Hardware Details of the 68000

- CPU Pin Descriptions
- System Timing Diagrams

CPU Pin Descriptions

Figure 7.1: 68000 CPU input and output signals (pg 240) [1]

- 1. Antonakos J.L., The 68000 Microprocessor, Hardware and Software Principles and Applications, 1993, Prentice Hall, New Jersey.
- 2. Clements A., Microprocessor Systems Design, 68000 Hardware, Software, and Interfacing, 1992 PWS-KENT Publishing, Massachusetts.

V_{CC}, GND, CLK

- Processor power and clock inputs.
- 2 pins each for VCC and GND
- Both must be connected

VCC:

- 8MHz, $5V \pm 5\%$, 1.5 watts

CLK:

- Max t_{rise} and t_{fall} are 10ns (all versions except 5ns for 12.5MHz and 16MHz)
- TTL-compatible with 50 percent duty cycle.

Antonakos J.L., The 68000 Microprocessor, Hardware and Software Principles and Applications, 1993, Prentice Hall, New Jersey.

FC₀, FC₁, and FC₂

- FC₀, FC₁, and FC₂ are function code outputs
- Informs external circuitry of current internal processing state of the 68000.
- Only valid when AS is active.

FC ₂	FC ₁	FC ₀	Cycle type
0	0	0	Reserved*
0	0	1	User data
0	1	0	User program
0	1	1	Reserved*
1	0	0	Reserved*
1	0	1	Supervisor data
1	1	0	Supervisor program
1	1	1	Interrupt acknowledge

Table 7.1: Function code outputs (pg 241) [1]

*By Motorola, for future use.

- Frequently used to restrict memory accesses by connecting the FC pins to the memory address decoding circuitry.

^{1.} Antonakos J.L., The 68000 Microprocessor, Hardware and Software Principles and Applications, 1993, Prentice Hall, New Jersey.

^{2.} Clements A., Microprocessor Systems Design, 68000 Hardware, Software, and Interfacing, 1992 PWS-KENT Publishing, Massachusetts.

Figure 7.3: Interrupt acknowledge cycle decoder (pg 242) [1]

^{1.} Antonakos J.L., The 68000 Microprocessor, Hardware and Software Principles and Applications, 1993, Prentice Hall, New Jersey.

$\underline{\mathrm{E}}, \overline{\mathit{VMA}}, \underline{\mathrm{and}} \overline{\mathit{VPA}}$

- Provides the capability to control older 6800 peripherals.
- E clock, \overline{VMA} (valid memory address), and \overline{VPA} (valid peripheral address)

E clock:

- Generates proper timing signals for 6800 peripherals.
- 1/10th of 68000's clock frequency, with 40% duty cycle (high for 4 CLK cycles, low for 6 CLK cycles)

Figure 7.5: Timing relationship between CLK and E (pg 243) [1]

Sequence of events during 6800 peripheral access:

- The 68000 places address of 6800 peripheral on A_1 through A_{23} .
- VPA input is activated (low) to request synchronization of 68000
- 68000 synchronizes with the E clock, then activates VMA (outputs a low).
- Data transfer takes place.

Antonakos J.L., The 68000 Microprocessor, Hardware and Software Principles and Applications, 1993, Prentice Hall, New Jersey.

^{1.} Antonakos J.L., The 68000 Microprocessor, Hardware and Software Principles and Applications, 1993, Prentice Hall, New Jersey.

\overline{RESET} , \overline{HALT} , and \overline{BERR}

- Provides system control.
- RESET, \overline{HALT} , and \overline{BERR} (buss error) are panic buttons of the 68000
- External circuitry pulls *BERR* low to indicate to the 68000 that an error has occurred during execution of current bus cycle.
- RESET and HALT lines are bi-directional

Sequence of events when bus error occurs:

- If *HALT* is not asserted when bus error occurs:
 - The 68000 will terminate the current failed cycle and start bus error exception processing.

If \overline{HALT} was asserted before or at the same time as \overline{BERR} :

- o The 68000 will terminate the current failed cycle, and enter a "do nothing" state
- o Once the *HALT* line is deactivated, the processor will rerun the previous cycle
- o Note that \overline{BERR} must be deactivated at least one clock cycle before \overline{HALT} is deactivated.

Example (Power On Hardware Reset):

- RESET and \overline{HALT} both act as inputs
- After power on, *RESET* and \overline{HALT} are taken low for at least 100ms
- This stabilizes V_{CC} and results in total processor reset

Example (Normal Execution Hardware Reset):

- RESET and \overline{HALT} both act as inputs
- Asserting RESET and HALT at least 10 clock cycles resets the 68000

Figure 7.9: Power-on RESET and HALT timing (pg 246) [1]

Example (Normal Execution Peripheral Soft Reset):

- RESET acts as an output
- The RESET instruction causes the 68000 to output a low level on *RESET* for 124 clock cycles.
- This resets all external circuitry connected to *RESET* without affecting the state of the processor.

Figure 7.7: Power-on RESET and HALT timing (pg 245) [1]

^{1.} Antonakos J.L., The 68000 Microprocessor, Hardware and Software Principles and Applications, 1993, Prentice Hall, New Jersey.

Example (External Peripheral Halt):

- HALT acts as an input
- HALT may be driven low at any time by an external device.
- The processor then completes the current bus cycle and halts:
 - All tristate signals are set to high-impedance
 - All control signals are inactive.
- Execution returns to normal when *HALT* is deactivated

Figure 7.8: Tristate signal levels (pg 246) [1]

^{1.} Antonakos J.L., The 68000 Microprocessor, Hardware and Software Principles and Applications, 1993, Prentice Hall, New Jersey.

MPS Hardware 004: 16/35

$$\overline{\mathit{IPL}_0}$$
 , $\overline{\mathit{IPL}_1}$ and $\overline{\mathit{IPL}_2}$

- Provides interrupt control/request
- $\overline{IPL_0}$, $\overline{IPL_1}$ and $\overline{IPL_2}$ are used by external circuitry to send an interrupt request to the 68000.
- Vectored and auto-vectored interrupts may be requested.

	Interrupt	•	
IPL ₂	ĪPL₁	ĪPL ₀	Interrupt level*
1	1	1	0 (Lowest, none)
1	1	0	1
1	0	1	2
1	0	0	3
0	1	1	4
0	1	0	5
0	0	1	6
0	0	0	7 (Highest, nonmaskable)

^{*}Note the inversion of the binary bits needed on $\overline{IPL}_2 - \overline{IPL}_0$.

Figure 7.2: Interrupt level encoding (pg 246) [1]

- 1. Antonakos J.L., The 68000 Microprocessor, Hardware and Software Principles and Applications, 1993, Prentice Hall, New Jersey.
- 2. Clements A., Microprocessor Systems Design, 68000 Hardware, Software, and Interfacing, 1992 PWS-KENT Publishing, Massachusetts.

\overline{BR} , \overline{BG} and \overline{BGACK}

- Provides bus arbitration control (use to place 68k in a wait state while hardware connected to the bus)
- *BR* (bus request), *BG* (bus grant), and *BGACK* (bus grant acknowledge) are used when a device (DMA controller or another processor) is taking over control of the bus

Sequence of events for bus arbitration control:

- Requesting device (bus master) activate BR low to request the 68k system bus
- 68k will respond to bus master by asserting BG low to indicate its willingness to release control of the bus at the end of the current cycle.
- To take control, the new bus master asserts *BGACK*
- When the new bus master wishes to relinquish control of the bus, it does so by negating \overline{BGACK}

There are 4 conditions that must be met before the new bus master may activate \overline{BGACK} :

- \overline{BG} is active
- AS is inactive
- DTACK is inactive
- BGACK is inactive

Provides asynchronous bus control (for proper operation of external hardware)

- All lines are outputs except \overline{DTACK} (input)
- AS (address strobe) : to indicate that a valid memory address exists on the address bus.

^{1.} Antonakos J.L., The 68000 Microprocessor, Hardware and Software Principles and Applications, 1993, Prentice Hall, New Jersey.

^{2.} Clements A., Microprocessor Systems Design, 68000 Hardware, Software, and Interfacing, 1992 PWS-KENT Publishing, Massachusetts.

- R/W (read/write): determine whether the current cycle is a read or write.
- *UDS* (upper data strobe)
- *LDS* (lower data strobe)
 - \circ To transfer 8 bits (1 byte) of data: either \overline{UDS} or \overline{LDS} asserted
 - o To transfer 16 bits: both UDS and LDS asserted low
- *DTACK* (data transfer acknowledge)
 - When *DTACK* is asserted by external hardware, the 68000 recognizes that the current bus cycle can be completed