184FF ;channel one data

Aux bits are set, there is no RX CTCSS tone, the RX frequency is 53.39 Mhz, the TX tone is 173.8 and the TX

frequency is 51.69 Mhz. (remember, TX is direct, w/o IF frequency offset). The final data are power is set high,

the scrambler is disabled, and the channel is not in scan group A or B. Finally, the channel checksum is ‘F’

(0+C+8+2+4+0+A+1+8+4)= 31h, the two’s complement is CF, so the checksum digit is ‘F’.

