Petar A. Stark K20AW
PO Box 209
Mt. Kisco NY 10549

Build a Talking Digital IDer

—K20AW redesigns his IDer at last

hen my CW identifi-

et and repeater con-
trol circuit article appeared
in the February and March,
1973, issues of 73 Magazine,
I thought that those circuits
were about as modern and
simple as they could get.
Over the vears, I've heard
of printed circuit boards
and kits being sold at ham-
fests, and several ham re-
peater manufacturers have

used the CW identifier cir-
cuit in their systems. The
identifier also has been
used in RTTY stations to
provide Morse code identi-
fication.

But times do change; sev-
eral articles have appeared
in 73 Magazine giving cir-
cuits which modified or ex-
panded the original design.
I finally decided that it was

162

Photo A. Talking identifier.

3 Magazine » December, 1980

time for a new identifier de-
sign.

Here is an identifier cir-
cuit which should renew in-
terest in identifiers for a
while. It uses six ICs, the
same as the 1973 version,
but this identifier talks.

Yes, you read it right. It
doesn't whistle or hum your
call—it says it right out
loud, in plain English, for
the whole world to hear. A

little muffled, perhaps (af-
ter all, what can you expect
from six commonty-avail-
able ICs?), but clear enough
to understand.

I'm having some fun with
mine right now. It's sitting
on my office desk (with a lit-
tle IC timer setting it off
about once a minute) quiet-
ly mumbling “Bah, hum-
bug!” to anyone within ear-
shot!

Although it makes a
great conversation piece,
that is not its main purpose.
I started designing this iden-
tifier while driving on a long
vacation trip last summer.
Every half hour or so, |
would remember to key up
my 2-meter rig on 52, hop-
ing that somebody would
come back. In the mean-
time, a hundred hams could
have passed me by going in
the opposite direction. But
unless | picked up the mike
and gave my call every min-
ute or two, the chances of
either one of us knowing
about the other were slim.
Wouldn’t it be nice (I
thought) to have an auto-
matic |Der which would
key up the rig every minute
or so and announce itself?
If there were anybody
around, they surely would

hear me. And voil¥—neces-
sity was the mother of in-
vention.

The identifier uses an
EPROM (Erasable Pro-
grammable Read Only
Memory) to store the voice
data to be spoken. The se-
cret, of course, is in know-
ing how to program this
EPROM. | do the program-
ming on my SWIP 6800
computer system, but it
could be done on another
computer just as well. This
article includes the pro-
grams and a PC board lay-
out to make your job easiet.
{Etched and drilled PC
boards as well as prepro-
grammed EPROMs are
available from StarKits, PO
Box 209, Mt Kisco NY
10549)

How 1t Works

There are many ways
either to store a real sound
recording in a digital mem-
ory or to synthesize a fake
voice. Quite a few voice
synthesizets are available
today, ranging from the
Texas Instruments Speak
and Spell™ to the Compu-
talker synthesizer available
for 5100 computers and
the Radio Shack synthe-
sizer for the TRS-80. Unfor-
tunately, most of these are
fairly complex, require
some custom-integrated
{and often secret) circuits,
and are difficult to pro-
gram.

Simply storing a digital
image of a real voice and
playing it back from mem-
ory turns out to be much
easier and cheaper. That is
how this identifier works.
1ts EPROM contains a digi-
tized “recording” of a voice
{which had been digitized
previously on a computer),
and a fairly simple circuit
then scans the memory and
“plays” it back. The only
problem is to store the
voice recording in such a
way that it doesn’t exceed
the capacity of the EPROM.

if memory capacity were
not a problem, then the
voice pattern could be

stored with voice fidelity
better than any commercial
hi-fi recording. in fact, digi-
tal stereo recording is the
latest technique on the hi-fi
scene because it can pro-
vide frequency response
and distortion figures be-
yond anyone’s wildest
dreams of just a few years
ago. But there is a price
to be paid—very large
amounts of digital data are
involved. Digita) recording
often is done with video-
tape recorders which can
record and play back mil-
lions of bits per second.
Squeezing two seconds
worth of voice into an
EPROM which contains just
16,384 bits obviously re-
quires some compromises,
and it results in audio quali-
ty which is far from hi-fi.
But it works.

To see how voice can be
digitized, look at Fig. 1(a).
Here we see a typical sound
waveform such as might be
pickedupbya microphone.
In order to digitize that
waveform, we sample it at
fixed, periodic intervals,
and digitize the voltage
that that waveform has at
those instants of time.

For instance, suppose we
measure the waveform
voltage at the points
marked with a dot, convert
the value of that voltage to
a binary number, and store
it. If that is later “played”
back, we get the waveform
shown in Fig. 1(b). The result
is a square waveform which
changes to a new value at
each of the sampling
points.

Although the square
wave doesn’t look anything
like the original audio sig-
nal, if it is fed through a
Jow-pass filter the sharp
corners wilt be chopped off
and the signal will look a bit
better.

If, on the other hand, we
were to sample the audio
signal more often—not on-
ly at the dots but also atthe
intermediate points marked
with an X-—and digitize
that, the resulting wave-

164 73 Magazine * December, 1980

T

f_._._

fa} ORIGINAL AUDIO

r

{2} DIGITIZED AT BLACK DOTS ONLY

fc) DIGITIZED AT EACH DOT AND %

o

] —

r

| e

(¢} DGITIZED AT AN EXTREMELY HIGH RATE

Fig. 1. Digitizing audio at various sampling rates.

form, shown in Fig. 1(c),
would be a better approxi-
mation.

Fig. 1(d) shows that when
we digitize very often, we
get the best waveform yet.
Although this waveform
does have some sharp cor-
ners, they occur at a very
high frequency and would
be removed very easily with
a filter.

How often must we digi-
tize to get an acceptable
digitized waveform? There
is a rule called the “sam-
pling theorem” which says
that the sampling rate must
be at least twice the fre-
quency of the highest fre-
quency component in the
audio signal. In other
words, a hi-fi signal with a
frequency response to
20,000 Hz would have to be
sampled at least 40,000
times per second. A com-
munications-quality voice
signal with a response to
4000 Hz would require sam-
pling at least 8000 times per
second.

We can get an idea of
this from Fig. 1(b). Sampling
at the black dots is enough
to get a waveform which
follows the large swings of
the audio waveform which
have a low frequency but
cannot capture the small

squiggles that have a high-
frequency component. To
get those, we need a high
sampling rate.

Fig. 2 shows a block dia-
gram of the circuitry which
would be needed to do the
digitizing. Starting with the
audio signal, the signal is
amplified and sent through
a low-pass filter, The pur-
pose of the filter is to
remove those frequencies
which are too high to be
digitized (that is, more than
half the frequency of sam-
pling). These components
have to be removed to
avoid further distortion dur-
ing the digitizing.

The filtered signal is now
sent to a sample-and-hold
circuit. This circuit takes a
sample of the waveform
and holds it in a capacitor
while the analog-to-digital
(A/D) converter converts
the resulting voltage to a bi-
nary number. This is neces-
sary because most A/D con-
verters require a steady in-
put voltage while they are
converting; if the voltage is
changing, then they will
ptobably convert the volt-
age to the wrong value.
Both the sample-and-hold
circuit as well as the A/D
converter are driven by a

ANSLOG TO
DIETAL
CONVERTER

DIGITAL
DUTRUT
DATA

SaWMPLE
AND
HQLD

fal SOUND-TO-DLGITAL CONVERSION

piGiITAL TO
AMALOG
CONVERTER

DIGITAL
DATA

L

SPEAKER

FILTER

{57 BIGITAL-TO-SQUND CONVERSION

Fig. 2. Circuitry needed to digitize audio.

clock oscillator which sets
the rate at which the input
signal is sampled.

The output of the A/D
converter is now a binary
number which can be
stored in memory or record-
ed on tape. When the digi-
tized data is played back,
as shown in Fig. 2(b), the
binary data is converted
back to an analog signal
with a digital-to-analog
(D/AY converter, passed
through a low-pass filter to
remove the sharp corners
from the wave, amplified,
and fed to a speaker.

Now that we know how
often a sample shouid be
taken of the input wave, we
have another question:
How accurately must it be
digitized in the A/D con-
verter? This is related to the
number of bits produced by
the converter for each sam-
ple.

A binary number consist-
ing of just one bit can take
on only one of two values —
either 0 or 1. A binary num-
ber consisting of two bits
can have values of 00, 01,
10, or 11, a total of four dif-
ferent values. In general, a
number which consists of n
bits can take on 2" different
values. For instance, ten
bits allow 1024 different
numbers.

Suppose the converter
produces a binary number

186 73 Magazine » December,

consisting of just one bit.
That one bit is not encugh
to indicate the precise volt-
age of the input. With one
bit, we can tell only wheth-
er the input was positive or
negative. This obviously
will lead to a very distorted
wave, since we cannot hope
to keep all the little squig-
gles in the audio signal.

On the other hand, a ten-
bit humber can represent
1024 different numbers.
Thus, we could measure
and encode 512 different
positive voltage levels and
512 different negative volt-
age levels. Thus, the more
precise we want our mea-
surements of the sample
voltages to be, the more
bits we need for each mea-
surement.

In a hi-fi system, we often
try to get a signal-to-noise
ratio (§/N) of 60 dB or maore.
60 dB is a voltage ratio of
1000 to 1, so that we must
be able to reproduce two
signals even if one is 1000
times larger than the other.
This requires being able to
measure at least 1000 dif-
ferent positive voltage
levels and 1000 different
negative voltage levels, for
a total of 2000 different
voltage levels. Since 21 =
2048, we need at least 11
bits for this. By the time you

add a few more bits to al- -

low these signals to be re-
produced with low distor-

1980

tion and to give a little
“headroom” so that an oc-
casional burst of extra vol-
ume can get through, you
are close to 14 bits per sam-
ple.

The digital systems being
proposed in the hi-fi indus-
try use between 14 and 18
bits per sample; 14 bits are
used in consumer products
and up to 18 bits are used in
the studio-quality recorders
which produce the master
tapes.

How many bits per sec
ond (bps) does this add up
to? For pure hi-fi, we need
at least 40,000 samples per
second, each with at least
14 bits, for a minimum of
560,000 bps (and up to P
MHz in studio-quality sys-
tems). At a rate of 560,000
bps, a 16,384-bit EPROM
would provide hi-fi for
about 0.03 second. Not
enough for a grunt, let
alone a ham cail.

So we must limit the
number of bits per second.
This is done by drastically
reducing the sampling rate
and also reducing the num-
her of bits from the A/D
converter.

To squeeze a two-second
call into this ROM, we can
store 8192 bps. At a sam-
pling rate of 8000 Hz or so
(to cover the communica-
tions audio range to 4000
Hz), that gives us about one
bit per sample. This means
that we don’t need a com-
plex sample-and-hold cir-
cuit, an A/D converter, of
even a DJA converter. All
we need is some circuit
which can tell whether the
input audio is positive or
negative at the sampling in-
tervals, and which produces
a one-bit output—1 if posi-
tive, 0 if negative. That
turns out to be very simple
to do.

The disadvantage is that
our voice recording will be
very distorted. But by
heavily filtering the output
with a low-pass filter, we
can remove some of that
distortion and make the re-

sult quite understandable.)

The Talking Identifier

Let's leave for a moment
the question of how you
“record” the voice and
store it in the ROM, and
look at the circuit of the
talking 1Der itself, Fig. 3.

The voice pattern is
stored in a 2716 EPROM.
This is a memory 1C current-
ly selling for about $10-
415, It is organized as 2K X
8 meaning that it has 2K
storage locations {which is
2048), each holding an &-bit
number.

Fach of those 2K loca-
tions has an address, a
binary number which
ranges from Q0000000000
to 111111111, This 11-bit
address is fed to the
EPROM via the A10
through AO address pins
shown at the bottom of the
IC. Each time we give the
EPROM an address, it out-
puts the contents of the ad-
dressed location on the
eight data lines, D7 through
DO, shown on the right side
of the EPROM.

The eight bits in the loca-
tion come out in paratiel,
meaning all at the same
time. But we want the bits
one at a time, roughly
1/8000 of a second apart,
since each bit represents
one sample of the recorded
voice pattern. (Over a space
of two seconds there is a
total of 16,384 samples of
bits, which are stored in
consecutive locations on
the EPROM. The first eight
bits are in memory loca-
tion 00000000000, the next
eight bits are in location
00000000001, and so on, up
to the last eight bits,
which are in location
11111111111

The job of splitting up
the eight bits in one loca-
tion into individual bits is
handled by the 74L5151
multiplexer. This [C be-
haves like an SP8T switch
which is continuously rotat-
ing, scanning the eight bits
coming in from the EPROM

e ——

+BY

?IG
B wr il oo
De I
2! M [F1
Yep 2716 2K % 8 EPROM N 2% raLsis s HOOK
(] [*}-) ¥
) |5 MULTI=
2ol — b m 4| °* PLEXER 7
CE D2 ba
D|£——_|3_‘D6
L] Fr A A A A A A A A A A AT 12 2
o€ 0 3 T & 5 4 3 2 r % & a
,l’lz |92223|234351'a . g o Tn
+By ‘ _]
220 sl gsjejreels jois by
iE Q G 8 ¢ O 8 a0 5 0
4 3 J2 010 9 & 7 5 3 &
3 2 4020 14-BIT COUNTER
l,__) L =1
[} 1 o ET
- !
74LSI32
FTT Jok . A sy
o 1 IIE 1t a 7
o Q d
4], A0 o s
7AL 593
Hg 4-BIT COUNTER |
2 |
-1 +8y
™ I '
4 B
T
2 555 3 LI | 'JL
" 3
‘] 1
L
T4LSI32

much like the distributor in
a V8 car engine. It changes
the parallel data coming in-
to the multiplexer into seri-
2l data. The result, on pin 5
of the multiplexer, is a
square wave which carries
the frequency components
of the voice but, of course,
doesn’t have any amplitude
information because ampli-
tude was never digitized.
This signal is fed into an ac-
tive low-pass filter which
uses an LM3900 Norton op
amp, and which cuts off at
just under 4000 Hz. This
provides the audio output.

The rest of the circuit
simply provides different
addresses to the EPROM to
scan through its memory
and also drives the muylfi-
plexer.

This part of the circuit
starts with one section of a
74L5132 quad, two-input
NAND, Schmitt-trigger IC
which, along with a
220-Ohm resistor and 0.4-uF
capacitor, forms an oscilla-
tor which oscillates at

"
A S0uF

T i

Fig. 3. Talking identifier diagram.

about 8 kHz. The output of
this oscillator is sent to pin
10 of a 4020 CMOS counter.

The 4020 is a 14-stage rip-
ple counter which contains
fourteen flip-flops. Since
214 = 16,384, this counter
can count off 16,384 clock
pulses. Since the clock fre-
quency is about 8 kHz, if we
start this counter at a count
of 0, it will take approx-
imately two seconds to
count up to its maximum
count. As it does so, it's
counting off the 16,384
data bits which are being
converted into an audio
signal.

We really need 14 out
puts from that counter to
drive the EPROM address
lines and the multiplexer.
Unfortunately, to save on
pins the 4020 provides only
the 11 outputs from the 4th
flip-flop (Q4) through the
14th flip-fiop (Q14); the out-
puts of the first three flip-
flops are not accessible. So,
we have a second counter,
which is a 741593 binary
counter. The oscillator sig-

nal which goes to the 4020
goes also to the B input, pin
1, of the 741593, Three of
the flip-flops in this IC
(called B, C, and D) count in
parallel with the first three
flip-flops of the 4020, and
give us the missing signals.

These three signals, on
pins 11, 8, and 9 of the
74L593, change very rapidly
and continuously drive the
multiplexer which, there-
fore, scans the output of
the EPROM at a high speed
(one bit every 1/8000 sec-
ond).

The eleven bits from the
4020 have a lower frequen-
cy and, therefore, drive the
address lines of the EPROM
at a slower rate (one ad-
dress every 111000 second).
Thus, the EPROM feeds oyt
a new group of eight hits
every 1/1000 second. Since
there are 2K such groups,
this again takes about two
seconds,

When the two seconds
are up, the 4020 and 741593
counters reach their max-

AUDID GUT

311

imum count and reset
themselves back to zero. At
the instant that this hap-
pens, the Q14 output of the
4020 switches from a high
level (near 5 volts) to a low
level (near O volts). This sig-
nal goes to an unused sec-
tion of the 741593 and turns
on a fourth flip-flop in that
counter; as a result, its QA
output goes high. This sig-
nal is inverted into a low by
another section of the
7415132 and is fed back to
stop the clock oscillator. As
soon as the 2-second voice
ID is done, therefore, the
clock stops, all the counters
{except the A flip-flop in the
741 593) freeze at zero, and
the 1Der stops.

The IDer is restarted by
resetting all counters to
zero with a positive pulse
coming out of pin 3 of still
another section of the
Schmitt trigger NAND. This
start signal could be gener-
ated externally, but for use
with a 2-meter FM rig on
146.52 we have a 555 timer
which automatically gener-
ates a very short reset pulse
every 30 seconds or so. This
pulse resets the A flip-flop
in the 741593, which re-
leases the clock and starts
the ID process all over
again.

Connected to the clock
control line is an NPN tran-
sistor. When the clock is
running (that is, when the
IDer is identifying), that
transistor is turned on;
when the IDer is off, so is
the transistor. By connect-
ing the collector to the
push-to-talk (PTT) line of
the rig, the |Der automati-
cally keys the transmitter
while it is identifying. This
circuit is suitable only for

73 Magazine « December, 1980 167

[£)1979 Peter Stark

o122

AG+ A|_ "
L

u])

Fig. 5. Parts layout.

168 73 Magazine » December, 1980

H

C R

WLE
1070 METT I
.T\?K"- o
ino olony. -
s | -

driving the PTT line in
small, transistorized trans-
ceivers. Those rigs which re-
quire large currents to drive
a PTT relay may require an
additional buffer transistor.

Although there are nc po-
tentiometers in the circuit,
there are several compo-
nents which may require
adjustment. The 100k resis-
tor in the active filter is
chosen to provide a fairly
small output audia level: if
more audio signal is need-
ed, it can be reduced to as
low as 5k. Incidentally, do
not use disc capacitors in
the active filter circuit. Use
good quality polystyrene or
dipped mica caps.

The oscillation frequen-
cy of both the 7415132 os-
cillator and the 555 timer
depends on the tolerance of
the resistors and capacitors
used. Since capacitors, es-
pecially, tend to have very
wide variations, some trim-
ming may be needed to get
the right results. To vary the
spacing between 1Ds, you
may want to increase or de-
crease the capacitor value
in the 555 timer circuit.

1f the 7415132 oscillator
runs too fast or too slow,
the voice pattern in the
EPROM will be scanned too
tast or too slowly, with the
same result as when a rec-
ord is played too fast or too

slow. You may like the
Donald Duck quality this
gives, but for best results
you should trim the RC val-
ues in this oscillator for the
most natural speech sound.

The circuit layout is not
critical, and almost any
construction method will
work, including wire-wrap
and temporary prototype
socket hookup. If desired,
you can use the printed cir-
cuit board shown in Fig. 4.
Fig. 5 shows the parts fay-
out for the PC board.

The identifier needs ap-
proximately 100 mA of +5
volt power. This is provided
easily by a three-terminal
regulator. 1f you use the
{Der in your mobile, simply
include the regulator cir-
cuit of Fig. 6. Assuming a
load current of 100 mA and
a worst-case auto battery
voitage of 16 volts, the reg-
ulator must drop 11 volts
for a power dissipation of
11 Watts. With a good heat
sink, all this can be dropped
in the three-terminal regula-
tor itself; by adding a
39-Ohm, 2-Watt resistor as
shown in the circuit, how-
ever, we drop 39 volts
across the resistor, This re-
moves almost .4 Watts of
heat from the regulator and
dissipates it in the resistor
instead.

For applications that re-
quire even lower power
(such as for battery-pow-
ered applications), total cir-
cuit power can be reduced
even more by lifting the
chip enable pin (pin 18] of
the 2716 from ground and
connecting it instead to pin
12 of the 74L593. This dis-
ables the 2716 when the cir-
cuit is not identifying. The
circuit still draws around
100 mA when identification
is in progress, but cuts it
down to less than half dur-
ing other times.

rRecording” the EPROM

To digitize the audio sig-
nal, we need a filter to
remove high-frequency
components above 4000 Hz
and a comparator circuit to

sense the polarity of the in-
put audio. This circuit uses
another LM3900 quad Nor-
ton op amp and is shown in
Fig. 7.

One op-amp in the
LM3900 is used as an active
low-pass filter with a cutoff
frequency of just under
4000 Hz. This amplifier/fil-
ter has a small amount of
gain but not enough to ac-
cept the weak signal from a
microphone. It is designed
for use with an external
mike preamp or with the
higher-level output of a
tape recorder. | generally
record the desired message
on tape first and then feed
the speaker output of the
recorder to the audio input
of this circuit.

A battery-operated re-
corder is best in this case,
since with a high gain it is
possible for hum to be digi-
tized between words. Hum
gets swamped out during
speech, but when there is
silence, the circuit works
much like a volume com-
pressor by boosting low-
level sounds. Thus, a good
SIN ratio is essential. The
10k volume control on the
input helps to cut down ex-
cessive signal; its correct
adjustment is important,

The output of the filteris
sent to another op-amp sec-
tion of the LM3900, whichis
used as a slicer or compara-
tor. The signal coming from
the filter is sent to one input
of this op amp while a refer-
ence current from the 10k
zero-set pot is fed to the
other. As the filtered audio
output goes above or below
the reference signal, the
digital output from pin 9
switches between0 and +5
volts.

The 10k zero-set pot
should be adjusted so that
with the audio input short-
ed to ground, the output is
just on the verge of switch-
ing between 0 and +5
volts. With proper adjust-
ment, positive audio peaks
will clip the digital output
one way while negative
peaks flip it the other way.

T

For testing purposes, an
audio amplifier/speaker
combination can be con-
nected to the digital output
to monitor the signal after it
has been digitized; | use an
inexpensive Radio Shack
signal tracer for this pur-
pose. The digitized signal is
supposed to be filtered be-
fore being heard, so this sig-
nal will sound excessively
harsh, but it is good enough
to give you an idea of
whether the circuit is work-
ing.

Once we have the one-bit
digital output, we must
sample it at intervals of
about 1/8000 second, con-
vert the samples into 8-bit
bytes, and store them. Be-
fore burning them into the
EPROM, however, it is very
convenient to be able to
#play” them back to make
sure that the volume con-
trols have been set right
and that we have the right
voice segment. It also
would be very convenient if
in some way we could edit
the digital code to elimi-
nate any noise just before
and after the call. In other
words, it would be very con-
venient if we could store
the message in RAM and
read or modify it before it is
permanently stored in
EPROM,

Building a special piece
of hardware for just this
purpose is difficult and ex-
pensive. Fortunately, most
home or personal compu-
ters have an input and out-
put port which could be
used to input or output this
one-bit digital signal and
also have RAM which could
be used to store the code
temporarily. This makes the
job atmost trivial.

To do this, you need a
program which will input
data, group bits together in
sets of 8, and store them. In
most cases, this program
has to be written in ma-
chine or assembly language
since most BASIC systems
are not fast enough to take
8000 samples per second
and process them.

170 73 Magazine * December, 1980

+H2¥
IN FROM AUTD
39
2w

LM30oK

+av

T—j

OR TA0S

Iﬂ-l [HEAT SIHK]

-

Fig. 6. Voltage regulator for mobile use.

AUDIS
INPUT

12F
LT

Ll
10K
YOLUME

4.TK

TO 5V

TO +5¢

DiGLTAL
SUTPUT

Fig. 7. Audio-to-digital conversion circuit,

Obviously, the program
will depend on the particu-
lar computer used, but as a
starter, I'm including here
three programs written for
an SWTP 6800 system
which are very useful.

Paralle! inputfoutput on
6800 systems is usuatly han-
dled by an IC called a PIA
or Peripheral Interface
Adapter. Although this IC
has twenty inputfoutput

- pins, only two are used in

this application—bit 0 of
port A gets the input from
the circuit of Fig. 7, while
bit 1 of the same port feeds
an audio amplifier/speaker
combination which is used
to listen to the recorded
sound.

Program 1 is an echo pro-
gram which is used only for
testing. It inputs via bit 0, -
outputs the bit right back to
bit 1 of the inputfoutput’
port, and then waits for a
short while to simulate the
delay between samples.
When everything is running
correctly, the audio coming
out of the computer will
sound very similar to the
audio you could hear di-
rectly at the output of the
circuit of Fig. 7. {It, too, will
sound harsh because of the
lack of filteting.)

The program starts by ini-
tializing the PIA to set up
the correct bits for input
and output. The main part
of the program (starting at

PPYTeT] +

*
& THIS PROGRAN INPUTS DATA FROM PORT A BIT 0 2

& OF & FIA IN PORT 7, AND ECHOES 1T TO BIY 1 #

El

LT SLIVEHENETENE

PORT & DATA/DIRECTION REQ
PORT A CONTROL REGISTER

RESET FIA

SET $IT O=INPUT, BIT 1=0UTPUT
RESET BACK TO DATA

LOAD DATA FROH FORT A BIT 9
SHIFT LEFT IWTD BIT 1

QUTPUT TO PORT & B1T 1

G0 BACK AND REPEAT

+ FOLLOMING WALT ROUTINE INTRODUCES A BELAY
» UHICH PERMLITS SANPLING RATE T BE CHANGED

{BO1C} pIADAT EQD 48Q1C

{adl PIACTL EGU PIADATH!

(o109 oRG $01900
o100 7F BO1D START CLR P1ACTL
103 B 02 LIp b #82
0105 B7 80IC 5T4 A FIADAT
108 B6 B4 LBA & H$A
0104 B7 821D §TA A FIACTL
910D B& BO1C LDEP LDA A FIADRT
110 48 ASL A
9111 B7 BT STh # PIADAT
o114 8D 02 BSR WAIT
gi14 20 F3 pka LOOP
0148 CE 0010 WAIT LDE ks001D
o11B 0% walTY DEX
pI1c 28 FD PHE WALTH
o11E 39 RIS

INITIALLIE IWDEX REGISTER
DECREMERT IHDEX

REPEAT IF HOT YET IERQ
QTHERMISE RETURM

Program 1. Echo test.

e

I

- n

o
*

#6SK OFF EVERYTHING EXCEPT BIT @

SET UP COUMTER FOR SAMPLING DELAY

INCRENENT INDEX REGISTER FOINTER

ROTATE B LEFT 3 BITS TO MOVE THE CURRENT

SET UF COUMTER FOR SANPLING DELAY

INCREMENT INDEX WHEN BYTE IS DOKE

*
+ THIS PROGRAH TNPUTS TATA FRON FORT & BIT @
&« OF & PLA IN PORT 7, PACKS & BITS PER BYTE,
» AND STORES THE DATA 1H HEHORY LOCATIONS 1000
« T0 ?FFF.
L]
{801t PIAbAT EQU #841C FORT A DATA/DIRECTION REG
1BU1 DY PLACTL EQU F1ADAT+Y PORT A& CONTROL REBISTER
(gi40 ORG #0109
0100 7F BOID BTART CLR FIACTL RESET FIA
84193 84 02 LDA A W2 SET BIT O=INFUT, BIT 1=0UTPUT
gi05 37 BOIC STA & PLADAT
148 Ba 04 LDA R WHEd RESET BACK T0 DATA
Q104 B7 801D $TH A PIACTL
0100 CE 1000 LIx H$1000 POINT TO MEMORY BUFFER ADDRESS
4110 L& 08 LOGFt LD& B w08
8412 F? $132 5Th ¥ BITCTR COUNT 8 BITS FER BYTE ’
01145 4F CLR A ERASE & ACCUMULATOR
Bi1s Fa BOIC LOOPZ LDH B FI1ADAT READ DATA INTO B ACCURULATOR
11y L4 Aud B #E01
Q115 4B KSL A SHIFT A ACCUM LEFT
B119C 1B ABA ADD MEW BIT FROM B T0 A
4110 Ca 0 LiA B ¥810
RLIF SA ATl DEL § LECREMENT B
g120 24 FD BRE HWRIT REPEAT IF WOT YET ZERD
4122 7a 09132 pEC BITCTR D0 FOR 8 BITS
125 26 EF EWE LOOP2 GET MEXT BIT
127 &7 00 STa & 0% STORE BYTE WHEM COMPLETED
Q12% 08 ind
4124 8C PFFF CPE BATFFF CHECK FOR END OF HERCORY
121 26 EN FNE LODP1 REFEAT 1F OK
9i2F 7€ EGQO JHP SEODO RETURM TO NONITAR WHEN DONE
0132 FLTCTR RHE 1 81T COUNTER T0O COUNT 8 BITS
Program 2. Input.
" L]
« THIG PROGRAN GETS DATA FRDA KERORY L
% LOCATIONS 1009-7FFF, UNPACKS IT INYO =
+ TNEBIVIDUAL BITS, AND QUTPUTS TQ PORT A *
BIT 1 DF A PIA IN PORT 7. *
* L3
1120 PIATAT EQY $801C PORT A DATA/DIR REGISTER
[ET AR PIACTL EGU PIADAT+l PORT A LOMTROL REBISTER
{01B0) URG #0180
0180 7F BOID START CLR FPLACTL RESET FIA
§183 8& 02 LDA & W52 GET EIT O=INPUT, BIT 1=QUTPUT
4183 87 §0°C STA A PIADAT
6188 84 04 Lbé A %4 RESET BACK TO BaTh
0184 B7 AO1D §Th & PLACTL
49180 CE 1000 LD% w1000 POINT TO MEHORY BUFFER ADDRESS
4190 Co 08 LODP1 LDA B HeOE
152 F7 0184 §Th B BITCTR CaumMT @ BITS FER BYTE
Ies Ab G0 Lha & 0% GET MEXT BYTE FROM REMORY
97 14 LODFZ ThR TRANSFER 1T TQ B REGISTER
Q199 48 ASL & SHIFT A ACCUM LEFT 1 BIT
iFe 5 ROL B
H19n 59 KL B gIT FEROA BIT 7 (LEFT-HOSTH INTU
0148 59 ROL B FIT 1 (SECOND FROA RIGHT)
190 Cé Q2 AWD B WSD2 W45K OFF EVERYTHING EXEEFT FIT !
¢I%E F? BOIC 5T4 B PIADAT autTePuT TO FIA
o1at €& 08 Lk 9 K40B
Uthd Sh HAIT LEC B BECRENENT B
t1a4 26 FD BHE UATT REPEAT [F HOI YET ZERD
glas 74 B1BA DEC BITCTR g FOR @ RITS
oiA¥ 26 EC BHE LOOPZ IF BIT COUNTER NOT ZERD
o1AE O TRE
Q1AL 8C PFFF CR3 R4FFFF CHECK FDR END OF MWEMODRY
41&F 24 BF BHE LOOP1 REFEAT 1F QK
4191 7E ELDO JrP o $EODD RETURH T0 MOMITOR WHEN DONE
A1B4 BITCTR RHD } HIT COUNTER TO COUNT & EBITS

Program 3. Qutput.

the statement labeled
LOOP) loads a bit from the
PIA, shifts it left from bit O
into bit 1, and outputs it
Then it branches to a WAIT
subroutine for a short de-
lay, after which it branches
back to LOQP.

For experimental pur-
poses, it's important to be

able to calculate how many
samples are taken per sec-
ond. This is done by com-
puting how many computer
clock cycles are required
for each instruction in the
loop. In Program 1, the
main loop takes 31 clock
cycles plus 8 cycles for
each repetition of the

172 73 Magazine « Decembar, 1980

WAIT1 loop. With the
WAIT1 loop initialized
(with the LDX instruction) to
run 16 times (0010 hexadec-
imal), the total time be-
tween samples is 31 + (16)
x (8) = 159 clock cycles.

In a typical SWTP com-
puter running with a
900-kHz clock, each clock
cycle takes 1.11 microsec
onds, so that the total delay
between samples is 177 mi-
croseconds; this translates
into a sampling rate of
about 5600 samples per sec-
ond, which is about the
minimum that can be used
for acceptable results. For
8000 samples per second,
the LDX instruction should
be changed to run the
WALIT1 loop 10 times.

Once the echo test pro-
gram reveals that the A/D
conversion and the compu-
ter inputfoutput circuitry is
working correctly, Program
2 can be used to input data
into the computer’s mem-
ory, while Program 3 is used
to output it back to the
speaker. Both of these pro-
grams have a WAIT loop
which provides some con-
trol over the delay between
samples. There is some |ee-
way here in adjusting this
delay. lf the number of
samples taken per second is
changed above or below
8000 (to increase playing
time, for instance), the
clock oscillator frequency
in the identifier circuit of
Fig. 3 also has to be
changed to a similar value
or the final output will have
a pitch which is too high

(like Donald Duck) or too

low.

Both programs are lo-
cated in low memory, with
the input program starting
at location 0100 (hex) and
the output program at 0180,
They do not overlap and,
therefore, can be in mem-
ory at the same time. Thus,
we can input audio, store it
in memory, and then output
it right back.

The programs are written
for a 32K computer and use
locations 1000 (hex)

.

through 7FFF to store the re-
sultant digital data. Thisisa
total of 28K of memory; at
the rate of 1K per second,
this can store a total of 28
seconds of sound. When
Program 2 is finished, it re-
turns to the monitor. Rather
than calculate the sampling
rate by computing the num-
ber of cycles per loop, etc.,
an easier way to adjust the
WAIT loop is to note how
long the overall program
runs. 1f it runs exactly 1 sec-
ond per K of memory used,
then it is running at 8192
samples per second.

By changing the starting
address (1000 hex) or the
ending address (7FFF} in
Program 3, we can “play”
back just selected portions
of the input. In this way, we
can pick one of several ver-
sions of the same call,
choosing the one that
sounds best. This allows us
to edit the data before it is
stored into EPROM. Once
you find the portion which
sounds best, burn that por-
tion into the EPROM and
keep the rest of the EPROM
data empty {an erased 2716
EPROM has a hex FF in
every location). This will as-
sure that no noise ar sounds
are in the EPROM other
than the actual call.

Conclusions

while this talking identi-
fier won’t win any awards
for hi-fi quality, it is perfect-
ly understandable and ful-
fills its purpose well. 1t also
gives you a chance to ex-
periment with speech re-
production via digital
means. In addition, it’s a lot
more satisfying to build
such a device from com-
monly-available ICs than to
go out and buy an expen-
sive synthesizer chip or sys-
tem. Why don’t you try it?

So, if you ever hear some-
thing grumble “K20AW”
on146.52 as 1 speed by your
house on the nearby Inter-
state, maybe you'll be able
to turn on your own IDer
and have it come back to
me. W

