Installation Guide

Introduction

I. INTRODUCTION
I.1 Preliminaries
The first and most important thing to do when you receive your UCSD p-System is

to back up the disks. This step is described below in Section I.3. We suggest

that you read this introduction first, then go through the steps that Section I.3

details.

The UCSD p-System is intentionally machine-independent, and portable across a

variety of microprocessor systems and peripheral devices. Because there is

currently a lack of standard hardware protocols, differences between machines are

dealt with by the System's software: most of this "tailoring" of software to

hardware was done while the System was developed, and is part of the System as

shipped, but in many cases, some further tailoring must be done by the user.

Microprocessors differ in their instruction sets, the way that they address main

memory, and the way that they handle Input/Output devices.

The UCSD System deals with different instruction sets by providing an "interpreter"

for each processor that is supported. In the System, Pascal and other high-level

languages are compiled to a code called "P-code". This P-code is a set of

instructions for a virtual machine; each interpreter takes this code and executes it

upon a particular processor (often called the "host processor"). Some hardware

systems execute P-code directly, and bypass the need for an interpreter.

Differences in addressing between processors ("byte sex" differences) are handled

internally by the System, and need only concern the user when transferring data

files from one sort of processor to another. See Section I.2.3.

Differences in I/O devices are dealt with by a portion of the System called the

BIOS (for Basic I/O Subsystem). The BIOS handles all low-level device control. A

portion of the "BIOS called the SBIOS (for Simplified BIOS) is a part of our

Adaptable Systems, and may be modified by the user. For some hardware

configurations, p-Systems are shipped with a BIOS ready to use, and for other

hardware configurations, the user may have to write the SBIOS from scratch. The

differences between various p-Systems are described below.

Since the p-System is intended for a single user working in an interactive mode,

the System's terminal ('CONSOLE:') is a very important peripheral. Tailoring the

System to a particular terminal is easily done: see Section I.2 and Chapter III.

Finally, each installation of a UCSD p-System must have a "bootstrap" program

that starts the System running on a particular hardware configuration. As with

the I/O-handling routines, a bootstrap may be shipped with your System, or you

1

Installation Guide

Introduction

may need to write one yourself.

Chapter V contains information about individual processors. For some processors,

the System shipped is called the "Adaptable System." This Adaptable System is

fully described in Chapter IV.

If your hardware uses a PDP-11 or LSI-11 processor, then the bootstrap and I/O
routines are supplied with your p-System. More information about these processors

(and about conversions to and from RT-11 format) is given in Chapter V.

If you have a Z80 or 8080 processor that runs the CP/M ® operating system, the

p-System may be booted with the aid of CP/M. Initially, the System will use

CP/M's CBIOS for its SBIOS. We call this System the CP/M Adaptable System; it

is described in Section IV.3. After you have booted your p-System, you may write

a simpler and faster bootstrap of your own, and add capabilities to your System by

writing SBIOS routines yourself.

If you use a Z80 or 8080 without CP/M, or a 6502 processor, then the bootstrap

and SBIOS must be written by you. This System is called the Full Adaptable

System, and is described in Section IV.4

Finally, your p-System may be a System tailored to some particular processor, so

that you need not do any adaptation (except to tailor screen control). If this is

the case, the documentation you receive will include a supplement which describes

your particular hardware; you will need to use this Installation Guide only rarely.

2

Installation Guide

Introduction

I.1.1 Summary
To sum up this introduction, these are the things which you must do when you

receive your p-System:

1) Back up the disks. This is extremely important. See Section I.3.

2) If you have an Adaptable System, you must get it bootstrapped, and

unpack the disks. Which order you do this in depends on your

hardware; see Chapter IV. Section I.4 is an introduction to down-

loading, and Chapter II an introduction to bootstrapping.

A) For CP/M users, use the software provided to bootstrap

 directly.

B) For other Adaptable System users, write your own bootstrap

 and SBI0S.

C) Test your System to make sure that it works.

3) Provide the System with information for handling your interactive

terminal. See Chapter III, which covers SETUP and GOTOXY.

4) Use your new p-System.

3

Installation Guide

Introduction

I.2 General Information

This section is an overview of the machine-specific details you must attend to

when getting started with our System. Bootstrapping is described separately in

Chapter II.

I.2.1 SETUP and GOTOXY
This section introduces the two basic mechanisms for controlling the System's

console. With proper use of SETUP and GOTOXY, you may use the Screen

Oriented Editor, which is much more flexible and easier to use than YALOE (Yet

Another Line Oriented Editor). More sophisticated screen control and data capture

can be achieved by using the Operating System's Screen Control Unit: this is

described in the Internal Architecture Guide.

I.2.1.1 SETUP
When the System is booted, it reads a file called SYSTEM.MISCINFO (see Chapter

1 in the Users' Manual). SYSTEM.MISCINFO contains hardware-related information

which the System needs; most of it concerns the System's interactive terminal,

'CONSOLE:'. The console is used extensively by the System, especially the Screen

Oriented Editor. SYSTEM.MISCINFO specifies, among other things, the use of the

console's keyboard, and its special functions such as cursor-control arrows, Editor

accept, and Editor escape.

SETUP is a utility program which allows you to create a new SYSTEM.MISCINFO

or modify an existing one. You must use SETUP to specify the characteristics of

your interactive terminal before you can use the Screen Oriented Editor.

Some MISCINFO files for some popular terminals have been included on the

utilities disk. A MISCINFO file may be utilized by C(hanging its name to

SYSTEM.MISCINFO in the F(iler. More about the use of SETUP and the

MISCINFO files which are provided is given in Section III.2.Installation Guide

The Adaptable System

4
Installation Guide

Introduction

I.2.1.2 GOTOXY
The Screen Oriented Editor also requires a System intrinsic to position the

console's cursor at an arbitrary position on the screen; SETUP cannot provide this.

This intrinsic is called GOTOXY, and must be written by the user. Section III.3

tells how to write a GOTOXY procedure.

As with MISCINFO files, some sample GOTOXYs are shipped on the utilities disk,

and may correspond to the terminal that you use. More about this is given in

Section III.3.

I.2.1.3 Binding GOTOXY
To become a System intrinsic, your GOTOXY procedure must be "bound" into the

Operating System. This is accomplished by using LIBRARIAN to replace the

GOTOXY that is shipped with the GOTOXY that you have written yourself. See

Section III.3 for full details.

5

Installation Guide

Introduction

I.2.2 The Adaptable System

If your hardware system does not use a PDP-11 or LSi-11 processor, and if your p-

System was not pre-packaged for your particular hardware, then the System you

receive will be an Adaptable System. The Adaptable Systems require that you do

some programming before they can run on your machine. For systems that already

use the CP/M operating system, this involves little or no work. Adapting other

systems takes much more time and knowledge.

Figure 1 illustrates the I/O structure of the Adaptable System. Under the heading

'UCSD PASCAL I/O HIERARCHY' is a diagram of various portions of the System,

and their interrelationships. The hexagon labelled 'screen I/O' represents the

portion of the System that must be tailored with SETUP and GOTOXY. Of the

machine-dependent portions of software, only the SBIOS need be written or

modified by the user: the remaining software is already supplied with your System.

The Adaptable System requires that the user supply a bootstrap (for a CP/M

Adaptable System, this is done automatically), and requires a user-supplied SBIOS

to be loaded at bootstrap time. The SBIOS routines must be written in the native

code of the host processor. This is usually done in assembly language under some

other operating system: modifying that operating system's I/O routines to meet the

p-System's requirements is often a convenient way of creating your own SBIOS.

Once the SBIOS routines have been written, they must be tested. A test program

is provided for this purpose. When the integrity of the SBIOS has been

established, the UCSD System may be bootstrapped.

After the System is bootstrapped, enhancements may be made to speed it up,

produce a turnkey system, and add additional device drivers.

The Adaptable System is described in Chapter IV. Troubleshooting information is

presented in Appendix E.

6

[image: image1.png]Installation Guide

Introduction

‘3TOSNOD

‘L W3LSAS
ISSINAW

WILSAS F1dWVS ¥

T 34N9i

sjeastdiadt Y3Iam 1055300440 1504

wieaboid waIsAs 1o uoneadde

AHOUVHIIH O/ TVISYd ASoN

Iuspusdep-surydew

ajgeyiod

Installation Guide

Introduction

I.2.5 Byte Sex Handling

Different processors address words in one of two ways: most-significant-byte-first,

or least-significant-byte-first. We use the term "byte sex" to refer to this

difference in addressing. Data stored in a file on one machine will be "byte-

flipped" when compared to the same data stored on a machine of opposite byte

sex.

In general, this presents no problem. The System automatically detects the sex of

a P-code codefile or a directory, and treats it appropriately. But the user should

be conscious of byte sex when using assembled code (which is appropriate for only

a particular machine), and when transferring data files from one machine to a

machine of opposite sex. (Because only the user knows the format of data within

the file, the user must take care to flip the data correctly; no general-purpose

routine can be provided.)

Aside from those two considerations, UCSD System software is portable regardless

of byte sex.
8

Installation Guide

Introduction

I.3 Backing Up Disks

Booting, unpacking, and downloading are dangerous operations that can destroy

disks, so it is essential that you make backups of the disks that are shipped to you

before doing anything else with (or to) your System.

If the disks you receive have write-protect slots, it is suggested that you write-

protect the disks before backing them up. This is a further protection against

damage.

I.3.1 Ready-to-use Systems

For PDP-11/LSI-11 Systems and other tailored Systems that come with a bootstrap

and are ready to use, you may use the Filer to back up your disks. Follow these

steps:

1) Bootstrap your System, then type ‘F’ for F(iler.

2) Once in the Filer, type ‘T’ for T(ransfer.

3) Place the disk you are backing up in drive #4

 (the drive you booted from), and the blank (or useless)

 disk in drive //5 (the alternate disk drive).

4) The Filer will prompt you with:

Transfer what file? #4,#5
... respond with the underlined portion.

5) The Filer then prompts:

Transfer 494 Blocks? Y
... tell it yes, as indicated. (The actual number of blocks

may vary.)

6) The Filer will either proceed with the transfer,

or prompt you with:

Destroy WHATSIS?

... or whatever the disk in drive #5 is called.

If you want it destroyed, type 'Y', otherwise try

backing up onto a different disk.

After much clicking, the transfer will be complete, and you will be ready to back

up the next disk. When you are through backing up the disks, you are ready to

use your System. The next step will probably be configuring your terminal — see

Chapter III.

9

Installation Guide

Introduction
If your hardware includes only one disk drive, in step (4) you must specify #4,#4.

Backing up proceeds in the same way, but more slowly: the Filer will prompt you

to swap disks back and forth.
For more information on T(ransfer in the Filer, see the Users’ Manual Chapter III
(Section III.6.3.14).
Warning: on some hardware, doing a T(ransfer does not transfer the bootstrap

which is required on the main System disk. To transfer the bootstrap, use the

utility BOOTER (described in Section II.3). This is not necessary for PDP-lls and

LSI-lls. If it is necessary for your particular hardware, you will be told so in the

supplemental brochure that comes with your p-System.

I.5.2 Adaptable Systems

Both CP/M and Full Adaptable Systems are shipped as 8" diskettes in IBM 3740

format: single-density, single-sided, 77 tracks, 26 sectors per track, 128 bytes per

sector. To back up the disks, all 77 tracks must be copied to another disk. It may

be possible to do this using an existing copy utility under an existing operating

system, or you may have to copy disks by writing your own assembly language

program under some operating system. This program must read all 26 sectors of a

track into memory, and then copy them onto the same location on another disk.

This should be done (in a loop) for all 77 tracks.

Once your disks have been backed up, you may proceed with bringing up your

System: providing a bootstrap and device drivers, and configuring your terminal.

Once the System is up and running, it is possible to back up disks using the

T(ransfer command in the Filer (as described in the previous section), or by using

the utility DISKCHANGE (described in Section IV.2).

10
Installation Guide

Introduction

I.4 Downloading and Unpacking

This section is relevant only to users of the Adaptable Systems.

Once the disks have been backed up, the installation of the System can begin. If

your disk drives do not support the 8" soft-sectored disks that the System is

shipped on, you will need to "download", i.e., transfer the information on the disks

that are shipped to your own media. Unpacking is part of the downloading

operation.

Figure 2 shows the general format of a UCSD Pascal Disk. This format is the

same regardless of the disk's size. Adaptable System disks are partitioned into

three small disk images, as shown in Figure 3. Each of these "logical disks" has

the same format as a full-sized disk, but only the first one (the "Default Disk" in

the illustration) is visible to a UCSD System. The user must unpack these logical

disks in order to utilize all of the files on them.

11

Installation Guide

Introduction

[image: image2.png]Z 34n9id

‘Juasixa-uou A[|Bnsn His|q [B0(SAUd JO lapujeway g Bely
‘sesodind jse) Jo Buiddens)ooq 1of pasn aq ABpy (g Baly

sasodind Ayjiqpeduioo pug
Bujddensiooq 10j jnjasn ‘Jus}S|Xe-UOL JO HORI) BUO UBY] BIOW Bq ABW ())OBI) A)jBNS) | Baly

soei|
|eosed

1si4

H

{
€ ealy (¥1sa 1ed1607 Jo Jepuleway) (sa14g 8vy0T) mamw;m ¥201)
s9[14 |eoseq Kioyoanq m Zealy
-
-
-

rerenensaen

}SIQ 1e9Ssed SN Pazi[eiauay) e Jo ainjonng [es160

12
Installation Guide
Introduction
[image: image3.png]Introduction

Instailation Guide

s8]ddojj-|ujw UO 1|} 0} PapusU| ‘YoBS 8308 §T JO SXSIP 18010l 881Y)} Oju) pOUCHIEd

€ 3NOY

eNexs|q Allsue(elBuIS You| g

¥siq [ea16oT payL %si@ |edj601] puodeg

MBYS YOBI}-0}-081} ON

Bu)aee|ieju) 10}008 ON

jsiqinejeq

¥siq leol6o 18114

13

9L vL

0S 6v

ysig uonnqguysiq

ge ve

wa)sAg ajqerdepy ue Jo ainjonng jeaisAyd

0 joedy

13

Installation Guide

Introduction

When downloading, each image should be recorded on its own diskette. In this way

the disks are unpacked as they are downloaded. One or two of the disks are

bootable disks. They contain all of the information necessary to bootstrap the

System. One disk is the System disk. It contains the files which are used during

the normal operation of the System. The Utilities disk has miscellaneous

applications and systems utilities which are used only from time to time. The

Orienter/Startup disk has some programs that accompany Bowles' Beginner’ Guide

to the UCSD Pascal System. A catalog of these disks (describing their format and

contents) may be found in Appendix B.

Downloading can be done either on a computer that supports both the source and

target disk formats, or through a serial line and two computers.

In the former case, you may have an existing operating system or utility that is

capable of copying tracks 0-24 onto one target disk, 25-49 onto another, and 50-74

onto a third.. If no such utility is available, you must write an assembly language

program which reads each track, sector by sector, and then writes it to the target

disk.

If two computers are involved, the one which supports 8" disks must read data

from the source disk and send it out through a serial line; the other machine must

be running a program which reads data from the serial line and writes it to the

destination disk. The data should be read and written in contiguous areas: sector

by sector.

If your hardware system supports 8" disks, and you are capable of booting the p-

System off of a default disk (the first of the three disk images), then you may not

need to unpack your disks before booting the System. In this case, the

DISKCHANGE utility can be used to unpack the disks, once the System is running.

This is a good deal easier than other methods. See Chapter IV to determine if

this is possible. Documentation for the DISKCHANGE program is in Section

IV.2.1.

In other cases, at least the bootstrap disk must be unpacked and downloaded before

the System is bootstrapped. Bootstrapping in general is discussed in Chapter II,

and bootstrapping Adaptable Systems is discussed in Chapter IV.

14

Installation Guide

Introduction

Important: These are the basic requirements for downloading disks:

1. Track 0 on the source disk must be transferred to Track 0 on the

destination disk. Only the first 18 sectors contain information (2504 bytes).

2. If Track 0 on the destination disk contains less than 2504 bytes, copy

Track 0 to Track 0 + Track 1 (do not change the order of the sectors). Track

1 of the source disk must now be transferred to Track 2 of the destination

disk.

3. Copy Tracks 1..24 of the source disk to the destination disk. Do not

change the order of the sectors or the bytes.

4. If the sectors of the destination disk are not the same size as sectors on

the source disk, the information should still be transferred in order, ignoring

sector and track boundaries. Exception: Track 0 must still be transferred to

Track 0. If Track 0 on the destination disk is longer than 18 sectors, leave

the remainder of that track unused.

5. The information which began at Track 1 of the source disk must begin at

the start of a track on the destination disk (though not necessarily Track 1).

Whichever track on the destination disk contains this information must be

indicated in the 'first Pascal track' parameter on the bootstrap stack.

15

Installation Guide

Introduction

16

Installation Guide

Bootstrapping

II. INTRODUCTION TO BOOTSTRAPPING

II.1 The Concept of Booting

"Booting" or "bootstrapping" is the problem of starting a software system on

hardware which is running either no software at ail, or a totally different system.

The term comes from the phrase "pulling yourself up by the bootstraps": a

bootstrap is essentially a program which (starting from scratch) loads another

program and then transfers control to that program.

The UCSD p-System runs on a virtual "P-machine", which on most microprocessors

is emulated by the System's interpreter. The task of the bootstrap is to load the

Interpreter, associated low-level I/O routines, and portions of the Operating System,

and then start, the Interpreter's execution. The nature of bootstrapping implies

that bootstrap programs are machine-specific -- details about bootstraps for the

various kinds of p-System are given below.

II.2 Primary, Secondary, and Tertiary Bootstraps

For the Adaptable System, the bootstrap is divided into three separate parts. This

section summarizes the actions of each. Remember that BIOS stands for Basic I/O

Subsystem, and SBIOS stands for Simplified BIOS.

The primary bootstrap ...

1. Loads the SBIOS by reading it off the System disk into memory.

2. Loads the secondary bootstrap.

3. Pushes hardware configuration parameters onto the stack.

4. Transfers control to the secondary bootstrap.

The secondary bootstrap ...

1. Initializes the BIOS (which is part of this bootstrap).

2. Reads the System disk's directory into memory.

3. Searches the directory for the Interpreter.

 (Interpreters may be called SYSTEM.INTERP, SYSTEM.PDP-11,

 SYSTEM.MICRO, etc.)

4. Loads the Interpreter. .

5. On the Z80: restacks the hardware configuration parameters

 for the benefit of the tertiary bootstrap and the Interpreter.

6. Transfers control to the tertiary bootstrap

 (which is part of the Interpreter).

17

Installation Guide

Bootstrapping

The tertiary bootstrap (whose code is linked into the same codefile as the

Interpreter) ...

1. Saves the BIOS initialization words (which are on the stack).

2. Initializes some hardware devices and peripherals.

3. Rereads the System disk's directory and locates SYSTEM.PASCAL

 (the Operating System).

4. Reads block 0 of the Operating System in order to initialize

 the System's environment.

5. Reads the kernel and initialization segments of the Operating

 System.

6. Initializes the P-machine.

7. Starts execution of the Operating System.

18

Installation Guide

Bootstrapping

II.3 Machine-Specific Bootstraps

For PDP-lls and LSI-lls, the primary and secondary bootstraps are recorded on

blocks 0 and 1 of the System disk. The boot ROM (normally located at 1730D0)

reads the first sector (128 bytes) into memory, and this code reads in the rest of

the bootstraps. The 11 Interpreter is not 'adaptable', so there are no SBIOS

routines or hardware configuration parameters for the user to set up; the

Interpreter assumes standard 11 hardware and conventions. A disk of alternate

interpreters is provided: different interpreters correspond to different hardware

configurations (.i.e., single versus double density floppy drives, RK05 hard disks,

etc.). The bootstrap itself discovers the size of main memory. More information

on the 11 implementation may be found in Chapter V.

The primary bootstrap for the CP/M Adaptable System is the file PASBOOT on the

CP/M-compatible disk. PASBOOT assumes that the CP/M BIOS ("CBIOS") is

already in memory. Any customized primary bootstraps which the user may write

must first load the CBIOS into memory. The current CP/M Adaptable System will

only work with disks that have 128-byte sectors. If the sector length is different,

the full Adaptable System must be used. More specific notes on booting the CP/M

Adaptable System may be found in Section IV.3, and Chapter V.

All other Adaptable System users must write their own primary bootstrap loader. It

must push the proper parameters onto the stack and load the primary bootstrap

into memory at either 8000H or D000H. (The primary bootstrap is located on the

System disk: track 0, sectors 1 and 2.) The loader must then jump to 8000H or

D000H so the primary bootstrap will execute. Care must be taken to use the

proper bootstrap (either 8000H or D000H) for the user's particular hardware

configuration. Full details about which bootstrap to use are in Section IV.4.1.

The secondary bootstraps for all Adaptable Systems are located on track 0 sectors

5 - 18. The primary bootstrap loads the secondary bootstrap at either 8200H or

D200H (depending on the primary bootstrap's location).

Figure 4 indicates the location of primary and secondary bootstraps, the directory,

and other files on a System disk of the Adaptable System. This illustration should

be compared to figures 2 and 3. System disks for Systems other than the

Adaptable System look much the same though they do not include an SBIOS Tester

program.

19
Installation Guide

Bootstrapping

[image: image4.png]t 34no4

pesn 10N aoedg
0)oeiy jo desisjoog Aiewyd
Japujeway sojig 962

{ve ubnoiyy L so1k (sa14g 8v0¢)
eeiio s | UL ot

sa|14 |eoseq

<
N
(=]

BELITY

SWwIa)SASOUDIN Yoo] Jos Aq painquisiq sy
ysi@ |eo1607 woysAg ajgejdepy ue jo jnoke

Installation Guide
20

Bootstrapping

20

Installation Guide

Bootstrapping

II.4 The BOOTER Utility

BOOTER is a utility which transfers a bootstrap from one disk to another. In

normal System use, bootstraps are copied only when an entire disk is copied using

the Transfer command in the Filer. If you have created a System disk by

Transferring individual files to a new disk, BOOTER must be used. On many

hardware configurations, Transfer is incapable of copying a bootstrap, and BOOTER

must be used in any case (if you have such hardware, you will be told about this

situation in the supplemental literature).

The code for BOOTER is on the Utilities disk under the name BOOTER.CODE or

ABOOTER.CODE. To copy a bootstrap, eX(ecute the codefile.

On PDP-11, LSI-11, and 9900 systems, ABOOTER prompts for the name of the disk

on which the bootstrap will be written, and the name of a file from which the

bootstrap is to be read (if only a disk name is given, the first two blocks of that

disk will be copied). Only two blocks are transferred: from the input disk or input

file to the first two blocks of Track 0 of the output disk.

On Z80, 8080, and 6502 systems, BOOTER prompts for two disk names, and copies

all of Track 0 from the input disk to the output disk.

21
Installation Guide

Bootstrapping

22

Installation Guide

Terminal Handling

III. TERMINAL HANDLING

III.1 Introduction

You should read this chapter if you are new to the System, want to change or

improve the way the System handles your terminal, or want to convert to a new

variety of terminal.

The first thing you will be concerned with is SETUP, a utility program that

modifies some terminal handling information stored in a file called

SYSTEM.MISCINFO. The next thing to tailor is GOTOXY, an intrinsic Pascal UNIT

within the Operating System that provides random addressing for your terminal's

cursor. The System comes with its own defaults, but for more convenient or more

efficient use of your console, you will want to specify your own characteristics.

Changing SYSTEM.MISCINFO with SETUP does not require much knowledge or

preparation. Changing the GOTOXY procedure requires a little more familiarity

with your terminal, and a knowledge of UCSD Pascal.

To tailor terminal handling to your own needs, you will first run SETUP. SETUP

creates a file called NEW.MISCINFO which contains information about your own

terminal. You will then go into the Filer, change SYSTEM.MISCINFO to a backup

file, and change the name of NEW.MISCINFO to SYSTEM.MISCINFO. After this,

you reboot or I(nitialize: the new SYSTEM.MISCINFO is loaded into main memory,

and your terminal is now controlled according to the information in this file. To

see if you have run SETUP correctly, you might want to run the SCREENTEST

diagnostic immediately, or you might want to wait until you have bound in a new

GOTOXY. To create your own GOTOXY, you will write a Pascal procedure that

does cursor addressing, create a codefile by C(ompiling it, and bind the codefile

into the Operating System by using the Librarian utility. After binding, you should

reboot, and then test the terminal handling by running SCREENTEST.

SCREENTEST checks that characters are being sent and received properly, and that

the Screen Oriented Editor interface will work. If you encounter problems, it is

easy to go back into SETUP and change your specifications, or modify your

GOTOXY procedure and bind it in again.

If you don't feel confident, you might do a little more reading. Check your own

terminal manual, and the following portions of the Users' Manual; the UNITWRITE

intrinsic (Section VI.2.36), the introduction to the Screen Oriented Editor (Sections

IV.0 and IV.1), and glance over the description of YALOE (Yet Another Line

Oriented Editor, described in Chapter V). YALOE can be used on virtually any

terminal, but the Screen Oriented Editor, which is more convenient and is usually

used as the System editor, requires GOTOXY.

This chapter describes the care and feeding of SETUP, SCREENTEST, and

GOTOXY. Users who wish to do more involved screen handling may use the

23

Installation Guide

Terminal Handling

Operating System's Screen Control Unit, which is described in the Internal

Architecture Guide.

24

Installation Guide

Terminal Handling

III.2 SETUP

SETUP is provided as a System utility (on the Utilities disk) called SETUP.CODE.

SETUP changes a file that contains details about your terminal, and a few

miscellaneous details about the System in general. SETUP can be run, and the data

changed, as many times as you desire. After running it, it is important to reboot

(or I(nitialize) so that the System will start using the new information. It is also

important to back up old data, at least until after you have run SCREENTEST, so

that you can climb back out of any hole you dig for yourself!

The file that SETUP uses to store all of this information is called

SYSTEM.MISCINFO. Each System initialization loads it into main memory. New

versions of SYSTEM.MISCINFO are created by SETUP, and are called

NEW.MISCINFO. Backups are created by renaming or copying SYSTEM.MISCINFO

with the Filer.

SYSTEM.MISCINFO contains three types of information:

Miscellaneous data about the System,

General information about the terminal, and

Specific information about the terminal's various

control keys.

Section III.5.4 (Appendix D) contains a sample session with SETUP. You might look

this over before you actually use the program.

25

Installation Guide

Terminal Handling

III.2.1 Running SETUP

SETUP is a utility program, and is run like any other compiled program; type X

for eX(ecute, and then answer the prompt with 'SETUP'<return>. It will display the

word 'INITIALIZING' followed by a string of dots, and then the prompt:

SETUP: C(HANGE T(EACH H(ELP Q(UIT [Dl]

(The '[Dl]' is the SETUP version number, and may be different for your particular

System.)

To invoke any command, just type its initial letter.

H(ELP gives you a description of the commands that are visible on any promptline

where it appears.

T(EACH gives a detailed description of the use of SETUP. Most of it is

concerned with input formats. They are mainly self-explanatory, but if this is

your first time running SETUP, you should look through all of T(EACH.

C(HANGE gives you the option of going through a prompted menu of all the items,

or changing one data item at a time. In either case, the current values are

displayed, and you have the option of changing them. If this is your first time

running SETUP, the values given are the system defaults. You will find that your

particular terminal probably requires more sophisticated specifications.

Q(UIT has the following options:

H(ELP),

M(EMORY) UPDATE, which places the new values in main memory,

D(ISK) UPDATE, which creates NEW.MISCINFO on your disk for

future use,

R(ETURN), which lets you go back into SETUP and make more

changes, and

E(XIT), which ends the program and returns you to the

System promptline.

26

Installation Guide

Terminal Handling

Please note that if you have a NEW.MISCINFO already on your disk,

D(ISK) UPDATE will write over it.

Section III.2.2 contains a detailed description of the data items in

SYSTEM.MISCINFO. An abbreviated list of all the data items, together with the

System-supplied defaults, is in Section III.5, along with a list of sample settings for

a variety of terminals (Appendices A and B for this chapter).

When you use SETUP to change your character set, don't underestimate the

importance of using keys you can easily remember, and making dangerous keys like

BREAK, ESCAPE, and RUBOUT hard to hit.

Once you have run SETUP, you should always backup SYSTEM.MISCINFO under

some other name (OLD.MISCINFO is one suggestion; you might want to name your

backups according to different terminals, e.g., TTY.MISCINFO, IQ120.MISCINFO,

VT52.MISCINFO, etc.), then change the name of NEW.MISCINFO to

SYSTEM.MISCINFO and reboot or I(nitialize. It is indeed possible to update to

memory alone, and go on using the System without rebooting, but the results may

not always be what you wanted, and the backup security is more risky. In

general, M(EMORY) UPDATE is a Q(UIT option that you will use only when

experimenting. If you do get into a bind, remember that the current in-memory

SYSTEM.MISCINFO can be saved by running SETUP and doing a D(ISK) UPDATE

before you change any data items.

When you reboot or I(nitialize, the new SYSTEM.MISCINFO will be read into main

memory and its data used by the System, provided it has been stored under that

name on the System disk (the disk from which you boot).

The only thing SETUP will not arrange for you, as far as terminal handling goes,

is telling the System how to do random addressing for your terminal's cursor. This

is a feature that the Screen Oriented Editor requires. To learn how to support

this capability, see the section on GOTOXY.

27

Installation Guide

Terminal Handling

III.2.2 Miscellaneous Notes for SETUP

The STUDENT bit, one of SYSTEM.MISCINFO's data items, should always be set

to FALSE.

The HAS 8510A bit is always FALSE.

On the PDP-11, LSI-11, 8080, 9900, 6502, 6809, and Z-80 systems

HAS WORD ORIENTED MACHINE is always FALSE.

HAS BYTE FLIPPED MACHINE is FALSE for all IV.0 systems except the 9900.

SETUP and the Manual refer to PREFIXED [DELETE CHARACTER]. This refers

to the backspace function: read it as PREFIXED [BACKSPACE]. On most

terminals it will be FALSE.

Your terminal should be set to run in full duplex, with no auto-echo.

Don't use terminal functions that do a "Delete and close up" on lines or characters

-- not all terminals have these functions, and so they are supplied through the

Screen Oriented Editor's software.

In general, if SETUP prompts for a feature that your terminal does not have, set

the item to NUL (zero).

If you have a DEC VT-52 and a backspace won't move the cursor on the console,

this is because you have KEY TO DELETE CHARACTER set to '_', the "rubout

character". This is a printing character, so the Operating System does not echo a

cursor move; the contents of memory are updated correctly. One workaround is to

use the V(erify key to display the actual file contents, but to fix this for good

use SETUP to change KEY TO DELETE CHARACTER to control-H or left-arrow –

BACKSPACE should be set to the same character as well.

28

Installation Guide

Terminal Handling

III.2.5 The Data Items in SYSTEM.MISCINFO

The information in this section is very specific, and you may skip it on first

reading. If you have a question about a certain data item, look in this section.

Default values are shown, and sometimes our recommendations. When no suggested

values are given, you should consult your own terminal's documentation. The items

are ordered according to setup's menu. (See Section III.5.1, Appendix A.)

If you are using a hardcopy terminal or a storage screen rather than a CRT, you

can ignore all the data items that are only used by the Screen Oriented Editor and

leave them set to their defaults. In particular, if you are in doubt about a

particular item, it is safest to leave it set to NUL. Always leave items set to

NUL which concern features that your terminal does not have (ERASE LINE, for

instance); the software will take care of these situations.

Please note that SETUP frequently makes a distinction between a character which

is a key on the keyboard, and a character which is sent to the screen from the

UCSD System; on some terminals, the same function may be performed by two

different characters. On other terminals, the key pressed and the character sent

for a given function may be the same, but in any case, when you run SETUP you

must be explicit and answer all questions, even if the information is redundant.

There are a few characters which you cannot change with SETUP. These are

CARRIAGE RETURN «return>), LINE FEED (<lf>), ASCII DLE (control-P), and TAB

(control-I). It is assumed that <return>, <lf>, and TAB are consistent on all

terminals. ASCII DLE (data link escape) is used as a blank compression character.

When sent to an output textfile, it is always followed by a byte containing the

number of blanks which the output device must insert. If you try to use control-P

for any other function, you will run into trouble. More information on DLE is

given in the sections below on GOTOXY and SCREENTEST.

BACKSPACE

When sent to the screen, this character should move the cursor one space to the

left. Default: ASCII BS.

EDITOR ACCEPT KEY

This key is used by the Screen Oriented Editor. When pressed, it ends the action

of a command, and accepts whatever actions were taken. Default: ASCII NUL.

Suggested: ASCII ETX (control-C or "Home").

29

Installation Guide

Terminal Handling

EDITOR ESCAPE KEY

This key is used by the Screen Oriented Editor. It is the opposite of the

EDITOR ACCEPT KEY - when pressed, it ends the action of a command, and

ignores whatever actions were taken. Default and Suggested: ASCII ESC (control-

[).

EDITOR EXCHANGE-DELETE KEY

This key is also used by the Screen Oriented Editor. It operates only while doing

an eX(change, and deletes a single character. Default: ASCII US (control-_).

EDITOR EXCHANGE-INSERT KEY

Like the EDITOR EXCHANGE-DELETE KEY, this only operates while doing an

eX(change in the Screen Oriented Editor: it inserts a single space. Default:

ASCII RS (control-^).

ERASE LINE

When sent to the screen, this character erases all the characters on the line that

the cursor is on. Default; ASCII NUL.

ERASE SCREEN

When sent to the screen, this character erases the entire screen. Default: ASCII

NUL.

ERASE TO END OF LINE

When sent to the screen, this character erases all characters from (and including)

the current cursor position to the end of the same line. Default: ASCII NUL.

ERASE TO END OE SCREEN

When sent to the screen, this character erases all characters from (and including)

the current cursor position to the end of the screen. Default: ASCII NUL.

30

Installation Guide

Terminal Handling

HAS 8510A

May be TRUE or FALSE. Should be TRUE if and only if your hardware system is

a Terak 8510a. Default: FALSE.

HAS BYTE FLIPPED MACHINE

May be TRUE or FALSE. On PDP-11, LSI-11, 8080, Z-80, and 6502 processors this

bit is FALSE. On the 6800, 9900, and the GA440 system, it is TRUE. In general,

it is TRUE only for implementations in which the IPC (Instruction Program

Counter) is segment-relative. Default: FALSE.

HAS CLOCK

May be TRUE or FALSE. If your hardware has a line frequency (60 Hz) clock

module, such as the DEC KW11, setting this bit TRUE will allow the Pascal

system to optimize disk directory updates. It also allows you to use the TIME

intrinsic: see Section VI.2 in the Users' Manual. If your hardware doesn't have a

clock this must be FALSE. (Adaptable System users must write their own clock-

handler; until it is installed, this item must be FALSE.) Default: FALSE.

HAS LOWER CASE

May be TRUE or FALSE. It should be TRUE if you do have lower case and want

to use it. If you seem stuck in upper case even if this bit is TRUE, remember

there is a soft alpha-lock: see KEY TO ALPHA LOCK. Default: FALSE.

HAS RANDOM CURSOR ADDRESSING

May be TRUE or FALSE. If your terminal is not a CRT, this should be FALSE.

Default: FALSE.

HAS SLOW TERMINAL

May be TRUE or FALSE. When this bit is TRUE, the system's promptlines and

messages are abbreviated. It is suggested that you leave this set at FALSE unless

your terminal runs at 600 baud or slower. Default: FALSE.

31

Installation Guide

Terminal Handling

HAS WORD ORIENTED MACHINE

May be TRUE or FALSE. If sequential addresses on your processor reference

sequential 16 bit words, this should be TRUE. For PDP-11, LSI-11, 8080, Z-80,

9900, 6800, and 6502 systems, this should be FALSE. For the GA440 system it

should be TRUE. Default: FALSE.

KEY FOR BREAK

When this key is pressed while a program is running, the program will terminate

immediately with a runtime error. Default: ASCII NUL. Suggested: a key that is

difficult to hit accidentally.

KEY FOR FLUSH

This key may be pressed while the System is sending output (writing to the file

OUTPUT). The first time it is pressed, output is no longer displayed, and will be

ignored ("flushed") until FLUSH is pressed again. This can be done any number of

times; FLUSH functions as a toggle. Note that processing continues while the

output is ignored, so using FLUSH causes output to be lost. Default and

suggested: ASCII ACK (control-F).

KEY FOR STOP

This key may be pressed while the System is writing to OUTPUT. Like FLUSH, it

is a toggle. Pressing it once causes output and processing to stop, pressing it

again causes output and processing to resume, and so on. No output is lost;

STOP is useful for slowing down a program so the output can be read while it is

being sent to the terminal. Default and suggested: ASCII DC5 (control-S).

KEY TO ALPHA LOCK

This character, when sent to the screen, locks the keyboard in upper case (alpha

mode). It is usually a key on the keyboard as well. Default: ASCII DC2 (control-

R).

32

Installation Guide

Terminal Handling

KEY TO DELETE CHARACTER

Deletes the character where the cursor is, and moves cursor one character to the

left. Default and suggested: ASCII BS (control-H or "Backspace").

KEY TO DELETE LINE

Deletes the line that the cursor is currently on. Default and suggested: ASCII

DEL ("Rubout").

KEY TO END FILE

Sets the intrinsic Boolean function EOF to TRUE when pressed while reading from

the System input files (either KEYBOARD or INPUT, which come from device

CONSOLE:). Default and suggested: ASCII ETX (control-C or "Home").

KEY TO MOVE CURSOR DOWN

KEY TO MOVE CURSOR LEFT

KEY TO MOVE CURSOR RIGHT

KEY TO MOVE CURSOR UP

These keys are recognized by the Screen Oriented Editor, and are used when

editing a document to move the cursor about the screen. If your keyboard has a

vector pad, we suggest using those keys for these functions. If you have no

vector pad, you might select four keys in the same pattern (such as, for example,

'.', 'K',';', and '0', in that order) and use them as your vector keys, prefixing them

or using the corresponding ASCII control codes. Default (in order): ASCII LF,

ASCII BS, ASCII FS, ASCII US.

LEAD IN FROM KEYBOARD

On some terminals, pressing certain keys generates a two-character sequence. The

first character in these cases must always be a prefix, and must be the same for

all such sequences. This data item specifies that prefix. Note that this character

is only accepted as a lead in for characters where you have set

PREFlXED[<itemname>] to TRUE. An example of this is in Appendix B below.

Default: ASCII NUL.

33

Installation Guide

Terminal Handling

LEAD IN TO SCREEN

Some terminals require a two-character sequence to activate certain functions. If

the first character in all these sequences is the same, this data item can specify

this prefix. This item is similar to the one above. The prefix is only generated as

a lead in for characters where you have set PREFlXED["<itemname>] to TRUE. An

example of this is in Appendix B below. Default: ASCII NUL.

MOVE CURSOR HOME

When sent to the terminal, moves the cursor to the upper left hand corner of the

screen (position (0,0)). If your terminal doesn't have a character which does this,

this data item must be set to CARRIAGE RETURN; you will not be able to use

the Screen Oriented Editor. Default: ASCII CR ("Return").

MOVE CURSOR RIGHT

When sent to the terminal, moves the cursor nondestructively one space to the

right. If your terminal doesn't have this function, you will not be able to use the

Screen Oriented Editor. Default: '!'.

MOVE CURSOR UP

When sent to the terminal, moves the cursor vertically up one line. If your

terminal doesn't have this function, you won't be able to use the Screen Oriented

Editor. Default: ASCII NUL.

NON PRINTING CHARACTER

The character that will be displayed on the screen when a non-printing character is

typed or sent to the terminal while using the Screen Oriented Editor. Default

and suggested: '?'.

PREFIXED [<itemname>]

If any two-character sequence must be generated by a key or sent to the screen,

the System will recognize that if you set PREFlXED[<itemname>] to TRUE. See

the explanations for LEAD IN FROM KEYBOARD and LEAD IN TO SCREEN. An

example of the use of two-character sequences is given in Appendix B.

34

Installation Guide

Terminal Handling

SCREEN HEIGHT

The number of lines in your display screen, starting from 1. If you are using a

hardcopy terminal, this should be set to 0. Default: 24 (base ten).

SCREEN WIDTH

The number of characters in one line on your display, starting from 1. Default:

80 (base ten).

STUDENT

May be TRUE or FALSE. On IV.0 Systems, should always be FALSE. Default: FALSE.

VERTICAL MOVE DELAY

May be a decimal integer from 0 to 11. Many terminals require a delay after

vertical cursor movements. This delay allows the movement to be completed

before another character is sent. This data item specifies the number of nulls

that the System sends to the terminal after every CARRIAGE RETURN,

ERASE TO END OF LINE, ERASE TO END OF SCREEN, CLEAR SCREEN, and

MOVE CURSOR UP. Default: 5 (base ten).

35

Installation Guide

Terminal Handling

III.5 GOTOXY

When you have tailored SYSTEM. MISCINFO with SETUP, you should write your own

GOTOXY. GOTOXY is a Pascal UNIT embedded in the Operating System. It

provides random addressing for your terminal's cursor. There is a GOTOXY that is

provided with the System we ship, (the source for this code, along with other

examples, is in Appendix C below), but as it is a general routine for any terminal,

it is not fast. When you create your own GOTOXY, you will write a Pascal

procedure, compile it, then bind it into the Operating System using the utility

LIBRARY.

If you are not yet ready to write your own GOTOXY, you should skip down to the

next section, which describes SCREENTEST.

If you intend to do all your work on a line-oriented terminal, you never need to

write a GOTOXY.

Before you write your own GOTOXY, you should understand the I/O intrinsic

UNITWRITE, which is described in Section VI.2 of the Users' Manual. In Section

III.5.5 (Appendix C) of this Installation Guide are a few sample versions of

GOTOXY, including the source for the GOTOXY code which comes with the

System, and the SAMPLEGOTO.TEXT that is also on your System disk. You should

look this appendix over.

36

Installation Guide

Terminal Handling

III.3.1 Writing Your Own GOTOXY

III.3.1.1 A Discussion

You may write GOTOXY using either YALOE or the Screen Oriented Editor,

whichever you find more convenient.

The purpose and the calling protocol of GOTOXY are quite simple. The

procedure is given two parameters, X and Y. They must be in that order, and

they must be of type INTEGER. The procedure should position the terminal's

cursor at co-ordinates (X,Y), where (0,0) is home (the upper left hand corner of

the screen). That is all it should do.

To get your GOTOXY to run at all, there are a few things that are required.

First, the name of your unit must be GOTOXY. The name of the procedure itself

must be something different.

Second, you must include the pseudo-comment {$U-}. This Compiler option allows

you to use the predeclared name GOTOXY as the name of your unit — it will

become part of the Operating System. This comment must be the first line of

your source code. If it does not look like one of the following lines:

(*$U-*)

{$U-}

... your GOTOXY will not compile. In particular, there must be no spaces within

the comment, and the 'U' must be capitalized.

Finally, the code for GOTOXY should be compiled as a UNIT, as shown in the next

section.

Your procedure should check that the values of X and Y are within bounds. If

they are off the screen, change them to a value that is on the screen (such as the

nearest location along the border — this is what all the sample procedures do).

You will need to move the cursor by a WRITE to the terminal, a repeated set of

writes within a loop, or a UNITWRITE of a vector. Using UNITWRITE is

recommended: it can speed up your terminal handling by about 10%. (Although

if you use UNITWRITE, you cannot redirect console output.)

37

Installation Guide

Terminal Handling

To summarize, your GOTOXY should contain, in order;

1. The pseudo-comment '{$U-}',

2. In the program body, a check to make sure that

 X and Y are on the screen,

3. A section that fills an array with all the

 characters you must send to the terminal, and

4. The actual write to the terminal, preferably

 with UNITWRITE.

Please note; some terminals take a bias on X and Y. That is, for example,

sending (X+32,Y+32) actually positions the cursor at (X,Y). If your terminal is

capable of this, you should include these offsets in your procedure. This will

eliminate any problems you might run into with the ASCII DLE (control-P)

character, which is always interpreted as a blank-compression character. You

don't want to send this value as a cursor control character. See the section below

on SCREENTEST.

The following section contains a more detailed description of GOTOXY. Section

III.5.3 (Appendix C) contains specific examples for a variety of terminals.

38

Installation Guide

Terminal Handling

III.5.1.2 A Recipe for GOTOXY

This section walks you through a sample GOTOXY, and demonstrates the best way

of writing a GOTOXY. To see some more specific examples, see Appendix C

(Section III.5.3).

The sample program here is commented like a Pascal program.

{$U-} { ALWAYS include this compiler directive. }

UNIT GOTOXY;

INTERFACE

PROCEDURE AGOTOXY(X,Y: INTEGER);

IMPLEMENTATION

PROCEDURE AGOTOXY;

CONST TELL_LENGTH_MINUS_1 = 3,

 OFFSET = 32;

{ You may have to change these, depending on your terminal. }

VAR TELL: PACKED ARRAY [O..TELL_LENGTH_MINUS_1] OF 0..255;

BEGIN

 IF X>79 THEN X:=79

 ELSE IF X<0 THEN X:=0;

 IF Y>23 THEN Y:=23

 ELSE IF Y<0 THEN Y:=0;

{ This range-checking is necessary. The actual

screenwidth and height may be different for you. }

{ These first elements of TELL must contain

the characters which tell your terminal to

position the cursor at (X,Y):

fill in the blanks... }

 TELL[0] := ___;

 TELL[1] := ___;

 ……

{ The actual X and Y values are usually the

last things in the array;

the order may be different on your terminal. }

39

Installation Guide

Terminal Handling

 TELL [TELL_LENGTH_MINUS_1 – 1] := Y+OFFSET;

 TELL [TELL_LENGTH_MINUS_1] := X+OEFSET;

 UNITWRITE(1,TELL,TELL_LENGTH_MINUS_1 + 1)

END {AGOTOXY};

END {UNIT GOTOXY}.

40
Installation Guide

Terminal Handling

III.2 Binding GOTOXY

The first thing to do, once you have written your own GOTOXY, is to compile it

to a codefile. Any filename will do, provided its suffix is .CODE. Choose a

name you will remember.

A common error is incorrectly entering the comment '{$U-}'. If this is not the

first line in your source file, if the comment contains spaces that are not shown in

this manual, or any other variances, your GOTOXY will not compile. You will get

the error message 'GOTOXY predeclared' when you try to compile.

You should also make sure that the STUDENT bit in SYSTEM.MISCINFO is set to

FALSE -- otherwise GOTOXY binding will not work, and you will get the message

"No proc in seg table" when you try to reboot the System.

III.2.1 Using LIBRARY to Bind GOTOXY

First, back up your System disk. If the binding works, all will be well, and you

will have a functioning System with a new (and hopefully functioning) GOTOXY.

If the binding does not work, your System may be destroyed. Make sure you have

a backup.

The LIBRARY is a utility program which is shipped on the Utilities disk under the

name LIBRARY.CODE. To run it, eX(ecute LIBRARY.

The first prompt LIBRARY gives you is:

Output file? NEW.PASCAL
... the underlined portion is a sample response. Choose any unambiguous name

that suits you -- this new output file will become the new Operating System if all

goes well. Be sure you have enough room on your disk for the new System: most

Systems are from 70 to 100 blocks long. If there is not enough room on your

disk, either use the Filer's K(runch command to create more room, or use another

disk with more room.

41

Installation Guide

Terminal Handling

LIBRARY then asks:

Input file? MYGOTO.CODE
... the underlined portion Is a sample response. This shouid be the file that

contains your compiled GOTOXY procedure. It will be displayed in slot 0 of the

input file. You must move it to a slot in the output file (this new slot must be

greater than 15).

Type 'T', The INTERFACE part of your unit will not be copied.

Type '0'. LIBRARY prompts:

Copy from slot O?

... type a space. LIBRARY prompts:

Copy to which slot? 16
... respond with a number greater than 15 (as shown).

Now type 'N' for N(ew. This causes a repeat of the prompt;

Input file? SYSTEM.PASCAL
... type in the name of your Operating System, as shown. This is the new input

file

Finally, type 'E' for E(very. This will cause all of the slots in SYSTEM.PASCAL

to be transferred to the output file, except for GOTOXY, which will not be

destroyed because it is already there.

42

Installation Guide

Terminal Handling

Before using E(very, your screen should look more or less like this:

Library: N(ew, 0 - 9(slot-to-slot, E(very, S(elect, C(omp-unit, F(ill,?

[IV.0z]

Input file: SYSTEM.PASCAL

 0 u KERNEL 1481 9 u SCREENOP 918 18 u DEBUGGER 187

 1 s PRINTERR 695 10 s SEGSCINI 416 19 s EXTRALEX 4872

 2 s INITIALI 1358 11 u SOFTOPS 559 20 u SYSCOMD 119

 3 s GETCMD 2779 12 u OSUTIL 511

 4 u HEAPOPS 314 13 u REALOPS 752

 5 u EXTRAHEA 736 14 u CONOJRRE 140

 6 u EXTRAI0 772 15 s USERPROG 1549

 7 u PASCALI0 304 16 u FILEOPS 2146

 8 u STRINGOP 259 17 u GOTOXY 31

Output file: NEWSYS.CODE

 0 9 18

 1 10 19

 2 11 20

 3 12

 4 13

 5 14

 6 15

 7 16 u GOTOXY 29

 8 17

... note that there is a GOTOXY in the SYSTEM.PASCAL that is shipped. This

will be abandoned by the E(very command, since you have already put a GOTOXY

in the output file.

Typing 'Q' for Q(uit causes the changes you have made to be saved in your output

file.

Once you are out of LIBRARY, use the Filer to change the name of

SYSTEM.PASCAL to something like OLD.PASCAL, and NEW.PASCAL (or whatever

you have called your new output file) to SYSTEM.PASCAL. Then bootstrap your

System again; the new GOTOXY will be in effect.

If at any point while using LIBRARY, you think you have made a mistake, A(bort

will exit without recording any changes. When modifying the Operating System, it

is far better to be safe than sorry.

43

Installation Guide

Terminal Handling

Note" While using LIBRARY on the Operating System, never move slot 0 or slot

15

44
Installation Guide

Terminal Handling

III.2.2 Problems

If your newly created System will not bootstrap at all, it may be because you

moved the USERPROG segment when you used LIBRARY. USERPROG must be at

slot fifteen in SYSTEM.PASCAL. Boot your System's backup, and try again.

If the System starts to boot, but halts with the message 'No unit in seg table', it

may also mean that the STUDENT bit is on in your SYSTEM.MISCINFO file. The

STUDENT bit must be FALSE when you compile your GOTOXY. Boot your

System's backup, change the STUDENT bit to FALSE, recompile your GOTOXY,

and use LIBRARY again.

For more information on LIBRARY, see Section VIII.5 in the Users' Manual.

Once LIBRARY has been successfully run, and the System successfully rebooted,

you should run SCREENTEST to make sure the Screen Oriented Editor interface

will work. SCREENTEST is described immediately below.

45
Installation Guide

Terminal Handling

III.4 SCREENTEST

Now that you have changed your SYSTEM.MISCINFO with SETUP (or your

GOTOXY, or both), you will want to test the results. SCREENTEST is a utility

which accomplishes that. Like SETUP, it is largely self-explanatory. SCREENTEST

checks that the Interpreter and Operating System are sending and receiving

characters correctly, that the control keys are set up correctly, and that the

Screen Oriented Editor will interface to the terminal as it is supposed to.

When you run SCREENTEST, it will display patterns on the screen and ask you if

they are correct. You will need to be seated at your terminal while

SCREENTEST is running; it takes roughly five minutes.

SCREENTEST will also output a report of errors to any file you specify. If you do

encounter problems, you will need this report to help track them down, especially

if you require assistance from your supplier's support group.

46

Installation Guide

Terminal Handling

III.4.1 Running SCREENTEST
Type X for eXecute, and enter 'SCREENTEST'<return>. it will respond by

displaying a heading, telling you that all questions must be answered with either

'Y' or 'N' (either upper or lower case; all other characters are ignored), and will

then prompt you for the name of an error log file.

If you hit <return> instead of specifying a log file name, no error report will be

generated. You may want to do this if you are running SCREENTEST for the first

time and don't anticipate any problems. If you do have trouble, you can run it

again, this time with a log. Sending the log to 'PRINTER:' may suit your needs if

you have a hardcopy device, otherwise you can save it on a disk file named

'LOG.TEXT' or something similar. (The .TEXT suffix is necessary if you want to

look at it with the Editor.)

If your terminal is set up correctly, you should be able to answer 'Y' to all of the

yes/no questions that SCREENTEST asks. If there is any problem with the

questions about individual characters, SCREENTEST will tell you immediately.

The log file will also contain a record of all problems. A sample log is in Section

III.5.5 (Appendix E).

47

Installation Guide

Terminal Handling

III.4.2 Results of SCREENTEST

SCREENTEST consists of twelve individual tests. Their names follow;

test basic

test_clr screen

test gotoxy

test clr line

test_erase eol

test etoeos

test home

test single vectors

test_scroll

test DLE expansion

test_keyboard

test normal keys

Each of these tests may generate error messages. While the text of each error

message is fairly clear, some further explanation follows. The error messages are

grouped by the nature of the problems -- what you must check in order to solve

them. They are further grouped under the name of the test that generates them.

This information is included in the error log. If you find yourself at a loss and

decide to consult Pascal Support, you will need to refer to this log.

48

Installation Guide

Terminal Handling

III.5.2.1 Problems that can be Fixed by Changing SETUP

If you get any of these error messages, check your SETUP values. To the right of

each error message listed below is a suggestion as to which key or character value

might be in error. These suggestions won't always pinpoint your problem, but they

will tell you what you should check first. It may be the case that changing

SETUP does not fix your problem. Some special cases are described at the end of

this section. If these don't cover your particular problem, you should probably ask

for help.

test_clr_screen:

screen not cleared
-> is ERASE SCREEN OK?

cursor not left at (0,0) afterwards

-> is MOVE CURSOR HOME OK?

test_clr_line:

didn't clear enough - (x,y)

(where x and y are the cursor co-ordinates)

-> is ERASE LINE OK?

Clearing one line affected another

-> is ERASE LINE OK?

test_erase_eol:

sc_erase_to_eol didn't work

-> is ERASE TO END OF LINE OK?

test_etoeos:

sc_eras_eos didn't work

-> is ERASE TO END OE SCREEN OK?

test_home:

cursor didn't go home

-> is MOVE CURSOR HOME OK?

49
Installation Guide

Terminal Handling

test_single_vectors:

sc_right didn't work
-> is MOVE CURSOR RIGHT OK?

Sc_left didn't work
-> is BACKSPACE OK?

sc_up didn't work
-> is MOVE CURSOR UP OK?

sc_down didn't work
-> this shouldn't happen;

 call Pascal Support!

test_keyboard:

<key> not correct
-> is <key> OK? <key> means one of

 the following:

 KEY TO MOVE CURSOR DOWN

 KEY TO MOVE CURSOR LEFT

 KEY TO MOVE CURSOR RIGHT

 KEY TO MOVE CURSOR UP

 BACKSPACE

 EDITOR ACCEPT KEY

 EDITOR ESCAPE KEY

 KEY TO DELETE LINE

 KEY TO END FILE

test_normal keys:

Can't type these - <list>

-> <list> means a list of any standard

 printing characters; this usually

 means that a standard character is

 being interpreted as a special key,

 which usually happens when

 HASPREFIX is incorrect — it should

 be FALSE for a key which needs

 no prefix, or TRUE for a key which

 does need one; check your own

 terminal manual;

50

Installation Guide

Terminal Handling

III.5.2.2 Problems that can be Fixed by Changing GOTOXY

test_gotoxy:

gotoxy(0,0) did not go home

gotoxy(screenwidth-l,screenwidth) not ok

box not correctly drawn

exhaustive_gotoxy check: first pass not ok

exhaustive_gotoxy check: top line not ok

-> all these problems relate to your

 GOTOXY procedure; if you find any

 discrepancies, you will have to

 change it; refer to the previous

 section in this document for a

 description of using GOTOXY,

 and to the first paragraph in

 the miscellaneous notes below;
51
Installation Guide

Terminal Handling

III.5.2.3 Other Problems

test_basic:

not all characters written out

-> there is a problem with the

 Pascal system intrinsic

 UNITWRITE, or, if you are using the

 Adaptable System, with the SBIOS.

 You should call Pascal Support;

 disregard the rest of SCREENTEST's

 results until this particular

 problem is cleared up;

test_scroll:

sc_down at bottom didn't scroll properly

-> there is a note below about

 scrolling;

test_DLE_expansion;

expansion not happening properly

-> there is a problem in your

 Interpreter's terminal handling;

 this may be hardware-related;

 it is still possible to run with

 improper DLE expansion -- you may

 encounter off-by-one errors and

 the like in your output and your

 editing; this is the case with

 Terak systems; DLE is an ASCII
 character used as a blank-

 compression code to save space

 in output strings;

52

Installation Guide

Terminal Handling
III.5.3 Miscellaneous Notes on SCREENTEST Problems

The System interprets an ASCII DLE or chr(16) (base ten) within a textfile as a

blank-compression code (this is its standard use). It can lead to problems if

GOTOXY ever writes out a chr(16) as an X or Y value. If you run into this

problem, check whether your terminal can handle an offset on X and Y values,

that is, whether sending it X+32 and Y+52 will position the cursor at (X,Y) (the

value 32 is just an example). If so, this will fix your problem. If not, you will

have to modify GOTOXY so it catches this situation; see above.

ERASE LINE will have difficulty if there are bugs in the screen emulator for

memory-mapped screens. This is applicable primarily to Terak systems. In

particular, Teraks have trouble with blank-compression sequences (DLE-expansions)

of 64 or longer.

Some terminals will not scroll at all, or scroll two lines at a time. The IV.0

System's Screen Oriented Editor unfortunately cannot handle these terminals -- you

must use YALOE for SYSTEM.EDITOR.

Use your judgement when interpreting the results of SCREENTEST: if something

is reported as an error, but the Screen Oriented Editor performs to your

satisfaction, do not worry about the SCREENTEST evaluation.

53
Installation Guide

Terminal Handling

III.5 Appendix A — SETUP Menu and Defaults

In the defaults shown below, 'T' means true and 'F' means false as per the input

conventions in SETUP. The numbers shown are in base ten, literal characters are

quoted, and ASCII abbreviations are used for nonprinting characters. When you use

SETUP, these values are shown in several formats, so the meaning is clear. {Note:

must add the eX(change INSERT CHAR and DELETE CHAR items.}

BACKSPACE BS

EDITOR ACCEPT KEY NUL

EDITOR ESCAPE KEY ESC

EDITOR EXCHANGE-DELETE KEY US

EDITOR EXCHANGE-ACCEPT KEY RS

ERASE LINE NUL

ERASE SCREEN NUL

ERASE TO END OF LINE NUL

ERASE TO END OF SCREEN NUL

HAS 8510A F

HAS BYTE FLIPPED MACHINE F

HAS CLOCK F

HAS LOWER CASE F

HAS RANDOM-CURSOR ADDRESSING F

HAS SLOW TERMINAL F

HAS WORD ORIENTED MACHINE F

KEY FOR BREAK NUL

KEY FOR FLUSH ACK

KEY FOR STOP DC3

KEY TO ALPHA LOCK DC2

KEY TO DELETE CHARACTER BS

KEY TO DELETE LINE DEL

KEY TO END FILE ETX

KEY TO MOVE CURSOR DOWN LF

KEY TO MOVE CURSOR LEFT BS

KEY TO MOVE CURSOR RIGHT FS

KEY TO MOVE CURSOR UP US

LEAD IN FROM KEYBOARD NUL

LEAD IN TO SCREEN NUL

MOVE CURSOR HOME CR

MOVE CURSOR RIGHT '!'

MOVE CURSOR UP NUL

NON PRINTING CHARACTER '?'

PREFIXED [DELETE CHARACTER] F

PREFIXED [EDITOR ACCEPT KEY] F

PREFIXED [EDITOR ESCAPE KEY] F

54
Installation Guide

Terminal Handling
PREFIXED [ED EXCH-DELETE KEY]
 F
PREFIXED [ED EXCH-ACCEPT KEY]

 F
PREFIXED [ERASE LINE]
 F

PREFIXED [ERASE SCREEN]
 F

PREFIXED [ERASE TO END OF LINE]
 F

PREFIXED [ERASE TO END OF SCREEN]
 F

PREFIXED [KEY TO DELETE CHARACTER]
 F

PREFIXED [KEY TO DELETE LINE]
 F

PREFIXED [KEY TO MOVE CURSOR DOWN]
 F

PREFIXED [KEY TO MOVE CURSOR LEFT]
 F

PREFIXED [KEY TO MOVE CURSOR RIGHT]
 F

PREFIXED [KEY TO MOVE CURSOR UP]
 F

PREFIXED [MOVE CURSOR HOME]
 F

PREFIXED [MOVE CURSOR RIGHT]
 F

PREFIXED [MOVE CURSOR UP]
 F

PREFIXED [NON PRINTING CHARACTER]
 F

SCREEN HEIGHT
 24

SCREEN WIDTH
 80

STUDENT
 F

VERTICAL MOVE DELAY
 5

55
Installation Guide

Terminal Handling
III.5.2 Appendix B — Sample setups for Some Terminals
Here is a list of SYSTEM.MISCINFO data items followed by some sample values

for four popular terminals. Some items in the SETUP menu haven't been included;

these are data items that refer to your processor configuration, not your terminal.

These examples represent what we consider reasonable layouts for a few different

keyboards, but we don't guarantee that they work for your particular hardware, or

match your individual taste.

Terminals: LSI HAZELTINE SOROC HEATH

 ADM-3A 1500/1510 IQ120 H19

Data Items :

BACKSPACE left-arrow backspace ctrl-H ctrl-H

EDITOR ACCEPT KEY ctrl-C ctrl-C home ctrl-C

EDITOR ESCAPE KEY esc esc esc ctrl-[

ERASE LINE NUL NUL NUL I
ERASE SCREEN ctrl-Z ctrl-\ '*' E

ERASE TO END OF LINE NUL ctrl-0 T K

ERASE TO END OF SCRN NUL ctrl-X Y J

HAS LOWER CASE TRUE TRUE TRUE TRUE

HAS RAND CURS ADDR TRUE TRUE TRUE TRUE

HAS SLOW TERMINAL FALSE FALSE FALSE FALSE

KEY FOR BREAK ctrl-B * break ** break break

KEY FOR FLUSH ctrl-F ctrl-F ctrl-F ctrl-F

KEY FOR STOP ctrl-S ctrl-S ctrl-S ctrl-S

KEY TO ALPHA LOCK ctrl-R NUL ctrl-R ctrl-R

KEY TO DELETE CHAR ctrl-H backspace l-arrow ctrl-H

KEY TO DELETE LINE rubout shift-DEL rubout DEL

KEY TO END FILE ctrl-C ctrl-C ctrl-C ctrl-C

KEY TO MV CURS DOMM ctrl-J ctrl-K d-arrow B

KEY TO MV CURS LEFT ctrl-H backspace l-arrow D

KEY TO MV CURS RGHT ctrl-L ctrl-P r-arrow C

KEY TO MV CURS UP ctrl-K ctrl-L u-arrow A

LEAD IN FRCM KEYBD NUL NUL NUL esc

LEAD IN TO SCREEN NUL ~ esc esc

MOVE CURSOR HOME Ctrl-^ ctrl-R Ctrl-^ H

MOVE CURSOR RIGHT ctrl-L ctrl-P r-arrow C

MOVE CURSOR UP ctrl-K ctrl-L u-arrow A

NON PRINTING CHAR '?' '?' '?' '?'

PREF [DELETE CHAR] FALSE FALSE FALSE FALSE

PREF [ED ACCEPT KEY] FALSE FALSE FALSE FALSE

PREF [ED ESCAPE KEY] FALSE FALSE FALSE TRUE

56
Installation Guide

Terminal Handling

PREF [ERASE LINE] FALSE FALSE FALSE TRUE

PREF [ERASE SCREEN] FALSE TRUE TRUE TRUE

PREF [ERASE TO EOLN] FALSE TRUE TRUE TRUE

PREF [ERSE TO EOSCN] FALSE TRUE TRUE TRUE

PREF [KEY DEL CHAR] FALSE FALSE FALSE FALSE

PREF [KEY DEL LINE] FALSE FALSE FALSE FALSE

PREF [KEY MV CRS DN] FALSE FALSE FALSE TRUE

PREF [KEY MV CRS LT] FALSE FALSE FALSE TRUE

PREF [KEY MV CRS RT] FALSE FALSE FALSE TRUE

PREF [KEY MV CRS UP] FALSE FALSE FALSE TRUE

PREF [MOVE CRS HOME] FALSE TRUE FALSE TRUE

PREF [MOVE CURS RT] FALSE FALSE FALSE TRUE

PREF [MOVE CURS UP] FALSE FALSE FALSE TRUE

PREF [NONPRINT CHAR] FALSE FALSE FALSE FALSE

SCREEN HEIGHT 24 24 24 24

SCREEN WIDTH 80 80 80 80

STUDENT FALSE FALSE FALSE FALSE

VERTICAL MOVE DELAY 5 5 10 10

* The BREAK key can also be used, but it's perilously close

 to RETURN.

** Break is also control-(a) on Hazeltines.

57

Installation Guide

Terminal Handling

Terminals:

DEC
 HEWLETT/
DATA-

VT-52

PACKARD
MEDIA

Data items :

BACKSPACE backspace
backspace
backspace

EDITOR ACCEPT KEY
 ctrl-C
ctrl-C
cntrl-C

EDITOR ESCAPE KEY
 esc

esc

esc

ERASE LINE
 Ctrl-@
cntrl-@
Ctrl-@

ERASE SCREEN
 Ctrl-@
cntrl-@
ctrl-L

ERASE TO END OF LINE
K

K

Ctrl-]

ERASE TO END OF SCRN
J

J

ctrl-K

HAS LOWER CASE
 TRUE

TRUE

TRUE

HAS RAND CURS ADDR
TRUE

TRUE

TRUE

HAS SLCW TERMINAL
 FALSE

FALSE

FALSE

KEY FOR BREAK
 Ctrl-@
cntrl-@
cntrl-@
KEY FOR FLUSH

ctrl-F
ctrl-F
ctrl-F

KEY FOR STOP

ctrl-S
ctrl-S
ctrl-S

KEY TO ALPHA LOCK

ctrl-R
ctrl-R
ctrl-R

KEY TO DELETE CHAR
ctrl-H
backspace
backspace

KEY TO DELETE LINE
del

del

del

KEY TO END FILE

ctrl-C
ctrl-C
ctrl-C

KEY TO MV CURS DOMM
B

d-arrow
d-arrow

KEY TO MV CURS LEFT
D

l-arrow
l-arrow

KEY TO MV CURS RGHT
C

r-arrow
r-arrow

KEY TO MV CURS UP

A

u-arrow
u-arrow

LEAD IN FRCM KEYBD
esc

cntrl-A
ctrl-@
LEAD IN TO SCREEN

esc

esc

Ctrl-@
MOVE CURSOR HCME

H

H

ctrl-Y

MOVE CURSOR RIGHT

C

C

ctrl-\

MOVE CURSOR UP

A

A

ctrl-_

NON PRINTING CHAR

'?'

'?'

'?'

PREF [DELETE CHAR]
FALSE

FALSE

FALSE

PREF [ED ACCEPT KEY]
FALSE

FALSE

FALSE

PREF [ED ESCAPE KEY]
TRUE

FALSE

FALSE

PREF [ERASE LINE]

FALSE

FALSE

FALSE

PREF [ERASE SCREEN]
FALSE

FALSE

FALSE

PREF [ERASE TO EOLN]
TRUE

TRUE

FALSE

PREF [ERSE TO EOSCN]
TRUE

TRUE

FALSE

PREF [KEY DEL CHAR]
FALSE

FALSE

FALSE

PREF [KEY DEL LINE]
FALSE

FALSE

FALSE

PREF [KEY MV CRS DN]
TRUE

FALSE

FALSE

PREF [KEY MV CRS LT]
TRUE

FALSE

FALSE

PREF [KEY MV CRS RT]
TRUE

FALSE

FALSE

PREF [KEY MV CRS UP]
TRUE

FALSE

FALSE

PREF [MOVE CRS HCME]
TRUE

TRUE

FALSE

58
Installation Guide

Terminal Handling

PREF [MOVE CURS RT] TRUE TRUE FALSE

PREF [MOVE CURS UP] TRUE TRUE FALSE

PREF [NONPRINT CHAR] FALSE FALSE FALSE

SCREEN HEIGHT 24 24 24

SCREEN WIDTH 80 80 80

STUDENT FALSE FALSE FALSE

VERTICAL MOVE DELAY 0

0

0

59
Installation Guide

Terminal Handling

III.5.5 Appendix C — GOTOXY Source Examples

The following example is shipped on your System disk as SAMPLEGOTO.TEXT. It is

about as simple a GOTOXY as can be written. It is not the code which is shipped

in your Operating System: that is the next example, which on one hand is a much

more general program, and on the other hand is also much longer. Since GOTOXY

is a frequently used I/O routine, you want it to be efficient: it should be tailored

to your particular terminal. This brief example works for a DEC VT-52. For an

efficient example, see the Datamedia sample.

(*The following is a sample gotoxy procedure for the VT-52*)

(*$U-*)

UNIT GOTOXY;

INTERFACE

PROCEDURE AGOTOXY(X,Y:INTEGER);

IMPLEMENTATION

PROCEDURE AGOTOXY;

BEGIN

 IF X<0 THEN X:=0;

 IF X>79 THEN X:=79;

 IF Y<0 THEN Y:=0;

 IF Y>23 THEN Y:=23;

 WRITE (CHR(27),’Y’,CHR(Y+32),CHR(X+32));

END;

END.

60
Installation Guide

Terminal Handling
This example works for a DEC VT-50. It uses writes embedded in WHILE loops,

and is not fast.
{$U-}

UNIT GOTOXY;

INTERFACE

PROCEDURE AGOTOXY(X,Y: INTEGER);

IMPLEMENTATION

PROCEDURE AGOTOXY;

BEGIN

{Check the input data to see that it is within the screen

dimensions. On some smarter terminals, if a cursor position

command is sent for a position that does not exist, the

results are unpredictable.}

 IF X < 0 THEN X := 0

 ELSE

 IF X > 79 THEN X := 79;

 IF Y < 0 THEN Y := 0

 ELSE

 IF Y > 11 THEN Y := 11;

 {For a DECscope VT-50, GOTOXY needs to be implemented by:}

 {Send the cursor home, 0,0}

 WRITE(CHR(27),’H’);

 {While TAB is meaningful, use it to move the cursor}

 WHILE X > 8 DO

 BEGIN

 WRITE(CHR(9));

 X := X-8;

 END;

 {Finish off what portion of the x coordinate could not be

 absorbed with the TAB characters.}

 WHILE X > 0 DO

 BEGIN

 WRITE(CHR(27),'C');

 X := X-l

 END;

 {Send line-feeds to access the y coordinate.}

WHILE Y > 0 DO

61
Installation Guide

Terminal Handling

 BEGIN

 WRITE(CHR(10));

 Y := Y-l

 END

 END;

END.

62

Installation Guide

Terminal Handling

This example is for a Datamedia 1520, and demonstrates the quickest form of

GOTOXY: using a UNITWRITE to send one single command stream to the terminal.

As mentioned above, this method can speed up your terminal I/O by as much as

10%; we recommend it.

{$U-}

UNIT GOTOXY;

INTERFACE

PROCEDURE AGOTOXY(X,Y: INTEGER);

IMPLEMENTATION

PROCEDURE AGOTOXY;

VAR

 T; PACKED ARRAY[0..2] OF CHAR;

BEGIN

 T[0] := CHR(30); {chr(30) is an ASCII RS, which is Datamedia's

 absolute cursor address flag.}

 {Set appropriate character for x coordinate.}

 IF X < ^ THEN T[1] := CHR(32) {Note the offset of 32.}

 ELSE

 IF X > 79 THEN T[1] := CHR(32+79)

 ELSE

 T[1] := CHR(X+32);

 {Set appropriate character for y coordinate.}

 IF Y < 0 THEN T[2] := CHR(32)

 ELSE

 IF Y > 23 THEN T[2] := CHR(32+23)

 ELSE

 T[2] := CHR(Y+32);

 {Send the cursor where it belongs.}

 UNITWRITE(1,T,3) {1 is the device number of CONSOLE:}

 END;

END.

63

Installation Guide

Terminal Handling

Here are two more examples using UNITWRITE. They are for a Soroc and a

Hazeltine terminal, respectively.

(*$U-*)

UNIT GOTOXY;

INTERFACE

PROCEDURE AGOTOXY(X,Y: INTEGER);

IMPLEMENTATION

PROCEDURE AGOTOXY;

(* FOR A 50ROC IQ 120 *)

VAR TELL: PACKED ARRAY [0..3] OF 0..255;

BEGIN

 IF X>79 THEN X:=79

 ELSE IF X<0 THEN X:=0;

 IF Y>25 THEN Y:=25

 ELSE IF Y<0 THEN Y:=0;

 TELL[0] := 27; (* LEAD-IN FOR SOROCS *)

 TELL[1] := ORD('=');

 TELL[2] := 32+Y; (* NOTE THE OFFSET *)

 TELL[5] := 32+X;

 UNITWRITE(1,TELL,4)

END;

END.

64
Installation Guide

Terminal Handling

{$U-}

Unit gotoxy;

Interface

Procedure agotoxy(x,y: integer);

Implementation

Procedure agotoxy;

{gotoxy for the Hazeltine 1500 and 1510}

var tell: packed array [0..3] of 0..255;

Begin

 if x>79 then x:=79

 else if x<0 then x:=0;

 if y>23 then y:=23

 else if y<0 then y:=0;

 tell[0] := 126; {the lead-in for a Hazeltine}

 tell[l] := 17; {also a DCl}

 if x<30 then

 tell[2] := x+96 {different offset for these terminals}

 else

 tell[2] := x;

 tell[3] := y+96;

 unitwrite(1,tell,4)

End;

End.

65
Installation Guide

Terminal Handling
III.5.4 Appendix D — Sample SETUP Session with Comments

The following is a sample of part of a session with SETUP. The data is being

changed from the System defaults to the specifications for a Soroc terminal, as in

Appendix B above. All underlined text like this is user input, and all text

enclosed in curly brackets {like this} is commentary. Angle brackets <these> are

used to enclose the names of non-printing characters {like <return>}. All else is

setup's output to the terminal.
{to begin, you must eXecute SETUP}

XSETUP<return>
INITIALIZING……………………………

……………………………………………………………
SETUP: C(HANGE T(EACH H(ELP Q(UIT [Dl]

{H(ELP tells you about the other commands, and T(EACH

 describes the use of SETUP. Now is the most profitable

 time to use these commands.

 Suppose you have read H(ELP and T(EACH, and decide

 to change data items by going through the menu.

 You must hit C for C(HANGE.}

C {Note: these single-character commands don't echo.}

CHANGE: S(INGLE) P(RCMPTED) R(ADIX)

 H(ELP) Q(UIT)

{H(ELP) describes the commands on this particular line,

R(ADIX) allows you to change the base of the numbers

you enter, and Q(UIT) returns you to the SETUP: prompt.

What you want to do now is go through the prompted menu

P
FIELD NAME = BACKSPACE

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 10 8 8 BS ^H

WANT TO CHANGE THIS VALUE? (Y,N,!)

<return>

WANT TO CHANGE THIS VALUE? (Y,N,!)

66
Installation Guide

Terminal Handling

{<return> or <space> will cause this prompt to be repeated

 ! causes an escape to the CHANGE: prompt.

 Since control-H (^H) is indeed the Soroc’s backspace

you want to go on.}

N

FIELD NAME = EDITOR ACCEPT KEY

 OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 0 0 0 NUL ^@

WANT TO CHANGE THIS VALUE? (Y,N,!)

Y
NEW VALUE: <home>
{When <home > or any other non-printing key

is pressed, ? is displayed.}

OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 3 3 3 ETX '@

WANT TO CHANGE THIS VALUE? (Y,N,!)

N

FIELD NAME = EDITOR ESCAPE KEY

OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 0 0 0 NUL '@

WANT TO CHANGE THIS VALUE (Y,N,!)

Y
NEW VALUE: <return>

{Any unexpected input here causes the

 relevant section of T(EACH to be output,

 followed by this:}

C(ONTINUE)

{All characters are ignored except C, and

 then the prompt is repeated.}

67

Installation Guide

Terminal Handling

C

NEW VALUE: <rubout> {Again, a ? is echoed.}

OCTAL DECIMAL HEXADECIMAL ASCII

 177 127 7F DEL

WANT TO CHANGE THIS VALUE? (Y,N,!)

{(Note that there is no corresponding control key.)

 DEL is not the key you meant, so you must

 change it again.}

Y

NEW VALUE: <esc> {? is echoed.}

OCTAL DECIMAL HEXADECIMAL ASCII CONTROL

 33 27 1B ESC ^[

WANT TO CHANGE THIS VALUE? (Y,N,!)

N {This is what it should be.}

{The menu continues in this way for the rest of

 the data items. Suppose you have gone ahead and

 answered all of the questions according to the

 Soroc specifications. After the last data item,

 you again get the menu:}

CHANGE: S(INGLE) P(RCMPTED) R(ADIX)

H(ELP) Q(UIT)

{you realize that you left the prefix for

 ERASE LINE at FALSE, when it should be

 TRUE. You want to change just this one

 data item.}

S {For S(INGLE)}

NAME OF FIELD: PREFIXED [ERASE]
DIDN'T FIND PREFIXED [ERASE] {Oops}

NAME OF FIELD: PREFIXED [ERASE LINE]
FIELD NAME = PREFIXED [ERASE LINE]

 CURRENT VALUE IS FALSE

WANT TO CHANGE THIS VALUE? (Y,N,!)

Y

NEW VALUE: TRUE {T would also work.}

 CURRENT VALUE IS TRUE

68

Installation Guide

Terminal Handling

WANT TO CHANGE THIS VALUE? (Y,N,!)

N

CHANGE: S(INGLE) P(ROMPTED) R(ADIX)

H(ELP) Q(UIT)

Q

SETUP: C(HANGE T(EACH H(ELP Q(UIT [D2]

Q {You're through changing data now.}

QUIT: D(ISK) OR M(EMORY) UPDATE,

R(ETURN) H(ELP) E(XIT)

{you want to do a disk update to create

 NEW.MISCINFO on your disk for future use.}

D

QUIT: D(ISK) OR M(EMORY) UPDATE,

R(ETURN) H(ELP) E(XIT)

E

{And now you're done. The Pascal system prompt

will appear.}

69

Installation Guide

Terminal Handling

III.5.5 Appendix E — Sample SCREENTEST Log

This is a sample of a SCREENTEST log for a terminal that has some problems.

1 test_DLE_expansion: expansion not happening properly

2 test_DLE_expansion: expansion not happening properly

3 test_DLE_expansion: expansion not happening properly

4 test_DLE_expansion: expansion not happening properly

5 test_DLE_expansion: expansion not happening properly

6 test_DLE_expansion: expansion not happening properly

7 test_DLE_expansion: expansion not happening properly

8 test_DLE_expansion: expansion not happening properly

9 test_keyboard: backspace key not correct

 10 test_keyboard: line feed key not correct

End Diagnostic; 10 errors encountered.

70
IV. THE ADAPTABLE SYSTEM

IV.1 Introduction

The UCSD p-System can run on any hardware system that in some way emulates

the idealized "P-machine" (which is described in the Internal Architecture Guide).

In most cases, emulating the P-machine means running a P-code interpreter. Such

interpreters have been written for many current microprocessors. However, the

hardware in which these microprocessors are packaged varies enormously, and

though an interpreter may run on a particular processor, to run on the full

hardware system requires tailoring to its requirements: procedures for bootstrapping

may vary, disk drives may vary, other remote devices may vary.

The p-System has been configured for many hardware packages. But if your

hardware is not one of these packages, you may still be able to use the p-System

by using an Adaptable System.
The Adaptable System comes in two flavors. One is for users of Z80/8080/8085

systems that run the CP/M operating system. If you have such a system, the

Adaptable System allows you to boot directly from CP/M, and later tailor the p-

System to run more efficiently. The other Adaptable System is for users of

Z80/8080/8085 systems that do not run CP/M, and users of 6502 systems. This

version of the Adaptable System requires more initial programming on the part of

the user, and more familiarity with the hardware.
There are two main problems that the Adaptable System handles. One is creating

a bootstrap that will bring up the p-System on a particular hardware package (see

Chapter II). The other is configuring an SBIOS (Simplified Basic I/O Subsystem)

that will handle the peripherals of that hardware package.

Once these problems have been solved, the Adaptable System can also be used to

extend the I/O capabilities of the p-System by adding more disk drives, more

remote devices, user-defined devices, a system clock, and so forth.

The CP/M Adaptable System is described in Section IV.3, and the Full Adaptable

System is described in Section IV.4. Details of various machines are discussed in

Chapter V.
Section IV.2 describes a utility called DISKCHANGE. DISKCHANGE allows you to

change the sector skew and interleaving of a disk. This is a necessary utility for

the Adaptable System; since disk drives vary widely, the Adaptable System is

shipped on disks that are uninterleaved, and it is up to the user to choose the

interleaving that best suits his or her hardware. For most disk drives, there is

one configuration that is vastly more efficient than any other.

71
Installation Guide

The Adaptable System

IV.1.1 Creating a useful System Disk
The Bootstrapping disks that are provided with Adaptable Systems contain a

minimal System. They are intended for booting a System from scratch, not for

day-to-day use. Other pieces of the System that you may wish to use frequently

are shipped on the disks labelled SYSTEM and UTILITIES.

Once you have booted your System, it is an easy matter to T(ransfer files from

one disk to another using the System's Filer. Any disk may be used as a

bootable System disk, provided it contains both a bootstrap and the following

files;

SYSTEM.PASCAL

SYSTEM.INTERP

SYSTEM.MISCINFO

(Interpreter names may vary from processor to processor, e.g., SYSTEM.INTERP,

SYSTEM.PDP_11).

Depending on the work you are doing, you may also want the disk you boot from

to contain SYSTEM.EDITOR, or SYSTEM.COMPILER (accompanied by

SYSTEM.SYNTAX), or both. SYSTEM.FILER is almost always needed, and

SYSTEM.LIBRARY is needed if you use Long Integers or routines you have put in

the library yourself. You may also be frequently using an assembler.

All of these files are described in a bit more detail in Chapter 1 of the Users'

Manual.

An 8" floppy disk often has enough room to contain all the System components

that you frequently use, plus some working space. 5-1/4" floppies are not so

roomy, and you may want to make yourself a "working set" of minifloppies.

Note: If you intend to use the Debugger, you must add it to the System. Use the

utility LIBRARY to add DEBUGGER.CODE to the file SYSTEM.LIBRARY. Do not

alter any segment numbers. Both DEBUGGER and LIBRARY are described in the

Users' Manual, Chapter X. Neither of them should be used until you have

acquired some familiarity with the System and its use.

72
Installation Guide

The Adaptable System

IV.2 Relevant Utilities

This section describes DISKCHANGE and DISKSIZE, which are two utilities

provided with all Adaptable Systems. DISKCHANGE has two basic purposes. One

is to unpack Adaptable System disk images on Systems that have already been

booted (see Chapter 1), and the other is to change disk formats. The purpose of

DISKSIZE is to change disks that have been unpacked by DISKCHANGE so that

their full memory capacity may be used.

Changing disk formats is chiefly done in two situations: when a different format

allows your system's disk hardware to function more efficiently, and when you wish

to use p-System disks that have been prepared on someone else's hardware using a

different disk format.

IV.2.1 Using DISKCHANGE
A floppy disk's 'interleaving' is the ordering of sectors within a track. For

example, an interleaving ratio of one (i.e., 1:1) means that logical sectors 1, 2, 3,

... are stored in physical sectors 1, 2, 3, ..., while an interleaving ratio of two

(i.e., 2:1) means that logical sectors 1, 2, 3, ... are stored in physical sectors 1, 3,

-5, 2, 4, ...

A floppy drive's 'skew' is the offset when moving from one track to the next. For

example, with one-to-one interleaving, a skew of zero means that sector 1 on one

track is adjacent to sector 1 on the next track; skew of 6 means that sector 1 on

one track is adjacent to sector 7 on the next, and so forth.

Interleaving and skew are characteristics of a disk format, not of a drive, but for

each particular drive, there is a combination of interleaving and skew that is the

most efficient, and results in faster disk performance. Some drives require a bit

of 'tuning' of the disk formats, to determine what combination of interleaving and

skew yields the fastest disk access. The utility FINDPARAMS that is supplied

with Adaptable Systems is meant to determine optimal values for interleaving and

skew.

The utility DISKCHANGE allows a disk's interleaving and skew to be altered.

DISKCHANGE is supplied on the Utilities disk that comes with your System. To

run it, eX(ecute 'DISKCHANGE'.

73

Installation Guide

The Adaptable System

After a single run of DISKCHANGE, the screen will look something like this

(underlined portions are user responses):

FLOPPY INTERLEAVING CHANGER [B3]

Type "!" to exit

What is the source unit number? (4,5,9..12) 4

What is the destination unit number? (4,5,9..12) 5

What is the interleave ratio of the drives used for the transfer? 2

SOURCE DISK TYPE:

What is the interleaving ratio? 1

What is the sector skew per track? 0

What is the first interleaved track? 1

DESTINATION DISK TYPE:

What is the interleaving ration? 2

What is the sector skew per track? 6

What is the first interleaved track? 1

Insert source disk in drive 4, dest disk in drive 5, and press return

Insert system disk and press return

74

Installation Guide

The Adaptable System

At any point, typing an exclamation point ('!') will abort the program.

The first two prompts ask for which disk will be transferred to which disk. It is

possible to transfer a disk to itself, but do this only if you have first backed it

up, otherwise you are in danger of losing your entire disk.

The next prompt asks for the interleaving of the drives (that is, the optimal

interleaving for the drives you are using). This prompt is repeated if the program

cannot use the answer you give. This value only affects the speed at which

DISKCHANGE operates.

For both source and destination disk, there are three prompts. Interleaving and

skew you will have to determine yourself; the track virtually all p-System disks

start on is track one (refer to the figures, and the following two sections).

The Adaptable System disks come with one-to-one interleaving and zero skew.

You should bootstrap your system without changing these values; once you are able

to run DISKCHANGE, it should be safe to change them to something more

efficient.

When DISKCHANGE displays the final prompt of 'Insert system disk and press

return', typing 'R' instead of return causes a transfer to be done again with the

same parameters. That is, when you type 'R' after the last prompt, DISKCHANGE

again displays

:

Insert source disk in drive 4, dest disk in drive 5, and press return

... or whatever drives were named.

You cannot change the parameters, however, without finishing a DISKCHANGE run

and starting over again.

CP/M users beware: the CP/M documentation uses the word 'skew' to mean what

we call 'interleaving'. The CP/M operating system does not perform what we call

'skew'.

75

Installation Guide

The Adaptable System

IV.2.2 Using DISKSIZE

If DISKCHANGE is used to unpack a disk by transferring one Adaptable System

disk image (1/5 of an 8" floppy) onto another (blank) 8" floppy, the new floppy's

directory will still indicate a small disk size (155 blocks). 8" floppies can

generally hold about 494 blocks (the exact figure depends on your hardware). In

order for your System to access che entire disk, you must use DISKSIZE to

change the recorded size of the new disk.

When you eX(ecute DISKSIZE, it prompts you for the number of a disk drive. It

then asks for the number of blocks that the disk can hold. It then records this

number on your disk.

You can calculate the number of blocks available on your disks by using the

bootstrap parameters for your system (these parameters are described in the

following sections). Use the following formula:

(number of tracks per disk - first Pascal track)

* (number of sectors per track)

DIV (512 DIV number of bytes per sector)

76

Installation Guide

CP/M Adaptable System

IV.3 The CP/M Adaptable System
The CP/M Adaptable System is intended for Z80 and 8080 microprocessor systems

that are already running the CP/M operating system. CP/M provides the

facilities for easily bootstrapping the p-System. Once the p-System is booted, it

is a self-contained software environment: at no time does p-System software run

"under" CP/M. Once the p-System has been booted, it may be improved in a

number of ways: device-handling may be made more efficient, and a new

bootstrap may be created which eliminates the need for using CP/M to boot the

System.

The software supplied with the p-System creates an SBIOS from the CP/M BIOS

(the "CBIOS"). It is possible to do this with CBIOS versions 1.4, 2.0, and 2.2

provided they allow 128-byte sectors. It is also possible to boot with the CDOS

operating system from Cromemco, provided it is compatible with CDOS version

1.07.

No other versions of CP/M or CDOS may be used to boot the p-System. If this

is the case, you must use the Full Adaptable System (described in Section IV.4).

CP/M configured for Dynabyte disk drives is not compatible with the CP/M

Adaptable System: you must use the Full Adaptable System.

If you have a compatible version running on an IMS 8000 with double density

floppy drives, refer to Appendix C for instructions on how to bootstrap.

To bootstrap your System, your hardware must include 48K contiguous bytes of

RAM, at least 175K bytes of disk storage, and a CRT or teletype that can send

and receive ASCII characters (these requirements are spelled out in full detail in

Appendix A).

Once your System has been bootstrapped, you may provide a "cold bootstrap", and

otherwise improve the System's performance.

The CP/M Adaptable System is shipped on 8" floppy disks. They are IBM 5740

format: soft-sectored, single sided, single density, and each p-System disk contains

the images of three logical disks (see Figures 3 and 4). The data on each disk is

not interleaved. Each logical disk can fit on one 5-1/4" minifloppy; if you use

such hardware, you must download data from the 8" disk to 5-1/4" disks (see

Section I.4).

The three p-System disks that you are shipped are called CPMADAP, SYSTEM, and

UTILITIES. The latter two contain System programs, as the names indicate. The

CPMADAP disk contains a minimal p-System, intended for booting on 5-1/4" disks.

The fourth disk you are shipped is labelled CPMDISK (BOOTER). This disk,

unlike the others, is in a CP/M-readable format, and contains a program,

77

Installation Guide

CP/M Adaptable System

PASBOOT, that runs under CP/M. PASBOOT bootstraps a p-System.

The use of these disks is described below. A catalog of release disks is in

Appendix B.

You should read through all of the next section before attempting to bring up

your p-System. You should also remember to back up your disks before doing

anything else with them.

78

Installation Guide

CP/M Adaptable System

IV.5.1 Assessing your System
The three critical resources involved in bootstrapping the p-System are RAM

memory, floppy disk storage, and I/O drivers.

IV.5.1.1 Memory Configurations
It is possible to bootstrap the p-System with 48K contiguous bytes of RAM devoted

exclusively to the System. Little can be done with so little memory, however,

and if the system has more memory than this, its performance will be better.

IV.5.1.2 Floppy Disk Requirements
It is necessary that any machine that runs the p-System have at least 175K (550

512-byte blocks) of floppy disk storage. Again, more disk space is needed for

most applications of the System.

The p-System is designed to work on any type of floppy disk, including:

minifloppies, soft-sectored floppies, hard-sectored floppies, double-density floppies,

and double-sided, double-density floppies. The Adaptable System disks are IBM

5740-format: soft-sectored, single-sided, single-density. The information on them

is uninterleaved. If the target configuration does not include floppy drives

capable of reading the disks that are shipped, the information must be downloaded

onto floppies (the "target medium") that your hardware can read (see Section I.4).

Whichever floppy disk format you use, you must have 128-byte sectors. If your

sectors are of some other size, you must use the Full Adaptable System (see

Section IV.4).

IV.5.1.2.1 Format of the CP/M Adaptable System Disks
Each disk shipped (except for CPMDISK (BOOTER)) is divided into three logical

disk images. If these disks are used without being unpacked, only the first disk

image is visible to the p-System: the second and third disks must be unpacked

before they can be used.

The first disk image starts at Track 0, the second at Track 25, and the third at

Track 50.

Each logical disk is 25 tracks long: the tracks are logically numbered 0..24. Each

track contains 26 sectors (1..26), and each sector is 128 bytes long.

Logical track 0 is reserved for bootstrapping purposes: Sectors 5..18 contain the

79

Installation Guide

CP/M Adaptable System

secondary bootstrap. Sectors 1 and 2 are empty, but may be used for a primary

bootstrap should you write one of your own (see Section IV.3.4). Sectors 19..26

are unused.

Logical track 1 contains a p-System file directory in sectors 9..26.

Logical tracks 2..24 are available for file storage (each disk that is shipped

already contains several files).

The information on these disks is uninterleaved. Once the System has been

booted, disk formats may be changed to improve performance.

IV.3.1.2.2 Contents of the CP/M Adaptable System Disks
CPMDISK is a CP/M-readable disk with the programs PASBOOT and SAMBOOT. It

has a third disk image that bootstraps a System with two disk drives, using

CP/M.

CPMADAP contains three logical p-System disks:

1) A System that boots with one disk drive, using CP/M.

2) A System that boots using SBOOT8

(from the Full Adaptable System).

3) Interpreter codefiles and the program CPMBOOT.

SYSTEM also contains three disk images:

1) System files, SETUP, and STARTUP.

2) Pascal Compiler and 8080 Assembler.

3) Some utilities, Linker, and Z80 Assembler.

UTILITIES contains two disk images:

1) COPYDUPDIR, MARKDUPDIR, DECODE, PATCH,

and SCREENTEST.

2) Other utilities.

IV.5.1.5 I/O Drivers
To boot a CP/M Adaptable System, you must be running a CP/M 1.4, 2.0, or 2.2,

with a standard CBIOS. CDOS systems will work if and only if they are

compatible with CDOS version 1.07 (later systems usually work; earlier systems do

not). If you use an Intel MDS (IMS) machine, you must recopy your disks with

CRC-checking turned off: see Appendix C for details.

80

Installation Guide

CP/M Adaptable System

A p-System booted using CP/M will do low-level (SBIOS-level) I/0 using CBIOS

routines defined in the CBIOS jump table. This is why compatibility is imperative:

if the routines are in a different location, the bootstrap program will not find

them. In addition, the CBIOS must not use any memory between 0100H and the

base of the CBIOS jump table: this is where the bootstrap will load the P-machine

Interpreter.

If all the conditions stated in this section are met, you should be able to proceed

to the next section, and attempt to bootstrap your System.

81

Installation Guide

CP/M Adaptable System

IV.3.2 Bootstrapping
To bootstrap your p-System, perform the following steps:

1) Bring up your CP/M system.

2) Insert the CP/M-compatible disk (CPMDISK (BOOTER))

into Drive A.

3) Type 'PASBOOT'<return> to execute the program PASBOOT.

PASBOOT should display the following message:

UCSD PASCAL (IV.O) BOOTER VERSION [zz]

INSERT PASCAL DISK INTO DRIVE A, THEN TYPE <RETURN>

... you should insert the Bootstrapping disk from CPMADAP

(the first disk image on CPMADAP) into Drive A, and then

type <return>.

4) PASBOOT does its work, and displays the following messages:

READING SECONDARY BOOTSTRAP

BOOTING TO UCSD PASCAL

... after this message, you should see the Operating System

promptline, and be able to use your p-System. See the next

section for details on checking the System.

Problems: If PASBOOT encounters any problems, it will halt. The error

message:

Can't find SYSTEM.INTERP

... indicates a problem in the Secondary Bootstrap (See Chapter II). The error

message:

Can't find SYSTEM.PASCAL

... indicates a problem in the Tertiary Bootstrap.

Booting with CP/M should take about two minutes (give or take some time). This

is slow: Section IV.3.4 tells how to supply your own (faster) bootstrap.

82

Installation Guide

CP/M Adaptable System

IV.3.3 Checking your System
Once your System has been bootstrapped, you can generally tell whether it is

working by a few simple observations:

1) The console should display the System promptline, and

below that there should be a welcome message.

2) When you type "F" for F(iler, the System disk should do

some clicking (it is reading several sectors), and then

the console should display the Filer's promptline.

3) While in the Filer, type 'D' for D(ate, and enter the

current date, followed by <return>. Then type 'D' again.

The second time you use the D(ate command, it should display

the date that you entered the first time.

... if (1) fails, almost anything could be wrong: reread Section IV.1 to make sure

your hardware and CP/M software conform to requirements. You might want to

check that PASBOOT creates the correct booting parameters, and that the CBIOS

disk read and console write routines are correct (more information about the

bootstrap stack and these routines may be found in Section IV.4). If (2) fails,

check your disk read and console read/write routines. If (3) fails, check your

disk routines.

Some more hints about troubleshooting appear in Appendix C. If you are truly

stuck, you should contact the supplier of your software for support.

IV.5.3.1 Notes

When your System is bootstrapped, you should be able to use all devices that

CP/M communicates with:

the line printer is PRINTER:, Device 6

the tape reader is REMIN:, Device 7

the tape punch is REMOUT:, Device 8

... however, you will only be able to communicate with one disk drive. To

communicate with more than one disk drive, bootstrap with the third disk image

on CPMDISK (BOOTER). When the System is booted using the Interpreter on this

disk, both disk drives must contain a disk (otherwise, the System will "hang" while

booting

83

Installation Guide

CP/M Adaptable System

The following are p-System numbers for disk drives:

CBIOS p-System

0

4

1

5

2

9

3

10

... the p-System is always booted from disk drive #/4.

The keys for STOP/START, FLUSH, and BREAK do work on the p-System that is

booted using CP/M. Input from the keyboard is queued if there is some other

I/O going on.

The Bootstrapping Disk from CPMADAP contains only a minimum System, intended

for bootstrapping, nothing more. Many useful files are on the other disks

supplied: once your System is booted, you may use the Filer to T(ransfer

frequently-used files onto frequently-used disks, and arrange things to your own

convenience.

84

Installation Guide

CP/M Adaptable System

IV.3.4 Improvements

Once the p-System has been bootstrapped using CP/M, it is possible to speed up

disk accesses and to provide an automatic bootstrap (a cold boot). Disk access

speed may be improved by changing disk formats to better match the disk drives

being used.

IV.3.4.1 PASBOOT

PASBOOT is an assembly language program that runs under CP/M and boots the p-

System. It reads the Secondary Bootstrap from the Bootstrapping Disk (the first

disk image on CPMADAP; the Secondary Bootstrap is on Track 0, Sectors 3..18)

into main memory, starting at 8200H. It then pushes parameters that describe

the target machine onto the processor stack, and initiates the bootstrap by

jumping to 8200H.

The source for PASBOOT is supplied on the disk CPMDISK (BOOTER). Several

equates in the source may be modified to change the conditions of bootstrapping:

DDT - normally FALSE. If set to TRUE, the System may be traced and

debugged using DDT.

BOOT - is the address of the JMP WBOOT for CP/M's CBIOS. The default

is 0000H. This is used when DDT = FALSE.

BDOS - is the address of the JMP BDOS for CBIOS. The default is 0005H.

This is used when DDT = TRUE.

TPA - the address of the start of a user program when assembled under

CP/M. The default is 0100H.

INTERP$BASE - is the starting address of the Interpreter. Normally equal

to TPA. Must always be on a page boundary (i.e., the low byte must

equal 00H). Default is 0100H.

LOW$MEMORY - the lowest available RAM address. It must be the base of

a contiguous block of at least 48K of RAM, must be greater than or equal

to INTERP$BASE, and must be on a page boundary. The default is 0100H.

TRACKS - the number of tracks on the Bootstrapping Disk. The default is

77 (as on standard 8" floppies).

SECTORS - the number of sectors per track on the Bootstrapping Disk. The

default is 26.

85

Installation Guide

CP/M Adaptable System

BYTES - the number of bytes per sector on the Bootstrapping Disk. The

default is 128. To boot using CP/M, this must be 128.

INTERLEAVE - the ratio for interleaving sectors on a track. This

parameter is termed 'skew' in CP/M documentation; in UCSD p-System

parlance, 'skew' refers instead to a track-to-track offset: see below. The

INTERLEAVE parameter is interpreted as INTERLEAVE:1. The default is

1; the p-System disks as shipped have 1:1 interleaving, i.e., none at all.

FIRST$TRACK - the track on which Block 0 of the p-System starts. p--

System code is typically stored after bootstrap code. The default is 1.

SKEW - is the track-to-track sector offset. This does not mean what 'skew'

means in CP/M documentation. In the p-System, skew is a track-to-track

offset: if SKEW=6, then Sector 1 on one track is adjacent to Sector 7 on

the next track, which is adjacent to Sector 13 on the next track, and so

forth.

MAX$SECTORS - is the maximum number of sectors per track that an

online disk drive may have. For example, if a system supports one single-

density floppy drive (with 26 sectors/track) and one double-density floppy

drive (with 52 sectors/track), this value should be 52. MAX$SECTORS is

used to allocate a sector translation-table. The default is the value of

SECTORS.

MAX$BYTES - is the maximum number of bytes per sector that an online

disk drive may have. MAX$BYTES is used to allocate a partial-sector read

buffer. The default is the value of BYTES (= 128).

IV.5.4.2 Allowing Empty Disk Drives

The standard CBIOS method of handling an empty disk drive is to emit error

messages until a disk is placed in the drive. The p-System, on the other hand, is

able to handle empty disk drives. This is a good deal more convenient.

For this to be the case, all the disk drive routines in the CBIOS/SBIOS must be

modified so that they return a status (IORESULT) in the A register. This status

must be:

0 ... if read or write successful

9 ... if disk not online

1 ... if any other error

The CBIOS/SBIOS routines should not under any circumstances display error

messages: that is the responsibility of the p-System.

86

Installation Guide

CP/M Adaptable System

IV.3.4.5 Changing Disk Recording Formats

The CP/M Adaptable System disks as shipped are formatted with a sector

interleaving of 1:1 and a track-to-track sector skew of 0. For most disk drives,

these values are inefficient. The FINDPARAMS utility can be used to determine

more efficient parameters for your particular disk drives.

There is a copy of FINDPARAMS on each Bootstrapping Disk. When you run it, it

presents you with a series of prompts and tests which allow you to judge which

combination of parameters works best with your disk drives. Once you know

what these parameters are, you may use DISKCHANGE to alter the disks you use

(DISKCHANGE is described in Section IV.2.1).

On some slow processors, FINDPARAMS is incapable of determining the proper

interleaving. In such cases, it is suggested that the user take the time to

determine optimum interleaving and skew by hand. The best way to do this is to

do a "binary search:" logging the bootstrap time for different interleavings, and

successively improving the interleave values. The lowest interleaving that is

markedly faster than the next smaller interleave value is the one that should be

used. Optimum skew can be determined in a similar manner. However, skew does

not affect disk access speed as much as interleaving does, so the difference

between skew values will be less apparent.

When you have used DISKCHANGE to alter your Bootstrapping Disk, you must

change the relevant parameters in PASBOOT:

INTERLEAVE

FIRST$TRACK

SKEW

... and then reboot your System. If you change the Bootstrapping disk but

neglect to alter these parameters, your System will no longer bootstrap. This is

one reason it is important to keep backups of all your System disks.

Note that at this point in the use of your System, all disks must have the same

recording format; if you optimize your Bootstrapping Disk, you must optimize all

other disks that you use.

Warning: Before you use DISKCHANGE on a disk, you should back it up.

DISKCHANGE may not do exactly what you wanted it to. You may have

forgotten to change the parameters in PASBOOT. Also, DISKCHANGE will lose

all information on a disk that is not part of the disk image it is altering: you

must unpack your CP/M Adaptable System disks before you optimize them with

DISKCHANGE. Section I.4 describes how to unpack Adaptable System disks.

87

Installation Guide

CP/M Adaptable System

Many soft-sectored 8" floppies in the field are formatted with 2:1 interleaving,

sector skew of 6, and first Pascal track of 1. This format is recommended if

vou wish to exchange software with other users. But DISKCHANGE can be used

to convert p-System disks to any desired format.

88
Installation Guide

CP/M Adaptable System

IV.5.4.4 Creating an Automatic Bootstrap
It is possible to write a bootstrap (a primary bootstrap) and place it on a System

disk so that the disk will boot without the aid of CP/M. The hardware you use

must. be able to read a primary bootstrap stored at Track 0, Sector 1 of the

System disk. The bootstrap is loaded into some predetermined location in main

memory. On many hardware systems, an operation of this sort takes place when

a bootstrap button is pressed.

If your hardware is capable of loading a bootstrap in this manner, you must write

a new primary bootstrap. This primary bootstrap must read the CBIOS/SBIOS

into memory, load the secondary bootstrap, and start it.

The CPMBOOT utility is provided to transfer the primary bootstrap and a CBIOS

onto Track 0 of a Bootstrapping Disk (starting at Sector 1).

The primary bootstrap that you write may be based on the PASBOOT program, but

it must load the CBIOS/SBIOS: it cannot assume it is already in memory. The

primary bootstrap must do the following things;

1) Read the secondary bootstrap from Track 0, Sectors 3..18, into main

memory starting at 8200H.

2) Read the CBIOS/SBIOS from Track 0, Sectors 19..26, into main memory

(the actual location is optional; it is best to follow the example of

PASBOOT).

3) Load the configuration parameters onto the processor stack (the source

for PA5BOOT indicates how to do this).

4) Perform a JP (not a CALL) to the secondary bootstrap (at 8200H).

The primary bootstrap must be on disk wherever the bootstrap button will read it:

the preferred location is Track 0, Sector 1.

For more information on the primary bootstrap, refer to the SAMBOOT source

program on CPMDISK.

Once you have written and tested a primary bootstrap, you may load it onto a

Bootstrapping disk, along with a copy of CBIOS/SBIOS, by running the utility

CPMBOOT (located on the disk CPMADAP). CPMBOOT prompts you for the

names of a file to load as the primary bootstrap and a file to load as CBIOS; it

then copies these files onto Track 0 of a Bootstrapping disk. Once CPMBOOT

has been run, the Bootstrapping disk it created should be able to boot without

using CP/M.

89

Installation Guide

CP/M Adaptable System

CPMBOOT can only write to a standard 8" disk. If your disk drives are not IBM

5740 format, you must load the primary bootstrap and CBIOS onto the disk in

some other manner.

IV.5.4.5 Changing the P-Machine Interpreter

The Interpreter that is shipped with the System may not have the characteristics

you desire. A different Interpreter may be created by linking together codefiles

that support the features you wish to support. How to do this is described in

detail in Section V.I.4.

The only exception from Section V.I.4 that you must note if you are using the

CP/M Adaptable System is that the CBlOS-interface files are different. Instead

of INTER.CODE and INTER.X.CODE, you have your choice of INTER.CPM1.CODE,

INTER.CPM2.CODE, and INTER.CPM4.CODE: these codefiles interface with

CBIOSes that support 1, 2, and 4 disks (they must use BIOS.C.CODE).

The Interpreter that is shipped is INTERP.CODE linked with RSP.CODE,

BIOS.C.CODE, INTER.CPM1.CODE, and TERTBOOT.CODE.

IV.3.4.6 Using the Full Adaptable System

The CP/M Adaptable System is merely a simple interface to the Full Adaptable

System. You can take advantage of the features of the Full Adaptable System,

but to do this you must take the time to read the following section, Section IV.4,

and possibly do some SBIOS programming of your own.

The second disk image on CPMADAP contains a secondary bootstrap that is the

standard bootstrap used with the Full Adaptable System. If you decide to use

more Full Adaptable System features, use this disk image.

With the Full Adaptable System, you may add device drivers to; support more

disks, support disks of different formats, drive printer and remote devices, drive

user-defined devices, and read a hardware clock.

90

Installation Guide

Full Adaptable System

IV.4 The Full Adaptable System

The full Adaptable System of Version IV.0 is intended for Z80, 8080/85, and 6502

microprocessor systems. With the full Adaptable System, it is possible to boot the

p-System on machines that have at, least 48K bytes of RAM of which at least 56K

are contiguous. They must also have a minimum disk storage capacity of 175K

bytes (550 512-byte blocks). The actual floppy drives may be of any type (single

density, double density, mini, hard sectored, etc). The hardware must also include

a teletype or CRT display that can both send and receive ASCII characters.

In addition to a UCSD p-System, the Adaptable System disk contains special

bootstrapping and testing utilities that enable the user to bootstrap the p- System

quickly and reliably. They are set up to bootstrap on particular memory

configurations. If your hardware is not so configured, an alternate bootstrap is

provided that should execute on the target hardware configuration. An I/O0 module

that communicates with the floppy disks and console must be provided by the user

to run on the target configuration.

Once the the p-System has been bootstrapped, additional facilities may be provided

to communicate with a printer, remote device, other user-defined devices, and a

system clock. The I/O configuration may be extended to provide access to

different types of floppy drives on line at the same time.

The Adaptable System is shipped on four 8" diskettes. They are IBM 5740 format:

soft-sectored, single-sided, single-density, and they contain the virtual images of

three logical disks (see Figures 5 and 4). The data on each disk is uninterieaved.

Each logical disk is small enough to fit on one 5-1/4" minifloppy, and can thus be

downloaded (see Section I.4).

One of the Adaptable System disks is called SYSTEM. Another is called UTIL.

The other two are called ADAP disks; you will probably need to use only one of

them. If your System has a Z80, 8080, or 8085 processor, the ADAP disks are

ADAPZ and ADAP8; use ADAPZ for the Z80 and ADAP8 for the 8080/5. If you

have a system with a 6502 processor, the ADAP disks are called HI PAGE and LO

PAGE; which one you must use depends on your memory configuration: see below,

Section V.5.5.

Further, each ADAP disk contains two Bootstrap disks, and one Interpreter disk.

Which of the Bootstrap disks you must use also depends on your memory

configuration; see the following section.

You should read through all of the next section before attempting to bring up your

p-System. You should also remember to back up your disks before doing anything

else with them.

91

Installation Guide

Full Adaptable System

IV.4.1 Assessing the Situation

The three critical resources involved in bootstrapping the p-System are RAM

memory, floppy disk storage, and I/O drivers.

IV. 4.1.1 Memory Configurations

It is possible to bootstrap the p-System with 48K bytes of exclusively devoted

memory. A minimum of 36K contiguous bytes must be available for user data

space (this is referred to throughout the following discussion as 'the large

contiguous RAM space'). There are three software modules that at certain times

must coexist in RAM. They are the SBIOS, the Interpreter, and the Bootstrap.

The SBIOS is an I/O package customized to the target configuration (see Section

IV.4.3). It can be located wherever it fits best in RAM. From the p-System's

point of view, it is best situated in a small, isolated RAM space of its own. If

such an area is not available, the SBIOS may occupy as much of the high-address

memory space (of the targe contiguous RAM) as is necessary.

The primary and secondary bootstraps occupy 1800 hex bytes (including data

storage), and execute in the large contiguous RAM space. If this contiguous RAM

space starts at or before location 3000 hex, the default bootstrap may be used. It

runs at 8000 hex and is called SBOOT8. If the large contiguous RAM starts after

3000 hex, an alternate copy of the bootstrap must be used. It runs at DOOO hex

and is called SBOOTD. Once it is finished running, the memory space occupied by

the bootstrap is returned to the large contiguous memory pool.

Finally, the Interpreter is approximately 12K bytes long, and runs either at the

start of the large contiguous memory space, or in a separate RAM space. If there

is a separate RAM space large enough to accommodate the Interpreter, it should

be used rather than the large contiguous space. (The exact size of the Interpreter

can be obtained by examining the last word of the SYSTEM.INTERP file after the

System has been bootstrapped.)

Details about various processors, including possible memory configurations, are

given in Chapter V.

92

Installation Guide

Full Adaptable System

IV.4.1.1.1 Sample Configurations

To illustrate these requirements, we show two cases. The first is the simple case

of a configuration that has 64K of RAM available. In the second case, the

configuration provides a 16K RAM between 1000 hex and 5000 hex, a 36K RAM

between 6000 hex and F000 hex, and a 300H-byte RAM between FD00 hex and

FFFF hex. In both cases, assume the SBIOS is 300H bytes long, the Bootstrap is

1800H bytes long, and the Interpreter is 2AOOH bytes long.

 CASE 1

CASE 2

 ------------------ <::: 0000 hex :::>

#| |

#| INTERPRETER | 1000 hex :::> |===============|#

#| | | |#

#|================| <::: 2A00 hex | INTERPRETER |#

#| | 3A00 hex :::> |===============|#

#| | 1000 hex :::> |---------------|#

#| |

#| | |---------------|#

#|================| <::: 8000 hex | |#

#| SBOOT8 | |===============|#

#|================| <::: 9800 hex | |#

#| | D000 hex :::> |===============|#

#| | | SBOOTD |#

#| | E800 hex :::> |===============|#

#| |

#|================| FD00 hex :::> |===============|

#| SBIOS | | SBIOS |#

 ------------------ <::: 1000 hex :::> -----------------

 memory memory

 ('#' indicates the presence of memory)

93

Installation Guide

Full Adaptable System

In the first case, there is no separate RAM space for the Interpreter. Therefore,

it must start where the large contiguous RAM space starts. Since there is RAM

at 8000 and the large contiguous RAM starts before 3000 hex, the bootstrap

SBOOT8 is used. Finally, the SBIOS is located so as not to fragment the large

contiguous memory space.

In the second case, there is a separate RAM space that is large enough to hold

the Interpreter. The Interpreter is therefore located there. There is also a

separate RAM space large enough to hold the SBIOS. The SBIOS is therefore

located there. Finally, since the large contiguous space does not start before 3000

hex, the SBOOTD bootstrap must be used at D000 hex.

IV.4.1.2 Floppy Disk Requirements

It is necessary that any machine that runs the p-System have at least 175K bytes

(350 512-byte blocks) of floppy disk storage. It is possible to bootstrap with less

disk space, but virtually impossible to do anything else.

The p-System is designed to work on any type of floppy medium. This includes

mini-floppies, soft-sectored floppies, hard-sectored floppies, double-density floppies,

and double-sided, double-density floppies. The Adaptable System disks are IBM

3740-format; soft-sectored, single-sided, single-density. The information on them is

uninterleaved. If the target configuration does not include floppy drives capable of

reading the bootstrap disk, a copy of the Bootstrapping disk must be created on a

disk (called the "target medium") that the available floppy drives can read (see

Section I.4).

IV.4.1.2.1 Format of the Adaptable System Disk

The Adaptable System disk is logically divided into three disk images of 25 tracks

apiece (see Figure 3). The first disk image (tracks 0 .through 24) contains a

Bootstrapping disk that boots with the SBOOT8 bootstrap. The second disk image

(tracks 25 through 49) contains a Bootstrapping disk that boots with the SBOOTD

bootstrap. The third disk image (tracks 50 through 74) contains the Interpreter

disk. The first disk image is the only one of the three logical disks that is

accessible to the p-System when it is first booted. For this reason, the SBOOT8

bootstrap is considered the default bootstrap.

A logical disk image has 25 tracks, numbered 0 through 24. Each track contains

26 sectors, numbered 1 through 26, with 128 bytes per sector.

94

Installation Guide

Full Adaptable System

Logical track 0 is reserved for the bootstrap. Sectors 1 and 2 contain the

Primary bootstrap, and sectors 3 through 18 contain the Secondary bootstrap, which

is overlayed into memory as bootstrapping progresses. Sectors 19 through 26 are

not used.

Logical track 1, sectors 1 through 8 are reserved for the SBIOS tester (see Section

IV.4.2). Sectors 9 through 24 are occupied by the disk's directory.

The remainder of the logical disk (as shipped) may contain other System files.

IV.4.1.2.2 Preparing the Disk for Bootstrapping

To boot the p-System, an appropriate Bootstrapping disk image must occupy tracks

0 through 24 of the target medium.

In this case, "appropriate" means that the bootstrap must be for the proper address

(i.e., either SBOOT8 or SBOOTD, as explained elsewhere), and the bootstrap must

be in its proper location (i.e., if downloading was necessary, it must have been

done correctly).

If the target medium is an 8" soft sectored floppy, and SBOOT8 should be used,

there is no work necessary. The SBOOT8 Bootstrapping disk image is already on

tracks 0 through 24 of the Adaptable System disk.

If instead it is necessary to bootstrap with SBOOTD, the contents of the second

disk image (tracks 25 through 49) must be copied onto tracks 0 through 24 of some

disk (it is far safer to copy from the disks provided onto fresh disks; in any case,

your disks should have already been backed up). The copying may be done by any

means available to you (such as possibly a native operating system, a ROM

monitor, an assembly language program, et cetera).

If the target medium is not an 8" soft sectored floppy, you must download your

disks onto the appropriate media (see Section I.4), unpacking them in the process.

When you have done, this, you should be able to boot using either SBOOT8 or

SBOOTD, depending on your memory configuration as described above.

When downloading, you must be careful not to change the information you are

transferring: the order of bytes or sectors must not be changed, and address

boundaries must not be disturbed.

Remember that for the purposes of initial bootstrapping, the information on a

logical disk image is recorded in contiguous sectors (i.e., the sectors of the disk

are not interleaved).

95

Installation Guide

Full Adaptable System

Once you have bootstrapped your System, you will probably want to change the

disk so that sectors are interleaved, since this is far more efficient on most floppy

drives. The DISKCHANGE utility allows you to do so with little difficulty (see

Section IV.2).

96

Installation Guide

Full Adaptable System

IV.4.2 SBIOS

IV.4.2.1 Introduction
The Simplified Basic I/O Subsystem is a collection of low-level input/output

routines. Fifteen of them are required for the p-System's operation; an additional

thirteen routines may be added at the user's discretion (see below, Section IV.4.4).

The SBIOS routines must perform device-level I/O functions. While the P- machine

is running, they are called by the BIOS. Since they are machine- specific, they

cannot be provided with an Adaptable System: the user must write them from

scratch, or adapt them from low-level I/O routines already in the user's

possession.

A correct SBIOS and a correct bootstrap enable the p-System to run on the user's

hardware.

This section first describes the SBIOS routines and their requirements, in order.

Then it describes how SBIOS routines are called, and concludes with a section on

how to test an SBIOS. The following section describes how to bootstrap the

System, with suggestions about writing a bootstrap.

97

Installation Guide

Full Adaptable System

IV.4.2.2 The SBIOS Routines

These are the names of the fifteen essential SBIOS routines, along with a brief

description of each routine. SBIOS routines are called through a jump table (see

Section IV.4.2.2.5); the center column shows each routine's number in the table (the

"jump vector"),

Routine Name

Vector Number

Description

SYSINIT

0

Initialize machine

SYSHALT

1

exit UCSD PASCAL

CONINIT

2

console initialize

CONSTAT

3

console status

CONREAD

4

console input

CONWRIT

5

console output

SETDISK

6

set disk number

SETTRAK

7

set track number

SETSECT

8

set sector number

SETBUFR

9

set buffer address

DSKREAD

10

read sector from disk

DSKWRIT

11

write sector to disk

DSKINIT

12

reset disk

DSKSTRT

13

activate disk

DSKSTOP

14

de-activate disk

98

Installation Guide

Full Adaptable System

IV.4.2.2.1 The Individual SBIOS Routines

SBIOS routines are called by the primary bootstrap and by the BIOS; rarely, if

ever, by the user's programs. They are sometimes passed parameters on the stack,

and sometimes return results in registers or main memory. The conventions of

parameter passing vary (necessarily) from processor to processor: see Chapter V for

details.

Many of the SBIOS routines return a status word: this status word is used as the

System's IORESULT. It is important that status words be returned correctly. If

they are incorrect, the System may crash or even fail to bootstrap. An

IORESULT of 0 signifies a correct operation. An IORESULT of 9 should always be

returned when an I/O device is not online. (Remember that floppy disks are

frequently removed and replaced, so the disk-handling routines should be careful to

check that a disk is in the desired drive.)

The SBIOS must maintain four variables that describe the state of disk I/O.

These are called CURDISK, CURTRAK, CURSECT, and CURBUFR. The first

three describe the current disk drive (numbered 0..5 for SBIOS purposes) and the

current track and sector on that disk. CURBUFR is a pointer to a read/write

buffer in main memory.

Following is a description of each of the SBIOS routines, in order:

SYSINIT
SYSINIT is the first routine called when a System is bootstrapped. It should

initialize the hardware in any ways necessary. This may include setting up

interrupt vectors, enabling RAM memories, and turning off any I/O devices that

won't be used.

A pointer to the Interpreter's jump table is passed to SYSINIT. This pointer is

not used by the bootstrap; it is provided for use with some routines in the

Extended SBIOS: see Section IV.4.4.2.

SYSHALT
SYSHALT is called when the p-System terminates (through a H(alt). It should shut

down all devices in an orderly manner. If the user so desires, SYSHALT may also

start another operating system on the host machine.

99

Installation Guide

Full Adaptable System

CONINIT
CONINIT initializes the console port. It returns the status of the console

connection.

Initializing the console means preparing the console hardware to send and receive

characters. If the terminal's baud rate and parity bits can be set by software,

CONINIT should configure it to operate as quickly as possible, ignoring parity

bits. Any interrupt vectors associated with the console should be set in SYSINIT,

not CONINIT.

If CONINIT encounters no problems in initializing the console, it should return a

0 (zero). If it detects that the terminal is offline, it should return a 9.

CONSTAT

CONSTAT returns two parameters that describe the status of the console.

The first parameter is the state of the console connection. This is identical to

the parameter returned by CONINIT; if the console is online, the parameter should

return 0; if the console is offline (disconnected), the parameter should return 9.

The second parameter describes the state of the console input channel. If a

character has been typed on the keyboard, the parameter should return FF hex;

otherwise it should return 0. (Note: CONSTAT does not read the pending

character, but merely reports its presence.)

100

Installation Guide

Full Adaptable System

CONREAD

CONREAD reads a single character from the keyboard. It returns that character,

and the status of the console connection.

If the console is online and a character is pending, CONREAD reads that

character. If the console is online but no character is pending, CONREAD waits,

by polling the console, until a character appears, and then reads that character.

If the read was successful, the status parameter should return a 0. If the

console was offline, the parameter should return a 9. If a character was read

but there appears to be a transmission problem, CONREAD should return the

character, and the status parameter should be set to 1.

The character read should be returned exactly as read from the keyboard port,

with no modifications.

CONWRIT
CONWRIT writes a single character to the console. It reports the status of the

console connection.

If the console is online, the character is sent, and CONWRIT returns 0. If the

console is offline, CONWRIT returns 9. If there is a transmission problem,

CONWRIT returns 1: the System will assume that the character was lost.

CONWRIT should not alter the output character in any way, unless it must do so

in order for the console to display the character properly. (For example, don't

strip parity bits, unless the terminal will not function properly when they are set).

101

Installation Guide

Full Adaptable System

SETDISK

SETDISK sets CURDISK.

CURDISK (as well as CURTRAK, CURSECT, and CURBUFR, which are mentioned

below), is a global value in the BIOS. The SBIOS must keep a copy of these

values, for use by the SBIOS disk-handling routines (DSKREAD, DSKWRIT, DSKINIT,

DSKSTRT, and DSKSTOP).

Disk numbers may be in the range 0..5.

SETDISK merely changes a value; it does not alter the hardware state, nor does

it return a status.

SETTRAK
SETTRAK sets CURTRAK.

CURTRAK is used by DSKREAD and DSKWRIT.

Track numbers range from 0 to one less than the highest numbered track on the

disk.

Like SETDISK, SETTRAK merely changes a value; it does not alter the hardware

state, nor does it return a status.

SETSECT
SETSECT sets CURSECT.

CURSECT is used by DSKREAD and DSKWRIT.

Sector numbers range from 1 to the highest numbered sector on a track.

SETSECT does not alter the hardware state or return a status.

102

Installation Guide

Full Adaptable System

SETBUFR
SETBUFR sets CURBUFR.

CURBUFR is used by DSKREAD and DSKWRIT. It is the hardware address of a

buffer area large enough to contain one sector.

SETBUFR does not alter the hardware state or return a status.

DSKREAD
DSKREAD reads a sector from a floppy disk and returns a status.

DSKREAD must ensure that the sector it reads is identified by the values

CURDISK, CURTRAK, and CURSECT. It should read the sector into the buffer

whose address is CURBUFR.

DSKREAD may assume that CURDISK, CURTRAK, CURSECT, and CURBUFR have

all been correctly set by previous calls to SETDISK, SETTRAK, SETSECT, and

SETBUFR. It should not change these values.

If the read was successful, the status should return 0. If the disk was offline or

otherwise unavailable, the status should return 9. If there was an error in reading,

the status should return 1. If there are any problems, DSKREAD should always

return an error status; it should not retry the read or hang on an error.

DSKREAD may also assume that DSKINIT has already been called at least once for

the CURDISK, and that DSKSTRT has been called for the CURDISK more recently

than DSKSTOP.

103
Installation Guide

Full Adaptable System

DSKWRIT
DISKWRIT writes a sector to a floppy disk and returns a status.

DSKWRIT must ensure that the sector it writes is identified by the values

CURDISK, CURTRAK, and CURSECT. It should write the sector from the buffer

whose address is CURBUFR.

DSKWRIT may assume that CURDISK, CURTRAK, CURSECT, and CURBUFR have

all been correctly set by previous calls to SETDISK, SETTRAK, SETSECT, and

SETBUFR. It should not change these values.

If the write was successful, the status should return 0. If the disk was offline or

otherwise unavailable, the status should return 9. If there was an error in writing,

the status should return (decimal) 16. If there are any problems, DSKWRIT should

always return an error status; it should not retry the write or hang on an error.

DSKWRIT may also assume that DSKINIT has already been called at least once for

the CURDISK, and that DSKSTRT has been called for the CURDISK more recently

than DSKSTOP.

To keep disk writes reasonably fast, DSKWRIT should not do read-after-write

checking.

DSKINIT
DSKINIT resets the disk CURDISK, and returns a status.

DSKINIT may assume that SETDISK and DSKSTRT have already been called to

select CURDISK and set it in motion.

DSKINIT must move the recording head to track 0. If possible, the drive should

be reset to its power-up state, and prepared for reading and writing.

If CURDISK is online (i.e., the drive is connected, turned on, and contains a floppy

disk) and the DSKINIT is successful, the status should return 0; otherwise, the

status returns 9.

If there are any problems, DSKINIT should always return an error status rather

than hang on an error.

DSKINIT should not alter the values of CURDISK, CURTRAK, CURSECT, and

CURBUFR.

104

Installation Guide

Full Adaptable System

DSKINIT is only called when the System is booted or re-initialized (i.e., after

SYSINIT is called). It is not called every time a disk read/write sequence is

begun: that is the purpose of DSKSTRT.

DSKSTRT
DSKSTRT prepares the disk CURDISK for a series of read, write, or init operations

(that is, for a sequence of calls to DSKREAD, DSKWRIT, and DSKINIT).

DSKSTRT may assume that SETDISK has already been called to set the value of

CURDISK.

DSKSTRT should perform any motor starting and head loading operations that are

not done automatically (by the hardware) as consequences of read, write, and init

operations.

DSKSTRT does not return a status.

This routine is intended for use with certain mini-floppy drives (5-1/4"). Most 8"

floppies will not require that DSKSTRT perform any action.

DSKSTOP
DSKSTOP stops the disk CURDISK; it is meant to be called at the end of a series

of disk read, write, or init operations.

DSKSTOP may assume that SETDISK has already been called to set the value of

CURDISK.

DSKSTOP should perform any motor stopping and head unloading operations that

are not done automatically (by the hardware) after read, write, and init operations.

DSKSTOP does not return a status.

This routine is intended for use with mini-floppy drives (5-1/4"). Most 8" floppy

hardware will not require that DSKSTOP perform any action.

105

Installation Guide

Full Adaptable System

IV.4.2.2.2 Where to Get the SBIOS Routines
The SBIOS routines are deliberately simple. Similar low-level I/O handling routines

may be found in most operating systems or ROM monitors. While you may if you

choose write all of the SBIOS from scratch, it may be possible to find these or

similar routines in your hardware's ROM, and if not in ROM, they may be included

in software that you already have for your system, or may be available from the

manufacturer of your hardware.

IV.4.2.2.3 What to Do with SBIOS Routines
The SBIOS must be edited and assembled on whatever operating system or other

computer is available. It may also be assembled by hand.

The SBIOS routines should adhere to the specifications given in this section. Be

careful that the routines which return status values do return the correct value:

the System relies on this information.

106
Installation Guide

Full Adaptable System

IV.4.2.2.4 Physical Organization of the SBIOS
The SBIOS should be organized with the jump vector (see below) at the beginning,

followed by data space and code. A sample SBIOS might look like:

SBIOS

;Beginning of the SBIOS

JUMP
SYSINIT
; Jump to SYSINIT routine

JUMP
SYSHALT
; Jump to SYSHALT routine

JUMP
CONSTAT
; Jump to CONSTAT routine

JUMP
CONREAD
; Jump to CONREAD routine

..

..

..

JUMP
DSKSTRT
; Jump to DSKSTRT routine

JUMP
DSKSTOP
;Jump to DSKSTOP routine

CURDISK

.WORD

;Temporary area

CURTRAK

.WORD

SYSINIT

..

..

RET

; Make sure to return to caller

SYSHALT

HALT

; Dying on this machine is simple

107

Installation Guide

Full Adaptable System

IV.4.2.2.5 How to Call the SBIOS Routines
Each SBIOS routine is called through a jump vector. The jump vector is an array

of jump instructions. A program calling an SBIOS routine must access the jump

vector rather than the routine's physical location; in this way, the System need

not know the size of SBIOS routines, or how they are ordered in memory.

For the simple SBIOS, there are 15 jumps: each one to the start of a different

SBIOS routine. The jumps are arranged in vector number order (see the list of

SBIOS routines in Section IV.4.2.2).

The following steps show how to call an SBIOS routine:

STEP 1:

Calculate the offset to the jump instruction. This is:

(the SBIOS routine's vector number) *

(the number of bytes in a jump instruction);

STEP 2:

Add the offset from STEP 1 to the address of the SBIOS

(that is, the start of the jump vector);

STEP 3:

Execute the jump instruction (and the subsequent routine).

If the contents of the jump vector are correct, a call to the SBIOS routine will

jump into the jump vector and then to the desired routine. The call to the

SBIOS should be a subroutine call (whatever that means on your hardware). Each

individual SBIOS routine is responsible for returning to its caller.

Paramter-passing conventions for SBIOS routines vary from processor to processor.

See Chapter V for details on your particular machine.

108

Installation Guide

Full Adaptable System

IV.4.2.5 Testing the SBIOS
The conditions for testing an SBIOS are the same as the conditions for

bootstrapping the System. Namely, you must have a complete SBIOS, you must

have selected the appropriate disk to bootstrap from, and you must have set up

some parameters on the processor's stack.

Building an SBIOS is described in the previous section. Selecting the appropriate

disk to bootstrap from is described in Section IV.4.1. Setting up parameters on

the stack is described below in Section IV.4.2.5.1; the section on bootstrapping

(Section IV.4.3) refers back to this section.

It is unwise to try to bootstrap without first testing the SBIOS. Should there be

problems with the SBIOS which cause your System to fail, there will be no way to

tell what went wrong. Running SBIOSTESTER is therefore an important step: if

your SBIOS passes these tests, it is likely to work when you bootstrap your System

and run it.

SBIOSTESTER is a utility program that resides on the Bootstrapping disk. It is

located in track 1, and therefore does not appear in the directory. SBIOSTESTER

includes tests for each SBIOS routine, including very thorough tests of each disk

drive.

Before SBIOSTESTER can be run, it must be given a set of parameters that

describe the configuration of the host hardware. These parameters are placed on

top of the processor's stack (which differs from machine to machine: see Chapter

V).

Once the SBIOS has passed its tests, you will be ready to bootstrap your System.

The parameters reguired by the bootstrap are the same as the parameters

required by SBIOSTESTER. Thus, Section IV.4.5 on bootstrapping refers back to

the following section, Section IV.4.2.3.1.

IV.4.2.5.1 Loading Parameters on the Stack

A number of parameters must be passed on the processor stack to SBIOSTESTER

(and later, when you are ready, to the secondary bootstrap). These parameters

describe the configuration of the target machine: the characteristics of the

Bootstrapping disk, the current memory configuration, and other miscellaneous

items.

Each parameter is a 16-bit word. Hardware stacks differ from processor to

processor: you must refer to Chapter V for full details about your own machine.

109

Installation Guide

Full Adaptable System

The parameters must appear on the stack in the following order:

top of stack -->
highest numbered floppy drive to test

address of the Interpreter

address of the SBIOS

address of the lowest word of contiguous memory

address of the highest word of contiguous memory

number of tracks per disk

number of sectors per track

number of bytes per sector

interleaving factor

first Pascal track

track-to-track skew

maximum number of sectors per track for all disks

maximum number of bytes per sector on any disk

IV.4.2.3.1.1 Individual Parameters
Here is a description of each parameter, in order:

Highest Numbered Floppy Drive to Test

SBIOSTESTER tests all disk drives. Disk drives are numbered from 0 (which is

the drive from which the System must be bootstrapped). For example, if this

parameter is 1, SBIOSTESTER tests drives 1 and 0. For practical testing

purposes, this parameter should always be 5. This is to ensure that proper error

messages are generated when the System attempts to access a disk that is not

there.

When the System is actually booted, this parameter should be 0 (on 6502 Systems

and Z80/8080 Systems with the supplied bootstrap) or not present (on Z80/8080

Systems with a user-written bootstrap).

Address of the Interpreter
The appropriate address for the Interpreter depends on your memory configuration.

See Section IV.4.1.

Address of the SBIOS
The appropriate address for the SBIOS also depends on your memory configuration.

See Section IV.4.1.

110

Installation Guide

Full Adaptable System

Bounds of the Large Contiguous RAM
The next two parameters are the addresses of the first and last words in the large

contiguous RAM space. (I.e., these addresses must be even.)

As described in Section IV.4.1, the p-System requires a minimum of 36K

contiguous bytes of RAM (Random Access Memory). When running SBIOSTESTER

or booting the System, this space must be absolutely free for the System's use.

It can of course be larger than 56K.

The SBIOS must not reside within this space. The Interpreter need not reside

within this space, but if it does, it must start at the beginning of this space, and

be wholly contained within it.

These issues are discussed in Section IV.4.1, and details about individual processors

are given in Chapter V.

Tracks per Disk

The number of tracks on a single floppy disk. At this stage of bringing up your

System, all disk drives must be identical. Section IV.4 describes how to maintain

several different floppy disks formats on one System at one time.

Sectors per Track

The number of sectors on each track of a floppy disk.

Bytes per Sector

The number of bytes in a single floppy disk sector. This must be either 128,

256, or 512. The SBIOS routines DSKREAD and DSKWRIT transfer information to

and from memory a sector at a time.

111

Installation Guide

Full Adaptable System

Miscellaneous Parameters

The remaining four parameters are for use after your System has already been

bootstrapped at least once. They allow for more efficient use of the floppy disk

drives.

When you run SBIO5TESTER, these parameters must have the following values:

interleaving factor = 1

first Pascal track = 1

track-to-track skew = 0

maximum number of sectors per track = sectors per track

maximum number of bytes per sector = bytes per sector

112

Installation Guide

Full Adaptable System

IV.4.2.5.1.2 Sample Configurations
The memory-configuration parameters in this example are taken from the example

in Section IV.4.1.1.1.

In Case 1 there are two 8" floppy drives online, with 77 tracks/disk, 26

sectors/track, and 128 bytes/sector. In Case 2, there are six mini-floppy drives

online, with 55 tracks/disk, 10 sectors/track, and 256 bytes/sector.

These are the two parameter stacks (values are shown in hex):

CASE1

CASE 2

top of stack --->

0005
=
highest numbered floppy drive to test
=
0005

0000
=
address of Interpreter

=
1000

FD00
=
address of of SBIOS

=
FD00

0000
=
address of low word of contiguous RAM
=
6000

FDFE
=
address of high word of contiguous RAM
=
F000

004D
=
number of tracks per disk

=
0023

001A
=
number of sectors per track

=
000A

0080
=
number of bytes per sector

=
0100

0001
=
interleaving factor

=
0001

0001
=
first Pascal track

=
0001

0000
=
track-to-track skew

=
0000

001A
=
maximum number of sectors per track
=
000A

0080
=
maximum number of bytes per sector
=
0100

... note that the interleaving, first Pascal track, and track-to-track skew are the

same in both cases.

113

Installation Guide

Full Adaptable System

IV.4.5.2 Running SBIOSTESTER

IV.4.3.2.1 Loading SBIOSTESTER into Memory

The program SBIOSTESTER is present on the first 1024 bytes of track 1 of all

Adaptable System Bootstrapping disks (on 8" disks, it occupies sectors 1..8). It

must be loaded into the same location in memory as you would load your

bootstrap: either 8000 hex or D000 hex.

SBIOSTESTER may be loaded in any way you choose. Perhaps a small assembly

language program could be written to do this (you have already provided disk read

routines when you constructed your SBIOS), or perhaps you have another operating

system that enables you to load code into memory.

If you are not sure at which location you should load SBIOSTESTER, refer to

Section IV.4.1.

IV.4.5.2.2 Executing SBIOSTESTER

Once SBIOSTESTER has been loaded into main memory, and the proper parameters

have been pushed on the processor stack, execute it by performing a JUMP to

SBIOSTESTER (either to 8000H or D000H). Do not call SBIOSTESTER with a

subroutine call.

While SBIOSTESTER is running, there should be a blank disk in every disk drive.

SBIOSTESTER simply reports most problems and goes on. Some problems are

serious enough to cause it to abort. Since SBIOSTESTER displays its progress on

the console, you must watch the console while SBIOSTESTER is running to know

whether your SBIOS is passing all tests (SBIOSTESTER displays more information

than will fit onto a single screen).

SBIOSTESTER performs the following actions:

Step 1: SYSINIT is called to initialize the SBIOS, and CONINIT is called to

initialize the console.

Step 2: If step 1 is successful, the following prompt appears on the console:

Insert blank disks into all drives then hit the <return> key.

Warning: The contents of all disks in the tested drives will be destroyed by the

SBIOS read/write tests!

114

Installation Guide

Full Adaptable System

Step 3: CONREAD should read the <return> key when you hit it. If this is the

case, the highest numbered drive is declared the current disk (CURDISK) by a call

to SETDISK.

Step 4: DSKSTRT and then DSKINIT are called to initialize the floppy drive.

If DSKINIT returns a status of 0,

Testing disk x

... is displayed on the console (where x is the current disk).

If DSKINIT returns a status of 9,

Disk x is not on line

is displayed on the console, and the test jumps ahead to step 9.

If neither of these messages appear on the console, there is a problem with

either CONWRIT, DSKSTRT, or DSKINIT

Step 5: A data pattern is written on each sector of each track of the current

disk, using SETTRAK, SETSECT, and DSKWRIT Before each call to DSKWRIT

Writing track xx, sector yy

... appears on the console, where xx is CURTRAK and yy is CURSECT (both

numbers appear in hex).

If DSKWRIT returns a status of 16,

Bad data transfer on track xx, sector yy

... appears on the console. The values are the same as above.

Step 6: Each sector of each track on the current disk is read, using SETSECT,

SETTRAK, and DSKREAD. Before each call to DSKREAD,

Reading track xx, sector yy

... appears on the console (values as in Step 5).

115
Installation Guide

Full Adaptable System

If DSKREAD returns a status of 9, or the pattern read is not the same as the

pattern written in Step 5, an error message appears (the same as in Step 5).

Step 7: This is a more elaborate disk write test.

SBIOSTESTER writes a unique data pattern on one sector of each track using

SETTRAK, SETSECT, and DSKWRIT. The tracks are accessed starting from the

disk's middle track and alternating from one side of the middle track to the other

until the outer tracks are reached. As each sector is recorded, its location is

displayed on the console (as in Step 5). If DSKWRIT returns an error status, the

error message of Step 5 appears on the console.

Step 8: This is a more elaborate disk read test, using the information generated

by Step 7.

SETTRAK, SETSECT, and DSKREAD are used to read the sectors written in Step

7. As each sector is read, its location appears on the console (as in Step 6). If

DSKREAD returns an error, or the sector's contents do not correspond to what

was written, the error message of Step 5 appears on the console.

Step 9: DSKSTOP is called to de-activate the current disk. CURDISK is

decremented. If CURDISK is 0 or greater, SBIOSTESTER branches back to Step 4,

and a new floppy drive is tested.

Step 10: The following message appears on the console:

Test complete

... and SYSHALT is then called.

IV.4.2.3.2.5 After Running SBIOSTESTER
If SBIOSTESTER runs through to completion, and if it displays no error messages,

you may attempt to bootstrap your System with some degree of confidence.

Otherwise, debug your SBIOS and try again. Do not attempt to boot your System

if you know there are bugs in your SBIOS.

116

Installation Guide

Full Adaptable System

IV.4.3 Bootstrapping

IV.4.5.1 Loading a Bootstrap

If the SBIOS is not already in memory, it must be loaded (see the preceding

section). The bootstrap must then be loaded into memory at either 8000 hex or

D000 hex, depending on the machine's memory configuration (see Section IV.4.1).

The bootstrap is recorded on the first 256 bytes of Track 0 of each Bootstrapping

disk. Any available method may be used to load this code into the appropriate

memory space. Possible methods include using a manufacturer-supplied operating

system or a small assembly language program that calls the already-resident SBIOS

to read the code. An example of such a program for each type of CPU is

provided in Chapter V.

IV.4.3.2 Executing a Bootstrap

Each bootstrap requires that the parameters described in Section IV.4.2.3.1. be on

the top of the processor stack (the number of disk drives to test must be zero).

Once the configuration parameters are on the stack, and the SBIOS and bootstrap

are n' memory, the bootstrap is ready to execute. This is done by executing a

jump instruction to the beginning of the bootstrap code (i.e., either 8000 hex or

D000 hex).

The bootstrapping process may take as long as two or three minutes. This is only

for the time being: Section IV.4.4 explains how to write a faster bootstrap.

Note: On Z80/8080 Systems, the 'number of drives to test' parameter must equal

0 only if the supplied bootstrap is used: with a user-written bootstrap, it must

not be pushed. On 6502 Systems, it should equal 0.

IV.4.5.5 Checking the System

Once the System appears to have bootstrapped, there are a few simple tests that

help verify the interaction bet.ween the SBIOS and the p-System.

If the System has booted correctly, the console should display a welcome message,

followed by the System version number, and the date on which the Bootstrap disk

was created. After that, the outer System promptiine should appear (see the

Users' Manual).

if these messages do not appear, the bootstrap has not worked. First check the

values that are on the stack before the bootstrap is run. If these appear to be

correct, the bootstrap code may not have functioned. If the bootstrap appears to

be correct, then the SBIOS routines that handle either disk reads or console output

117

Installation Guide

Full Adaptable System

may be at fault.

Once the System appears to have booted, the next test is to type 'F'. This should

call the Filer. Several sectors will be read off the System disk, and another

promptline will appear. If these actions do not occur, the SBIOS disk read

routines or console I/O routines may not work.

The final quick test is to type 'D' while in the Filer. When prompted, type the

current date (e.g., 12-JAN-79) followed by <return>. Finally, type 'D' again. If

the correct date (that is, the one you just typed) is not displayed, the disk write

routines may be wrong.

IV.4.3.4 Accessing Other System Programs

The sole purpose of the Bootstrapping disk is to aid in the development of

bootstraps. There is no need for most System programs in this process. Hence,

they are provided on the System disk rather than on the Bootstrapping disk.

The System disk as shipped contains three disk images, and may be unpacked as

described in Section I.4. The first disk image, SYSTEM1, contains a p-System that

may be booted once a working bootstrap and Interpreter are transferred to it.

The other two disk images contain other System programs (Appendix C contains a

full catalog).

Bootstraps may be transferred using the utility BOOTFR (see Section II.5).

Interpreters may be transferred as any normal file, by using the Filer's T(ransfer

command. Once it has a bootstrap, Interpreter, and Operating System, SYSTEM1

may be booted like the Bootstrap disk.

For any disk to be booted, it must contain a bootstrap, SYSTEM.INTERP,

SYSTEM.PASCAL, SYSTEM.SYNTAX (if you intend to compile programs),

SYSTEM.MISCINFO (if you intend to use the Screen Oriented Editor), and

SYSTEM.LIBRARY (if you intend to use Long Integers or code that you yourself

have placed in the Library).

In order to use an assembler, its name must be SYSTEM.ASSMBLER (no 'E').

Assemblers are shipped with the name of the processor they generate code for, so

it is necessary to enter the Filer and use the C(hange command to name the

desired assembler SYSTEM.ASSMBLER. Any assembler information files (e.g.,

Z80.0PCODES) must reside on the same disk as SYSTEM.ASSMBLER.

118

Installation Guide

Full Adaptable System

IV.4.3.5 Writing a Bootstrap

Chapter II discusses bootstraps in some detail. This section is only meant to

provide some reminders about the same topics.

The Adaptable System comes with primary, secondary, and tertiary bootstraps.

They are located on each Bootstrapping disk as diaqrammed in Figure 4 (Section

II.5). The primary bootstrap that is supplied must be loaded by a bootstrap

loader which you yourself supply; at some point in your use of the System you

will almost certainly want to replace it with a simpler bootstrap (a "cold boot").

Section IV.4.1.2 describes how to do this.

Until you write your own primary bootstrap, you must load the supplied primary

bootstrap with a bootstrap loader: this can be either a small program that you

write yourself, or some other operating system that you are already using.

The supplied primary bootstrap must be loaded into either 8000H or D000H,

depending on your memory configuration, as described in Section IV.4.1. The

processor's stack must also be loaded with parameters, as described in Section

IV.5.2.5.1; the number of drives to test must be 0.

Once the primary bootstrap is loaded and the parameters are on the stack, execute

the bootstrap by doing a JUMP to its location (either 8000H or D000H). Do not

call the bootstrap as you would a subroutine.

The supplied primary bootstrap will load the SBIOS and the secondary bootstrap,

push some parameters on the stuck, and initiate the secondary bootstrap. If you

have prepared things correctly, within a short time you should have a running p-

System.

119

Installation Guide

Full Adaptable System

IV.4.4 Improvements
When the p-System is first booted with a minimal SBIOS and the primary

bootstrap supplied on the Bootstrapping disk, it does not have the speed or the

extended I/O capabilities of a fully-implemented System. This section describes

the improvements that can be made to your System, once you have jumped the

initial hurdle of bootstrapping it for the first time.

Among the capabilities that you may add to your System are: a fast turnkey

bootstrap (a "cold boot"), more efficient disk recording formats, the ability to

communicate with a printer, serial line, and system clock, and the ability to use

disk drives that are formatted differently from the System disk.

IV.4.4.1 Simple Improvements
This section discusses changing disk recording formats and writing a simpler

bootstrap. Both of these improvements are relatively simple, and can

substantially improve the speed of your System.

IV.4.4.1.1 Changing Disk Recording Formats
The Adaptable System disks as shipped are formatted with a sector interleaving of

1:1 and a sector track-to-track skew of 0 (interleaving and skew are described in

Section IV.2.1). For most disk drives, these values are inefficient. The utility

called FINDPARAMS can be used to determine more efficient parameters for your

particular hardware.

There is a copy of FINDPARAMS on each Utilities disk. When you run it, it

presents you with a series of prompts and tests which allow you to judge which

combination of parameters works best with your disk drives. Once you know

what these parameters are, you may use DISKCHANGE to alter the disks you use

(DISKCHANGE is described in Section IV.2.1).

When you have used DISKCHANGE to alter your Bootstrapping disk, you must

change the relevant parameters on the bootstrap stack:

interleaving factor

first Pascal track

track-to-track skew

... and then reboot your System. If you change the Bootstrapping disk and fail to

alter these parameters, your System will no longer bootstrap. This is one reason

it is important to keep backups of all your System disks.

120

Installation Guide

Full Adaptable System

Remember that you must use BOOTER to copy the bootstrap on Track 0.

Note that you cannot do this optimization until you have booted your System with

a working SBIOS, as SBIOSTESTER requires that disks be formatted with 1-1

interleaving and 0 skew.

Note also that (at this point in your use of the System) all disks must have the

same format; if you optimize your Bootstrapping disk, you must optimize all other

disks that you use.

Warning: Before you use DISKCHANGE on a disk, you should back it up.

DISKCHANGE may not do exactly what you wanted to. You may have forgotten

to change the bootstrap parameters. Also, DISKCHANGE will lose all information

on a disk that is not part of the logical disk it is altering: you must unpack your

Adaptable System disks before you optimize them with DISKCHANGE. Section I.4

describes how to unpack Adaptable System disks.

Many soft-sectored 8" floppies in the field are formatted with 2-to-l interleaving,

sector skew of 6, and first Pascal track of 1. This format is recommended if you

wish to exchange software with other users. But DISKCHANGE can be used to

convert p-System disks to any desired format.

IV.4.4.1.2 Simplifying the Bootstrap
In order to produce a turnkey p-System, (that is, one which boots as soon as you

power your machine up, or perhaps power it up and then push a bootstrap button),

your hardware must have some mechanism to read the contents of a pre-defined

area of a disk into a pre-defined area in memory. On many machines, this

mechanism takes the form of a boot-button that transfers control to a boot-ROM.

It is the program in ROM that reads the contents of a disk sector into memory

and causes that code to execute.

If your hardware has such a bootstrap feature, a primary bootstrap may be written.

This primary bootstrap must push the appropriate configuration parameters onto the

processor's stack, load the SBIOS into memory from a pre-defined location on the

Bootstrapping disk, and then load the secondary bootstrap and start its execution.

The primary bootstrap which you write must reside on the Bootstrapping disk, along

with the SBIOS. Neither of these may overwrite the System itself (which should

not be surprising). The available areas on the Bootstrapping disk are:

1) Track 0: sectors 1 and 2

2) Track 0: sectors 19 through the end of track 0

121

Installation Guide

Full Adaptable System

3) Track 1: sectors 1 through 8

... this scheme assumes 1:1 interleaving. If you have already changed the

interleaving of your disks, then the sectors available on Track 1 are the logical

sectors 1..8, in other words, the areas on disk into which the first eight sectors

of Track 1 are mapped (by the BIOS).

The primary bootstrap which you write must:

1) Read the SBIOS from the Bootstrapping disk into the memory space in

which it is intended to execute. (Both the location on disk and the location

in memory are determined by the user. See Section IV.4.1.1, and the

preceding portion of this section.)

2) Load the secondary bootstrap from the Bootstrapping disk into the

memory space in which it is intended to execute. The secondary bootstrap

is 2048 bytes long, and is located on Track 0 starting at Sector 3 (see

Figure 4). It must be loaded into memory following the primary bootstrap

(i.e., it is loaded at either 8200 hex or D200 hex, depending on the primary

bootstrap's location).

3) Load the configuration parameters onto the stack (see Section IV.4.2.3.1).

4) Do a JUMP (not a procedure call) to the beginning of the secondary

bootstrap (which is at either 8200H or D200H).

... note that SETDISK must be called before the secondary bootstrap begins

execution. SETDISK is usually called in Step (1) or Step (2), but if it is not, it

must be called before Step (4).

IV. 4.4.1.2.1 Alternate Floppy Locations for the SBIOS
If there is not room for your SBIOS on the Bootstrapping disk, the p-System can

be reconfigured to start on Track 2 instead of Track 1. This leaves Track 1 un-

interleaved (i.e., 1-fco-l) and available for storage of the SBIOS. The

reconfiguration procedure is;

1) Use DISKCHANGE to change the first Pascal track to 2. Do not alter

the disk's interleaving or skew.

2) Change the 'first Pascal track' parameter on the booting stack to 2.

122

Installation Guide

Full Adaptable System

IV.4.4.1.2.2 Alternate Locations for the Secondary Bootstrap
If your hardware has a boot-ROM that must read a primary bootstrap from

somewhere on Track 0, sectors 3 through 18, you must move the Secondary

Bootstrap to a different location on the floppy. It may be moved to a different

area of Track 0, or onto tracks 1 or 2. If it is moved to Track 1 or 2, the

Bootstrapping disk must be reformatted as described in the preceding section.

The primary bootstrap must be altered, so it will read the secondary bootstrap

from its new location.

123

Installation Guide

Full Adaptable System

IV.4.4.2 Improving the SBIOS
In addition to a console and floppy disk drives, as handled by the simple SBIOS,

the p-System may also interface to a remote port (serial line), a printer, a real it-

time clock, floppy disks of dissimilar formats, and even devices whose interface

is defined by the user. To obtain these facilities, you must create an Extended

SBIOS with the appropriate drivers, and reconfigure your System's Interpreter.

IV.4.4.2.1 Communicating with the Interpreter
When the System calls the SBIOS routine SYSINIT, it passes a pointer to the

Interpreter's jump vector (this is mentioned in Section IV.4.2.2.1). This allows the

Extended SBIOS to do certain I/O operations that require handshaking with the

Interpreter.

Exactly how this parameter is passed depends on your processor: see the

appropriate section of Chapter V.

SBIOS routines call Interpreter routines in the same way SBIOS routines are

called. This mechanism is described in Section IV.4.Z.2.5.

The Interpreter routines that the Extended SBIOS may need to use are:

Routine Name Vector Number Description

POLLUNITS 0 polls character-oriented devices

DSKCHNG 1 changes disk format values

Note: If you have an Extended SBIOS that uses these routines, and it is called by

a machine-level program of your own (i.e., before the Interpreter has been

bootstrapped), then these routines are, naturally, unavailable. In this case, you

must pass the address of a "dummy" jump vector to SYSINIT: this dummy jump

vector must point to "stubs" for the routines POLLUNIT and DSKCHNG. In other

words, the program of yours which calls SYSINIT passes an address of a jump

vector (which you have created), and this jump vector points to instructions which

do nothing but return to their caller.

124

Installation Guide

Full Adaptable System

POLLUNITS
POLLUNITS may be called by DSKINIT, DSKREAD, and DSKWRIT.

POLLUNITS checks the console, remote, and printer input drivers for available

data. Any available data is read from the appropriate device and saved in that

device's input queue.

POLLUNIT5 does not alter any registers.

DSKCHNG
The Interpreter assumes that the disks it is communicating with are formatted

according to the "current format": CURFORM. CURFORM is initialized by the

secondary bootstrap according to the values it is passed on the processor stack.

This must be the format of the disk that bootstraps the System.

DSKCHNG changes CURFORM. It may be called by SETDISK, thus allowing the

System to support multiple disk formats.

DSKCHNG is passed a pointer to a disk information record. This record contains

six 16-bit words:

Word Definition

0 number of tracks per disk

1 number of sectors per track

2 number of bytes per sector

5 interleaving factor

4 first Pascal track

5 track-to-track skew

These parameters should be familiar: they correspond to some of the parameters

on the bootstrap stack. For details of passing the pointer to this record, see

Chapter V.

DSKCHNG destroys all processor registers except the stack pointer.

When SETDISK is called and the new CURDISK has a different format from the

previous CURDISK, SETDISK must make the appropriate call to DSKCHNG. It is

the SETDISK routine that must know (usually by keeping a table) which disk

number corresponds to which disk format.

125

Installation Guide

Full Adaptable System

IV.4.4.2.1.1 Enhancing the Floppy Disk Drivers
This section explains two improvements to the System based on the use of

DSKCHNG and POLLUNIT5.

IV.4.4.2.1.1.1 Allowing Multiple Floppy Disk Formats

You may enable your System to support more than one disk format by rewriting

SETDISK so that it calls DSKCHNG whenever CURDISK refers to a disk with a

different format than the previous CURDISK (as explained above). SETDISK must

know which disk drive has which format: this can be accomplished by a table

lookup.

If any floppy drive has more sectors per track than the System disk (the

bootstrapping disk), you must be careful to change the 'maximum sectors per

track' parameter on the bootstrap stack to reflect the new situation.

IV.4.4.2.1.1.2 Polling During Disk Accesses
DSKINIT, DSKREAD, and DSKWRIT may take advantage of any wait loops (such as

waiting for a SEEK to terminate) to use POLLUNITS to poll any character-oriented

input devices.

The advantage of calling POLLUNITS frequently is that is ensures that each

device's type-ahead queue is up to date. In particular, the user will be able to

type ahead more commands more rapidly.

126

Installation Guide

Full Adaptable System

IV.4.4.2.2 The Extended SBIOS
Section IV.4.2 describes a simple SBIOS which includes only those routines that

are absolutely necessary for booting the System. This section describes an

additional thirteen SBIOS routines that communicate with a printer, a remote

serial line, a hardware clock, and user-defined devices.

Routine Name
VECTOR NUMBER
DESCRIPTION

PRNINIT

15
printer initialize

PRNSTAT

16
printer status

PRNREAD

17
printer read

PRNWRIT

18
printer write

REMINIT

19
remote initialize

REMSTAT

20
remote status

REMREAD

21
remote read

REMWRIT

22
remote write

USRINIT

23
user devices initialize

USRSTAT

24
user devices status

USRREAD

25
user devices read

USRWRIT

26
user devices write

CLKREAD

27
system clock read

Note that in the jump table, these routines appear in this order, after the

basic SBIOS routines.

The routines for a printer and remote port parallel those for the console:

character-oriented devices are all handled in the same general manner, though

internal details will differ for each device.

The user-defined device handlers (described below) are intended for peripheral

hardware that the System does not customarily support (such as, for instance,

grain elevators (yes, it has been done!)). A Pascal program may access these

devices through the intrinsics UNITREAD, UNITWRITE, UNITCLEAR, and

UNITSTATUS. See the Users’ Manual for further information on these intrinsics.

The device numbers 128..255 are available as numbers of user-defined devices.

127

Installation Guide

Full Adaptable System

IV.4.4.2.2.1 Additional SBIOS Routines
Each of the Extended SBIOS routines is described below. For information about

parameter passing on a particular processor, see Chapter V.

PRNINIT
PRNINIT initializes the printer port. It reports the status of the printer

connection.

Initializing the printer means preparing the printer hardware to receive (and

possibly to send) characters. If baud rate and parity bits can be set by software,

PRNINIT should configure the printer to operate as quickly as possible, with no

parity translation. Any interrupt vectors associated with printer operation should

be set in SYSINIT, not PRNINIT.

If PRNINIT encounters no problems, it should return a 0. If the printer is

offline, it should return a 9.

PRNINIT should not send the printer a form feed.

PRNSTAT
PRNSTAT returns two parameters that describe the status of the printer.

The first parameter is the state of the printer connection. This is identical to

the status returned by PRNINIT: if the printer is online, the status must be 0, if

the printer is offline, the status must be 9.

The second status is the state of the printer input channel (if there is one). If a

character is pending on the printer input channel, PRNSTAT returns FF hex,

otherwise it returns 0. (Note: PRNSTAT does not read the pending character,

but merely reports its presence.)

128

Installation Guide

Full Adaptable System

PRNREAD
PRNREAD reads a single character from the printer input channel. It returns

the character, and the status of the printer connection.

If the printer is online and a character is pending on the input channel,

PRNREAD reads that character. If the printer is online but no character is

pending, PRNREAD waits, by polling the printer input channel, until a character

appears, and then reads it.

If the read was successful, the status is 0. If the printer is offline, the status is

9. If a character was read but there were problems in transmission, PRNREAD

should return the character and set the status to 1.

The character should be returned exactly as read from the input channel, with no

modifications.

If the system's printer has no input channel, PRNREAD should do nothing and

return a status of 0.

PRNWRIT
PRNWRIT writes a single character to the printer output channel. It returns the

status of the printer connection.

If the printer is online, the character is transmitted as soon as the printer is

ready to receive it. The status returned is 0.

If there are transmission problems, the status returned is 1.

If the printer is offline, the status returned is 9.

PRNWRIT should not alter the output character except when this is necessary to

display the character on the printer correctly (for example, don't strip parity bits,

unless the printer will not function properly when they are set).

129

Installation Guide

Full Adaptable System

REMINIT
REMINIT initializes the remote port (which is intended for an extra serial line

such as a phone link). It returns the status of the remote connection.

Initializing the remote port means preparing the remote hardware to send and

receive characters. If baud rate and parity bits can be set by software,

REMINIT should configure the port to operate as quickly as possible, with no

parity translation. Any interrupt vectors associated with remote I/O should be

set in SYSINIT, not in REMINIT.

If all is well, REMINIT returns a status of 0. If the remote port is offline, or if

there is no driver for the remote hardware, REMINIT returns 9.

REMSTAT
REMSTAT returns two parameters that describe the status of the remote port.

The first parameter is identical to the status returned by REMINIT: if all is well,

the status is 0; if the port is offline or there is no driver, the status is 9.

The second parameter returns FF hex if a character has been received on the

remote channel, and 0 if no character has been received. (Note that REMSTAT

does not read the pending character; it merely reports its presence.)

REMREAD
REMREAD reads a single character from the remote input channel. It returns

the character, and the status of the remote connection.

If the remote port is online and a character is pending, REMREAD reads that

character. If the port is online but no character is pending, REMREAD waits, by

polling the remote port, until a character appears, and then reads it.

If the read was successful, the status is 0. If the remote port is offline or has

no driver, the status is 9. If the character was read but there was a

transmission problem, REMREAD should return the character, and the status is 1.

The character read should be passed exactly as it is read from the remote input

port, with no modifications.

130

Installation Guide

Full Adaptable System

REMWRIT
REMWRIT writes a single character to the remote output channel. It returns the

status of the remote connection.

If the remote port is online, the character is sent and the status is 0. If the

remote port is offline or has no driver, the status is 9. If there is a

transmission problem, the character is sent and the status is 1.

REMWRIT should not alter the output character in any way, unless it must do so

to ensure proper transmission. (For example, don't strip parity bits, unless the

remote line or device will not function when they are present.)

CLKREAD
CLKREAD returns a time based on the current state of the system's hardware

clock, and a status.

The time is returned as a 32-bit integer. Time is measured in l/60ths of a

second. If the system clock runs continually, time should be measured from

midnight. Otherwise, time should be measured from the most recent call to

SYSINIT.

Thus, SYSINIT must restart the system clock, unless the clock runs continually.

If the clock is online and enabled, CLKREAD returns the time, and a status of 0.

If the clock is offline, CLKREAD returns a status of 9, and sets the time equal

to 0.

If the hardware clock does not count in l/60ths of a second, CLKREAD should

perform some reasonable approximation.

131

Installation Guide

Full Adaptable System

IV.4.4.2.2.1.1 User-defined Devices
The routines that handle user-defined devices (i.e., specialized hardware of one

kind or another) have several features in common.

The System may support a number of user-defined devices. Yet the Extended

SBIOS has only one set of USRxxxx routines: USRINIT, USR5TAT, USRREAD, and

USRWRIT.

When one of these routines is called, the user must specify which particular

device is intended by passing the routine the device number. Numbers of user-

defined devices may be in the range 128..255. Pascal programs may access user-

defined devices by using the appropriate device numbers when calling the

UNITREAD, UNITWRITE, ... family of intrinsics (see the Users' Manual, Chapter

VI).

Note that these numbers are truly user-definable; it is the SBIOS routines that

are responsible for knowing which device is which, and what its number is. No

other System routines have knowledge of user-defined devices.

The standard status parameters returned by most SBIOS routines include 0 for

online (and all correct), and 9 for offline. It may be that one or more user-

defined devices in your system must return more detailed information about their

state. If this is the case, the numbers 100..255 are available as user-definable

status codes. The responsibility for handling these non-standard status codes

belongs entirely to the user's software. If the System receives an I0RESULT in

the range 100..255, it will halt with an I/O error (and then reboot) unless I/0

checking has been turned off (with the {$I-} compile-time option).

USRINIT

USRINIT initializes a single user-defined device. It returns a status.

USRINIT is passed a device number.

If the specified device is online, USRINIT resets it to its power-up condition.

Any interrupt vectors associated with the device should be initialized in SYSINIT,

not USRINIT.

If the device is online, USRINIT returns a status of 0. If the device is offline

(or just plain nonexistent), USRINIT returns a status of 9. Other status codes may

be defined by the user.

132

Installation Guide

Full Adaptable System

USRSTAT
USRSTAT returns status information about a user-defined device.

USRSTAT is passed a device number, a pointer to a status record, and an

input/output toggle.

A simple status is returned, as with most SBIOS routines. This is 0 for online, 9

for offline. Other status codes may be defined by the user.

The pointer points to a 30-word status record in memory. USRSTAT may write

status information in this area. The format and meaning of the status record are

entirely up to the user.

The "input/output toggle" is a single word. If its low-order bit is 0, USRSTAT

should report on the device's output channel. If its low-order bit is 1, USRSTAT

should report on the device's input channel.

The three high-order bits of the input/output toggle may also be used to further

specify the sort of status information required. This is entirely at the user's

option.

USRSTAT is the SBIOS routine that corresponds to the Pascal intrinsic

UNITSTATUS. You may wish to refer to the description of this intrinsic in the

Users' Manual.

USRREAD
USRREAD reads information from a user-defined device into a buffer in main

memory. It returns a status.

USRREAD is passed a device number, a pointer to a buffer, and three extra

parameters.

Information is read from the specified device into the buffer in memory.

The three extra parameters may be defined according to the requirements of the

specified device. This is entirely up to the user.

USRREAD returns 0 for online, 9 for offline, or a user-defined status number.

133

Installation Guide

Full Adaptable System

USRWRIT
USRWRIT writes information from a buffer in main memory to a user-defined

device. It returns a status.

USRWRIT is passed a device number, a pointer to a buffer, and three extra

parameters.

Information is written to the specified device from the memory buffer.

The three extra parameters may be defined according to the requirements of the

specified device. This is entirely up to the user.

USRWRIT returns 0 for online, 9 for offline, or a user-defined status number.

134

Installation Guide

Full Adaptable System

IV.4.4.2.2.2 Testing the Extended SBIOS
Since the Extended SBIOS is intended to handle a wide variety of hardware, no

automatic testing routines are provided. The user is responsible for testing

Extended SBIOS routines and seeing that they work. It should be possible to test

these routines either outside the p-System (using a different operating system) or

within the p-System (the Users’ Manual describes how to write load, and run

assembly language routines).

IV.4.4.2.2.5 Bootstrapping with the Extended SBIOS
Before the System may be bootstrapped with an Extended SBIOS, the Interpreter

must be "reconfigured." This operation is described in Chapter V. Once the

Interpreter has been reconfigured, your normal bootstrapping procedure may be

followed, substituting the new Extended SBIOS for the original simple SBIOS, and

making any necessary changes to the parameters on the bootstrap stack.

135

Installation Guide

Full Adaptable System

136

Installation Guide

Processor Notes

V. MACHINE-SPECIFIC NOTES
V.1 Z80 and 8080 Systems

V.1.1 Vector Lists and Register Assignments
SBIOS routines must return their status (I0RESULT) in the A register.

Parameters are passed to SBIOS routines in the B and C registers. The read

routines write into a buffer in main memory. The stack pointer should not be

modified (except as necessary to return from each routine in a standard manner).

The following table shows the parameters for each routine in the basic SBIOS,

along with each routine's vector offset (i.e., the position in the jump table of the

instruction that jumps to that routine):

(The vector offsets are shown in hex.)

Routine Vector Offset Parameters

SYSINIT 00 passed: BC = pointer to

 Interpreter' s

 jump table

SYSHALT 03 <none>

CONINIT 06 returns: A = IORESULT

CONSTAT 09 returns: A = IORESULT

C = 0 if no char pending

 = FF if char pending

CONREAD 0C returns: A = IORESULT

C = input char

CONWRIT 0F passed: C = output char

 returns: A = IORESULT

SETDISK 12 passed: C = disk no. (CURDISK)

SETTRAK 15 passed: C = track no. (CURTRAK)

SETSECT 18 passed: C = sector no. (CURSECT)

SETBUFR 1B passed: BC = buffer addr. (CURBUFR)

DSKREAD 1E returns: A = IORESULT

DSKWRIT 21 returns: A = IORESULT

DSKINIT 24 returns: A = IORESULT

DSKSTRT 27 <none>

DSKSTOP 2A <none>

137

Installation Guide

Processor Notes

Some Extended SBIOS routines are passed parameters on top of the stack. The

routine must remove these parameters from the stack,, and not alter the stack in

any other way. All stack parameters are 16-bit words. In the table below,

parameters on the stack are shown in the order they appear on the stack, with the

stack pointer (SP) at the top. The ‘extra parameters' 1, 2, and 3 for the

USRREAD and USRWRIT routines correspond to (respectively) the byte count, block

number, and control word parameters in the Pascal intrinsics UNITREAD and

UNITWRITE.

138

Installation Guide

Processor Notes

The following table continues the above table, showing parameters for routines in

the Extended SBIOS:

PRNINIT 2D returns: A = IORESULT

PRNSTAT 30 returns: A = IORESULT

C = 0 if no char pending

 = FF if char pending

PRNREAD 33 returns: A = IORESULT

C = input char

PRNWRIT 36 passed: C = output char

 returns: A = IORESULT

REMINIT 39 returns: A = IORESULT

REMSTAT 3C returns: A = IORESULT

C = 0 if no char pending

 = FF if char pending

REMREAD 3F returns: A = IORESULT

C = input char

REMWRIT 42 passed: C = output char

 returns: A = IORESULT

USRINIT 45 passed: C = device number

 Returns: A = IORESULT

USRSTAT 48 passed: SP = return address

 input/output toggle

 pointer to status rec

 device number

 returns: A = IORESULT

USRREAD 4B passed: SP = return address

 extra parameter 2

 extra parameter 1

 pointer to buffer

 device number

 extra parameter 5

 returns: A = IORESULT

USRWRIT 4E passed: SP = return address

 extra parameter 2

 extra parameter 1

 pointer to buffer

 device number

 extra parameter 5

 returns: A = IORESULT

CLKREAD 51 returns: A = IORESULT

 DE = least significant word

 HL = most significant word

139

Installation Guide

Processor Notes

The following table shows offsets and parameters for the two Interpreter routines

which SBIOS routines may access:

POLLUNITS 0 <none>

DSKCHNG 3 passed: BC = pointer to disk

 format values

140

Installation Guide

Processor Notes

V.1.2 Sample Bootstrap Loader

; This routine loads the primary bootstrap from SBOOT8.

; The primary bootstrap is located at Track 0, sectors 1 and 2.

; The SBIOS must be resident before this program may be executed:

; SBIOS routine s are used to read the bootstrap from the disk.

; If there is any problem, SYSHALT is called.

; Note the use of the SBIOS jump table: the formula used corresponds to the

; instructions in Section IV.4.2.2.5; a jump instruction is 5 bytes long.

 .PROC LOAD

BIOSJP .EQU
0FD00H
; we assume the SBIOS is at this location

BOOTAD .EQU
8000H

; we are using SBOOT8 (not SBOOTD)
SECSIZE .EQU
80H

; number of bytes in a sector

SYSINIT .EQU
00H

; these are SBIOS jump table offsets
SYSHALT .EQU
03H

SETDISK .EQU
12H

SETTRAK .EQU
15H

SETSECT .EQU
18H

SETBUFR .EQU
1BH

DSKREAD .EQU
1EH

DSKINIT .EQU
24H

DSKSTRT .EQU
27H

DSKSTOP .EQU
2AH

.MACRO
SBIOS

; calls an SBIOS routine

CALL

BIOSJP + %1

.ENCM

LOADR

; the code to load the bootstrap

SBIOS

SYSINIT
; initialize the SBIOS

LD

C,0

; the bootstrap disk is drive 0

SBIOS

SETDISK

SBIOS

DSKSTRT

SBIOS

DSKINIT
; now ready to use disk (if no error)

AND

A

; check for I0 error

JP

NZ,CALLHLT
; ... halt system if problem

LD

C,0

; bootstrap is in Track 0

SBIOS

SETTRAK

LD

BC,BOOTAD
; memory buffer is bootstrap location

SBIOS

SETBUER

LD

C,l

; first read Sector 1

SBIOS

SETSECT

141

Installation Guide

Processor Notes

SBIOS

DSKREAD

AND

A

; check for I/0 error

JP
NZ,CALLHLT ; ... halt system if problem

LD
BC,BOOTAD+SECSIZE ; prepare to read rest of bootstrap

SBIOS SETBUFR

LD
C,2 ; ... which is in Sector 2

SBIOS
SETSECT

SBIOS
DISKREAD

AND
A

; check for I/0 error

JP
NZ,CALLHLT ; ... halt if problem

SBIOS
DSKSTOP ; we're through with the disk

RET ; return to caller

; now the program that calls LOADR must set up the parameter stack

; and then jump to the bootstrap, which is at 8000H
CALLHLT

; the error routine

SBIOS
SYSHALT ; stops the system

JP
CALLHLT
; if SYSHALT fails,

; don't go elsewhere!

.END

142

Installation Guide

Processor Notes

V.1.3 Memory Configuration Notes
All parameters which are memory addresses must be word quantities, and the low

byte of the address must be even (for example, the highest word in memory is

FFFE hex; the highest byte is FFFF).

The Interpreter must start on a page boundary. This means that the low byte of

its starting address must be 00. If you wish the Interpreter to be located at the

start of the large contiguous RAM space, then the large RAM space must start

on a page boundary.

The SBIOS may use any interrupt or restart vectors it needs, without fear of

conflicting with the p-System.

To push bootstrap parameters onto the processor stack, set the stack pointer to

the highest even address in the large contiguous RAM space, and then push the

parameters (the stack grows downward).

143

Installation Guide

Processor Notes

V.1.4 Reconfiguring the Interpreter
The Interpreter disk in each Adaptable System contains codefiles which may be

linked together to form an Interpreter configured differently than the

SYSTEM.INTERP that is shipped already linked. When you create an Extended

SBIOS, you must reconfigure the Interpreter by choosing the appropriate codefiles

and linking them together yourself.

These are the relevant files:

Name Description
INTERP. CODE Interpreter with no real numbers

INTERP.FP.CODE Interpreter with real number operations

 (FP stands for Floating Point)

RSP.CODE interface between Interpreter and BIOS

BIOS.CODE a simple BIOS with no input queuing for

 console, printer, or input

 (this is the smallest BIOS)

BIOS.C.CODE BIOS with queuing for console

BIOS.CR.CODE ... queuing for console and remote

BIOS.CRP.CODE ... queuing for console, remote, and printer

INTER.CODE SBIOS interface

INTER.X.CODE Extended SBIOS interface

TERTBOOT.CODE tertiary bootstrap

The SYSTEM.INTERP that is shipped is INTERP.CODE linked with RSP.CODE,

BIOS.CODE, INTER.CODE, and TERTBOOT.CODE.

To create a new Interpreter, you must link the desired codefiles together.

Follow these steps (throughout these examples, user input is underlined):

1) Link the codefile.

You must make the following choices:

Whether to use INTERP or INTERP.FP. INTERP.FP allows your

programs to use real numbers and transcendental functions, but it is

much larger than INTERP.

Note: If your system has a hardware clock, and you are using it (i.e.,
the HAS CLOCK data item in SYSTEM.MiSCINFO must be set to

TRUE using SETUP), then you must use INTERP.FP. The reason is

that if there is a hardware clock, the Compiler uses it to calculate

compile times, and uses real arithmetic to do so.

Whether to use BIOS, BIOS.C, BIOS.CR, or BIOS.CRP. These are

144

Installation Guide

Processor Notes

progressively larger BIOS'es. Queuing allows more efficient I/0.

Use the BIOS that most closely matches your hardware configuration.

BIOS.CR and BIOS.CRP can only be used with an Extended SBIOS.

Whether to use INTER or INTER.X. This depends on which SBIOS you

are using.

Once you know what the pieces of your new Interpreter will be, you can

link them together with the System's Linker. The Interpreter codefile you

choose will always be the 'Host file?', and the remaining codefiles will be

entered as 'Lib file?'s, always in the following-order;

RSP

the BIOS you have chosen

the SBIOS interface you have chosen

TERTBOOT

... and let the output file be the workfile. (For more information on the

Linker, see the Users' Manual, Section VIII.4.)

Example:

At the System command level, type 'L' for L(ink. The following prompts

appear (<return> means the carriage return key, and comments are in {}):

Host file? lNTERP<return> {or INTERP.FP}

Lib file? RSP<return>
Opening RSP.CODE

Lib file? BIOS.CRP<return> {or other BIOS}

Opening BIOS.CRP.CODE

Lib file? INTER.X<return> {or simply INTER}

Opening INTER.X.CODE

Lib file? TERTBOOT<return>
Opening TERTBOOT.CODE

Lib file? <return>
... {more Linker output}

Output file? <return> {makes *SYSTEM.WRK.CODE}

2) Compress the codefile.

At the System command level, type 'X' for eX(ecute, then

'COMPRESSOR<return>'. the utility COMPRESSOR shows a series of

145

Installation Guide

Processor Notes

prompts; answer them as follows:

Assembly Code File Compressor

Type '!' to escape

Do you wish to produce a relocatable object file (Y/N)Y

File to compress : SYSTEM.WRK
Output file «ret> for same) : NEW.INTERP
... and COMPRESSOR will either complete its work, or issue an error

message, in which case you must try again.

(COMPRESSOR is described in the Users' Manual, Section X.1.)

3) Change filenames

At the System command level, type T' for F(iler. C(hange SYSTEM.INTERP

to OLD.INTERP. Then C(hange NEW.INTERP to SYSTEM.INTERP.

You should now be ready to try booting your System again, with the new

Interpreter and new SBIOS.

V.1.5 Miscellaneous Notes
When booting the System, the 'number of drives to test' parameter must be 0

only if you use the primary bootstrap that is shipped with the System. If you

write your own primary bootstrap, this parameter must not be pushed onto the

processor stack.

146
Installation Guide

Processor Notes

V.2 PDP-11 and LSI-11 Systems
V.2.1 Vector Lists and Register Assignments
PDP-11 and LSI-11 p-Systems are ready to run as shipped. There is no BIOS or

SBIOS per se; I/0 routines are embedded in the Interpreter. This is feasible

because of the consistency of I/0 handling in '11' systems.

Addresses and interrupt vectors are assigned to the standard p-System devices as

follows:

Device
Address
Interrupt Vector

CONSOLE: 177560
060

KEYBOARD:
 " "
PRINTER: 177510 200 (parallel)

 " 204 (serial)

REMOUT: 177520 120

REMIN; " "

... the numbers are octal (base eight).

For more information about low-level device handling on 11's, it is best to refer to

the hardware documentation.

V.2.2 Sample Bootstrap Loader
All current PDP-11 and LSl-il Systems are shipped as ready-to-run software

packages. There is no need to rewrite the bootstrap that is shipped, nor to write

any special-purpose program to load the bootstrap.

On 11's, the utility BOOTER copies the first two blocks of the disk.

V.2.3 Memory Configuration Notes
Not applicable.

V.2.4 Reconfiguring the Interpreter
Not applicable.

Note that PDP-11/LSI-11 Systems come with several different interpreters. Each

interpreter is intended for a particular set of disk devices. Interpreters that use

the hardware extended instruction set (EIS) have '.EIS' in their filename.

147

Installation Guide

Processor Notes

Thus, each interpreter is named either PDP... or LSI..., where ... are the

mnemonics for features supported by that particular interpreter.

Supported disk drives are indicated in the names of '11' interpreters by the

following mnemonics:

RX floppy disks (RX-0l's)

DY double density floppy disks (RX-02's)

RK RK-05 hard disks

RL RL-01 hard disks

For examples of interpreter names, refer to Appendix B.

V.2.5 Miscellaneous Notes
The utilities RT11TOEDIT and EDITTORT11 are provided for converting RT-11

files into p-System textfiles or visa versa.

RT11TOEDIT first prompts the user for a device number. This should be the

number of a disk drive that contains an RT-11-format disk, with a directory in

blocks 6..7. If the disk is present, its directory is displayed on the screen,

showing each file with its name, type, size in blocks, and position on the disk (a

block number in base ten). Unused portions of the disk are also shown. The

user is then prompted for the name of an RT-11 file and the name of a p-System

file to which it will be written. The user may specify a bitwise transfer (i.e.,

the file is unchanged), or a textfile transfer (the new file is supplied with a

standard textfile header block).

EDITTORT11 is similar to RT11TOEDIT. The user must specify the number of a

disk drive with an RT-11-format disk in it, then name a p-System file to be

transferred, and an RT-11 file to be created.

With both of these utilities, all prompts must be answered with upper case

characters only.

148

Installation Guide

Processor Notes

V.3 6502 Systems
V.3.1 Vector Lists and Register Assignments
The System assumes that the SBIOS destroys all registers except the stack

pointer.

SBIOS routines must return their status (IORESULT) in the X register.

Parameters are passed to SBIOS routines in the X and A registers. Where these

registers appear together (XA), they represent a 16-bit quantity: X is the high-

order byte and A is the low-order byte.

The read routines write into a buffer in main memory. The stack pointer should

not be modified (except as necessary to return from each routine in a standard

manner).

The following table shows the parameters for each routine in the basic SBIOS,

along with each routine's vector offset (i.e., the position in the jump table of the

instruction that jumps to that routine) (The vector offsets are shown in hex.):

Routine
Vector Offset
Parameters

SYSINIT 00 passed: XA = pointer to

 Interpreter's

 jump table

SYSHALT 03 <none>

CONINIT 06 returns: X = IORESULT

CONSTAT 09 returns: X = IORESULT

 A = 0 if no char pending

 = FF if char pending

CONREAD 0C returns: X = IORESULT

 A = input char

CONWRIT 0F passed: A = output char

 returns: X = IORESULT

SETDISK 12 passed: A = disk no. (CURDISK)

SETTRAK 15 passed: A = track no. (CURTRAK)

SETSECT 18 passed: A = sector no. (CURSECT)

SETBUFR 1B passed: XA = buffer addr. (CURBUFR)

DSKREAD 1E returns: X = IORESULT

DSKWRIT 21 returns: X = IORESULT

DSKINIT 24 returns: X = IORESULT

DSKSTRT 27 <none>

DSKSTOP 2A <none>

149

Installation Guide

Processor Notes

Some Extended SBIOS routines are passed parameters on top of the stack. The

routine must remove these parameters from the stack, and not alter the stack in

any other way. All stack parameters are 16-bit words. In the table below,

parameters on the stack are shown in the order they appear on the stack, with the

stack pointer (SP) at the top (the least significant byte of a word is popped first).

The 'extra parameters' 1, 2, and 3 for the USRREAD and USRWRIT routines

correspond to (respectively) the byte count, block number, and control word

parameters in the Pascal intrinsics UNITREAD and UNITWRITE.

150

Installation Guide

Processor Notes

The following table continues the above table, showing parameters for routines in

the Extended SBIOS:

PRNINIT 2D

returns: X = IORESULT

PRNSTAT 30
returns: X = IORESULT

 A = 0 if no char pending

 = FF if char pending

PRNREAD 33
returns: X = IORESULT

 A = input char

PRNWRIT 36
 passed: A = output char

returns: X = IORESULT

REMINIT 39 returns: X = IORESULT

REMSTAT 3C returns: X = IORESULT

 A = 0 if no char pending

 = FF if char pending

REMREAD 3F
returns: X = IORESULT

 A = input char

REMWRIT 42 passed: A = output char

returns: X = IORESULT

USRINIT 45 passed: A = device number

returns: X = IORESULT

USRSTAT 48 passed: SP = return address

 input/output toggle

 pointer to status rec

 device number

returns: X = IORESULT

USRREAD 4B passed: SP = return address

 extra parameter 2

 extra parameter 1

 pointer to buffer

 device number

 extra parameter 3

returns: X = IORESULT

USRWRIT 4E passed: SP = return address

 extra parameter 2

 extra parameter 1

 pointer to buffer

 device number

 extra parameter 3

returns: X = IORESULT

CLKREAD 51 returns: X = IORESULT

 SP = least significant word

 most significant word

The following table shows offsets and parameters for the two Interpreter routines

which SBIOS routines may access:

151

Installation Guide

Processor Notes

POLLUNITS

0

<none>

DSKCHNG

3

passed: XA = pointer to disk

 format values

152

Installation Guide

Processor Notes

V.5.2 Sample Bootstrap Loader
; This routine loads the primary bootstrap from SBOOT8.

; The primary bootstrap is located at Track 0, sectors 1 and 2.

; The SBIOS must be resident before this program may be executed:

; SBIOS routines are used to read the bootstrap from the disk.

; If there is any problem, SYSHALT is called.

; Note the use of the SBIOS jump table: the formula used corresponds to the

; instructions in Section IV.4.2.2.5; a jump instruction is 3 bytes long.

 .PROC LOAD

BIOSJP .EQU 0FD00H ; we assume the SBIOS is at this location

BOOTADR .EQU 80H ; we are using SBOOT8 (not SBOOTD)

 ; (this is the high byte of the address)

SECSIZE .EQU 80H ; number of bytes in a sector

SYSINIT .EQU OOH ; these are SBIOS jump table offsets

SYSHALT .EQU 03H

SETDISK .EQU 12H

SETTRAK .EQU 15H

SETSECT .EQU 18H

SETBUFR .EQU 1BH

DSKREAD .EQU 1EH

DSKINIT .EQU 24H

DSKSTRT .EQU 27H

DSKSTOP .EQU 2AH

 .MACRO SBIOS ; calls an SBIOS routine

 JSR BIOSJP + %1

 .ENDM

LOADR ; the code to load the bootstrap

 SBIOS SYSINIT ; initialize the SBIOS

 LDA #0 ; the bootstrap disk is drive 0

 SBIOS SETDISK

 SBIOS DSKSTRT

 SBIOS DSKINIT ; now ready to use disk (if no error)

 TXA ; check for I/O error

 BNE CALLHLT ; ... halt system if problem

 LDA #0 ; bootstrap is in Track 0

 SBIOS SETTRAK

 LDA #BOOTADR ; memory buffer is bootstrap location

 SBIOS SETBUFR

 LDA #1 ; first read Sector 1

153

Installation Guide

Processor Notes

 SBIOS SETSECT

 SBIOS DSKREAD

 TXA ; check for I/O error

 BNE CALLHLT ; ... halt system if problem

 ; prepare to read rest of bootstrap

 LDA #SECSIZE % 100H ; this is the low byte ...

 LDX #BOOTADR + <SECSIZE / 100H> ; and the high byte

 ; ... of the bootstrap address

 SBIOS SETBUFR

 LDA #2 ; rest of bootstrap is in Sector 2

 SBIOS SETSECT

 SBIOS DISKREAD

 TXA ; check for I/O error

 BNE CALLHLT ; ... halt if problem

 SBIOS DSKSTOP ; we're through with the disk

 RET ; return to caller

; now the program that calls LOADR must set up the parameter stack

; and then jump to the bootstrap, which is at 8000H

CALLHLT ; the error routine

 SBIOS SYSHALT ; stops the system

 JMP CALLHLT ; if SYSHALT fails,

 ; don't go elsewhere!

 .END

154

Installation Guide

Processor Notes

V.5.5 Memory Configuration Notes
All memory addresses are word addresses: the low byte must be even (for

example, the highest word in memory is FFFE hex; the highest byte is FFFF).

Pages 0 and 1 of main memory (addresses 0000H through 01FFH) are used for data

storage by the Interpreter. The SBIOS, Interpreter, and p-System software may

not occupy these pages.

There are two bootstrap disks for the 6502: LO PAGE and HI PAGE. The System

on LO PAGE assumes that it has exclusive use of Page 0 addresses 0000H through

007FH. The System on HI PAGE assumes exclusive use of 0080H through 00FFH.

Which of these systems you choose depends on whether you have other (hardware

or software) requirements for one of these halves of Page 0; if you do not,

choose either bootstrap.

The Interpreter must start on a page boundary (the low byte of the address must

be 00). If the Interpreter is to be located at the start of the large contiguous

RAM space, the large RAM space must start on a page boundary.

The SBIOS may use any interrupt vectors it needs without fear of conflicting with

the p-System. However, the System disables interrupts when it would be unsafe to

get an interrupt on an attached semaphore.

The stack pointer must be initialized to 00FFH before bootstrap parameters are

pushed onto the stack.

V.3.4 Reconfiguring the Interpreter
Reconfiguring the 6502 Interpreter is equivalent to reconfiguring the Z80/8080

Interpreter. Refer to Section V.1.4.

V.3.5 Miscellaneous Notes
When the System is bootstrapped, the 'number of drives to test' parameter on the

processor stack must be 0.

6502 Systems use an expression stack that is limited to 128 words of data. When

this stack overflows, the System is halted and re-initialized (though it may simply

hang). Correct UCSD Pascal programs that run on other Systems may not run on

6502 Systems. This problem can be avoided by following two rules:

1) Sets must contain no more than 512 elements.

155

Installation Guide

Processor Notes

2) Nested set expressions must be written so that there are never more than 5

unevaluated operands as the expression is evaluated from left to right. For

example:

A+(B+(C+D))

... requires that all four variables be on the stack before evaluation begins.

A safer and equivalent expression would be:

C(C+D)+B)+A

156

Installation Guide

Processor Notes

V.4 9900 Systems
V.4.1 Vector Lists and Register Assignments
All current 9900 Systems are shipped as ready-to-run software. There is

therefore no need for the user to alter the SBIOS or write a bootstrap.

V.4.2 Sample Bootstrap Loader
Not applicable.

V.4.3 Memory Configuration Notes
Not applicable.

V.4.4 Reconfiguring the Interpreter
Not applicable.

V.4.5 Miscellaneous Notes
None.

157

Installation Guide

Processor Notes

158

Users' Manual

Appendices

VI.A APPENDIX A -- A. S. Hardware Requirements

Memory:

At least 48K of RAM memory, of which at least 36K must be in one

contiguous block. There must be room for the bootstraps (6144 = 1800H

bytes) at either 8000 hex or D000 hex. The Interpreter must start at a page

boundary (one page is FF hex bytes).

For CP/M Adaptable Systems, the entire 48K must be contiguous.

For 6502 systems, at least one-half of Page 0 must be unoccupied and

contiguous (either 00-7F hex or 80-FF hex).

Disk Drive:

At least one floppy disk drive with at least 175K bytes of available space.

Either 8" or 5-1/4" floppy drives may be used, and they may be of any format

(soft- sectored or hard-sectored, etc.).

Console:

A console that sends and receives ASCII characters. Either a teletype or a

CRT may be used. If a CRT is used, it must be able to scroll one line at a

time.

Downloading:

If your system floppies are other than 8" IBM 3740-format soft-sectored single-

density single-sided disks, you must have access to some facility that can

download the disks that are shipped to disks of your own format.

159
Users' Manual

Appendices

VI.B APPENDIX B — Disk Catalog for Current Releases
Note: This shows the catalog for Z80/8080 Systems only. More information will

appear in future printings of this Guide.

ADAPZ
Z8SYS:

SYSTEM.INTERP 26 7-Jan-81 6 512 Datafile

SYSTEM.MISCINFO 1 7-Jan-81 32 194 Datafile

SYSTEM.FILER 32 26-Jan-81 33 512 Codefile

< UNUSED > 2 65

SYSTEM.PASCAL 85 4-Feb-81 67 512 Datafile

< UNUSED > 1 152

4/4 files<listed/in-dir>, 150 blocks used, 3 unused, 2 in largest

ZDSYS:

SYSTEM.INTERP 26 7-Jan-81 6 512 Datafile

SYSTEM.MISCINFO 1 7-Jan-81 32 194 Datafile

SYSTEM.FILER 32 26-Jan-81 33 512 Codefile

< UNUSED > 2 65

SYSTEM.PASCAL 85 4-Feb-81 67 512 Datafile

< UNUSED > 1 152

4/4 files<listed/in-dir>, 150 blocks used, 3 unused, 2 in largest

INTZ80:

SYSTEM.LIBRARY 9 7-Jan-81 6 512 Datafile

INTERP.Z.CODE 22 7-Jan-81 15 512 Codefile

INTERP.ZF.CODE 25 7-Jan-81 37 512 Codefile

TERTBOOT.CODE 7 7-Jan-81 62 512 Codefile

RSP.CODE 6 7-Jan-81 69 512 Codefile

BIOS.CODE 8 7-Jan-81 75 512 Codefile

BIOS.C.CODE 8 7-Jan-81 83 512 Codefile

BIOS.CR.CODE 8 7-Jan-81 91 512 Codefile

BIOS.CRP.CODE 9 7-Jan-81 99 512 Codefile

INTER.CODE 4 7-Jan-81 108 512 Codefile

INTER.X.CODE 4 7-Jan-81 112 512 Codefile

< UNUSED > 37 116

11/11 files<listed/in-dir>, 116 blocks used, 37 unused, 37 in largest

160

Users' Manual

Appendices

ADAP8

88SYS:

SYSTEM.INTERP 27 7-Jan-81 6 512 Datafile

SYSTEM.MISCINFO 1 7-Jan-81 33 194 Datafile

SYSTEM.FILER 32 26-Jan-81 34 512 Codefile

< UNUSED > 2 66

SYSTEM.PASCAL 85 4-Feb-81 68 512 Datafile

4/4 files<listed/in-dir>, 151 blocks used, 2 unused, 2 in largest

8DSYS:

SYSTEM.INTERP 27 7-Jan-81 6 512 Datafile

SYSTEM.MISCINFO 1 7-Jan-81 33 194 Datafile

SYSTEM.FILER 32 26-Jan-81 34 512 Codefile

< UNUSED > 2 66

SYSTEM.PASCAL 85 4-Feb-81 68 512 Datafile

4/4 files<listed/in-dir>, 151 blocks used, 2 unused, 2 in largest

INT8080:

SYSTEM.LIBRARY 9 7-Jan-81 6 512 Datafile

INTERP.8.CODE 22 7-Jan-81 15 512 Codefile

INTERP.8F.CODE 25 7-Jan-81 37 512 Codefile

TERTBOOT.CODE 7 7-Jan-81 62 512 Codefile

RSP.CODE 6 7-Jan-81 69 512 Codefile

BIOS.CODE 8 7-Jan-81 75 512 Codefile

BIOS.C.CODE 8 7-Jan-81 83 512 Codefile

BIOS.CR.CODE 8 7-Jan-81 91 512 Codefile

BIOS.CRP.CODE 9 7-Jan-81 99 512 Codefile

INTER.CODE 4 7-Jan-81 108 512 Codefile

INTER.X.CODE 4 7-Jan-81 112 512 Codefile

< UNUSED > 37 116

11/11 files<listed/in-dir>, 116 blocks used, 37 unused, 37 in largest

161

Users' Manual

Appendices

CPMADAP
SYSCPMl:

SYSTEM.INTERP 27 7-Jan-81 6 512 Datafile

SYSTEM.MISCINFO 1 7-Jan-81 33 194 Datafile

SYSTEM.FILER 32 26-Jan-Sl 34 512 Codefile

< UNUSED > 2 66

SYSTEM.PASCAL 85 4-Feb-81 68 512 Datafile

4/4 files<listed/in-dir>, 151 blocks used, 2 unused, 2 in largest

88SYS:

SYSTEM.INTERP 27 7-Jan-81 6 512 Datafile

SYSTEM.MISCINFO 1 7-Jan-81 33 194 Datafile

SYSTEM.FILER 32 26-Jan-81 34 512 Codefile

< UNUSED > 2 66

SYSTEM.PASCAL 85 4-Feb-81 68 512 Datafile

4/4 files<listed/in-dir>, 151 blocks used, 2 unused, 2 in largest

INTCPM:

SYSTEM.LIBRARY 9 7-Jan-81 6 512 Datafile

INTERP.8.CODE 22 7-Jan-81 15 512 Codefile

INTERP.8F.CODE 25 7-Jan-81 37 512 Codefile

TERTBOOT.CODE 7 7-Jan-81 62 512 Codefile

RSP.CODE 6 7-Jan-81 69 512 Codefile

BIOS.CODE 8 7-Jan-81 75 512 Codefile

BIOS.C.CODE 8 7-Jan-81 83 512 Codefile

BIOS.CR.CODE 8 7-Jan-81 91 512 Codefile

BIOS.CRP.CODE 9 7-Jan-81 99 512 Codefile

INTER.CODE 4 7-Jan-81 108 512 Codefile

INTER.X.CODE 4 7-Jan-81 112 512 Codefile

INTER.CPM4.CODE 4 7-Jan-81 116 512 Codefile

INTER.CPM1.CODE 4 7-Jan-81 120 512 Codefile

INTER.CPM2.CODE 4 7-Jan-81 124 512 Codefile

< UNUSED > 25 128

14/14 files<listed/in-dir>, 128 blocks used, 25 unused, 25 in largest

162

Users' Manual

Appendices

UTILITIES

UTIL1:

BOOTER.CODE 3 4-Dec-80 6 512 Codefile

DISKCHANGE.CODE 8 5-Dec-80 9 512 Codefile

DISKSIZE.CODE 3 3-Dec-80 17 512 Codefile

PINDPARAMS.CODE 9 3-Dec-80 20 512 Codefile

YALOE.CODE 12 2-Dec-80 29 512 Codefile

LIBRARY.CODE 13 23-Jan-81 41 512 Codefile

SAMPLEGOTO.TEXT 4 17-Nov-78 54 512 Textfile

PATCH.CODE 33 3-Dec-80 58 512 Codefile

DECODE.CODE 29 3-Dec-80 91 512 Codefile

COPYDUPDIR.CODE 3 2-Dec-80 120 512 Codefile

MARKDUPDIR.CODE 4 2-Dec-80 123 512 Codefile

< UNUSED > 26 127

11/11 files<listed/in-dir>, 127 blocks used, 26 unused, 26 in largest

UTIL2:

COMPRESS.CODE 10 3-Dec-80 6 512 Codefile

XREF.CODE 29 3-Dec-80 16 512 Codefile

RECOVER.G.CODE 8 5-Dec-80 45 512 Codefile

CPMBOOT.CODE 22 7-Jan-81 53 512 Codefile

KERNEL.CODE 63 2-Feb-81 75 512 Codefile

COMMANDIO.CODE 9 5-Jan-81 138 512 Codefile

< UNUSED > 6 147

6/6 files<listed/in-dir>, 147 blocks used, 6 unused, 6 in largest

163

Users' Manual

Appendices

SYSTEM

SYS1:

SYSTEM.SYNTAX 14 4-Dec-80 6 512 Datafile

SETUP.CODE 27 l-Dec-80 20 512 Codefile

SYSTEM.COMPILER 94 7-Feb-81 47 512 Codefile

< UNUSED > 12 141

3/3 files<listed/in-dir>, 141 blocks used, 12 unused, 12 in largest

SYS2:

Z80.ASSMBLER 51 2-Dec-80 6 512 Codefile

Z80.OPCODES 3 20-Dec-78 57 68 Datafile

Z80.ERRORS 8 23-Sep-80 60 70 Datafile

SYSTEM.LINKER 26 27-Jan-81 68 512 Codefile

DEBUGGER.CODE 21 4-Feb-81 94 512 Codefile

< UNUSED > 38 115

5/5 files<listed/in-dir>, 115 blocks used, 38 unused, 38 in largest

SYS3:

8080.ASSMBLER 47 2-Dec-80 6 512 Codefile

8080.OPCODES 3 25-Mar-80 53 44 Datafile

8080.ERRORS 8 23-Sep-80 56 70 Datafile

SYSTEM.EDITOR 49 30-Jan-81 64 512 Codefile

< UNUSED > 40 113

4/4 files<listed/in-dir>, 113 blocks used, 40 unused, 40 in largest

164

Users" Manual

Appendices

CPMDISK (BOOTER)

CP/M Directory

PASBOOT.BAK

PASBOOT.PRN

PASBOOT.ASM

PASBOOT.HEX

PASBOOT.COM

SAMBOOT.ASM

SYSCPM2:

SYSTEM.INTERP 27 7-Jan-81 6 512 Dafcafile

SYSTEM.MISCINFO 1 7-Jan-81 33 194 Datafile

SYSTEM.FILER 32 26-Jan-Sl 34 512 Codefile

< UNUSED > 2 66

SYSTEM.PASCAL 85 4-Feb-81 68 512 Datafile

4/4 files<listed/in-dir>, 151 blocks used, 2 unused, 2 in largest

165

Users' Manual

Appendices

Vl.C APPENDIX C — Troubleshooting
Refer to this Appendix if you have problems with your p-System. It attempts to

point out a number of errors that are commonly encountered. Look up the section

that applies to your problem: if you cannot answer a question affirmatively, you

may have found the source of your troubles: go back to the body of this Guide,

and review the subject in question. If the information you find there does not

enable you to solve the problem, contact the supplier of your p-System for support.

System will not Bootstrap
Adaptable Systems

Does track 0 contain a bootstrap?

Are you using SBOOT8 in conjunction with the large

contiguous RAM starting before 5000H?

Are you using SBOOTD in conjunction with the large

contiguous RAM starting on or after 3000H?

Is the jump table for your SBIOS correct?

Are the bootstrap parameters loaded exactly as

described in the text before you jump to the

bootstrap?

Did your SBIOS pass all SBIOSTESTER tests?

Was the 'number of drives to test' parameter equal to 5?

PDP/LSI - 11

Is memory management OFF on your LSI-11/23?

Is your VT-l00 in VT52 mode with X-on X-off checking

disabled?

Is any ROM located above 64K disabled?

CP/M Adaptable System

Is your sector size 128?

Are you using a standard CP/M 1.4, 2.0, or 2.2 CBIOS?

166

Is your CDOS version compatible with version 1.07?

Do you have a double density IMS 8000?

If so, you must

 0. Back up your disks.

 1. Boot a double density CP/M 2.2 disk.

 2. Insert the CP/M Booter release disk in drive B and use the

 IMSGEN utility to copy the CP/M bootstrap to this disk.

 3. Insert the CP/M Booter disk in drive A and

 type control-C to warm-boot CP/M.

 4. Run PASBOOT as described in Section IV.3.

Do you have CP/M configured for Dynabyte disk drives?

 This version has been known to be incompatible with

 the CP/M Adaptable System. You must use the full

 Adaptable System.

H-89

If you have only one disk drive you must connect pin 12 to

pin 26 on your cable to the disk drives.

After Bootstrapping, the System Crashes

Do you have a minimum of 48K bytes of memory?

Have you run memory diagnostics recently?

The Printer Doesn't Work

On a PDP/LSI-11

Is your device set to address 177514 or 177510, trap vector 200

When trying to use PRINTER: (device #6)?

Is your device set to address 177520, trap vector 120 when

trying to use REMIN: or REMOUT: (devices #/7 and 8)?

Do you have a DLV-11J?

 The console channel is on channel 0 and should be at the

 standard address 177560. The base address on channel 3

 should be 177500. This will cause channel 1 to be PRINTER:,

 and channel 2 to be REMIN: and REMOUT:. The actual wiring

167

Users' Manual

Appendices

 required is: A9 jumpered x to 1.

On any System

Is there a printer driver linked in your Interpreter?

Does your printer expect any special protocols?

 You may need to write an external procedure to handle

 the protocol.

Does your printer hang/crash when processing NULS?

 The System sends NULs as pads in blocks of text.

 You may need to write a pre-processor which sends the printer

 text without the NULs.

You Get an Unimplemented Instruction Error

Are you attempting to use floating point without having

linked or renamed a floating point interpreter to be

your System Interpreter?

You can't read the disks

Do you have an INTEL MDS?

 If you do, you must turn off CRC checking, then make

 image copies of your disks. You can now enable CRC

 checking and use the image copies of the release disks.

Screentest Reports Errors
The EDITOR ESCAPE KEY and the KEY TO DELETE CHARACTER

are occasionally reported as non-functional, even though

they are working properly. If the keys function when you

use the Screen Oriented Editor, you may ignore these

error messages.

You are C(ompiling or A(ssembling

Syntax Error 'Unexpected end of Input' is encountered...

Did you use the C(ompile or A(ssemble command?

 You cannot eX(ecute SYSTEM.COMPILER or

168

Users' Manual

Appendices

SYSTEM.ASSMBLER.

169

Users' Manual

Appendices

VI.D APPENDIX D -- ASCII
 0 000 00
NUL
52 040 20
SP
64 100 40
@
96
140 60

 1 001 01
SOH
53 041 21
!
65 101 41
A
97
141 61
a

 2 002 02
STX
54 042 22
"
66 102 42
B
98
142 62
b

 5 005 05
ETX
55 045 25
#
67 105 45
C
99
145 65
c

 4 004 04\
EOT
56 044 24
$
68 104 44
D
100
144 64
d

 5 005 05
ENQ
57 045 25
%
69 105 45
E
101
145 65
e

 6 006 06
ACK
58 046 26
&
70 106 46
F
102
146 66
f

 7 007 07
BEL
59 047 27
'
71 107 47
G
105
147 67
g

 8 010 08
BS
40 050 28
(
72 110 48
H
104
150 68
h

 9 011 09
HT
41 051 29
)
75 111 49
I
105
151 69
i

10 012 0A
LF
42 052 2A
*
74 112 4A
J
106
152 6A
j

11 015 0B
VT
45 055 2B
+
75 115 4B
K
107
155 6B
k

12 014 0C
FF
44 054 2C
,
76 114 4C
L
108
154 6C
l
15 015 0D
CR
45 055 2D
-
77 115 4D
M
109
155 6D
m

14 016 0E
SO
46 056 2E
.
78 116 4E
N
110
156 6E
n

15 017 0F
S1
47 057 2F
/
79 117 4F
0
111
157 6F
o

16 020 10
DLE
48 060 50
0
80 120 50
P
112
160 70
p

17 021 11
DC1
49 061 51
1
81 121 51
Q
115
161 71
q

18 022 12
DC2
50 062 52
2
82 122 52
R
114
162 72
r

19 025 15
DC5
51 065 55
5
85 125 55
S
115
165 75
s

20 024 14
DC4
52 064 54
4
84 124 54
T
116
164 74
t

21 025 15
NAK
55 065 55
5
85 125 55
U
117
165 75
u

22 026 16
SYN
54 066 56
6
86 126 56
V
118
166 76
v

25 027 17
ETB
55 067 57
7
87 127 57
W
119
167 77
w

24 050 18
CAN
56 070 58
8
88 150 58
X
120
170 78
x

25 051 19
EM
57 071 59
9
89 151 59
Y
121
171 79
y

26 052 1A
SUB
58 072 5A
:
90 152 5A
Z
122
172 7A
z

27 055 1B
ESC
59 075 5B
;
91 155 5B
[
125
175 7B
{
28 054 1C
FS
60 074 5C
<
92 154 5C
\
124
174 7C
|
29 055 ID
GS
61 075 5D
=
95 155 5D
]
125
175 7D
}
50 056 IE
RS
62 076 5E
>
94 156 5E
^
126
176 7E
~
51 057 IF
US
65 077 5F
?
95 157 5F
_
127 177 7F
DEL

170

