The 6809 ing the performance of an unwieldy bureaucratic

Part 1: Design Philosophy organization. And the computer makers clearly
thought that processor time was valuable too; or

Terry Ritter was a severely limited resource, worth as much as

Joel Boney the market would bear.

Motorola, Inc. Processor time was a limited resource. But

3501 Ed Blustein Blvd. some of us, a few small groups of technologists,

Austin, TX 78721 are about to change that situation. And we hope we

will also change how people look at computers,
This is a story. It is a story of computers inand how professionals see them too. Computer
general, specifically microcomputers, and of onetime should be cheap; people time is 70 years and
particular microprocessor - with revolutionary counting down.
social change lurking in the background. The story The large computer, being a very expensive
could well be imaginary, but it happens to be trueresource, quickly justified the capital required to
In this 3 part series we will describer the design oinvestigate optimum use of that resource. Among
what we feel is the best 8 bit machine so far madéhe principal results of these projects was the

by human: the Motorola M6809. development of batch mode multiprocessing. The
computer itself would save up the various tasks it
Philosophy had to do, then change from one to the other at

computer speeds. This minimized the wasted time

A new day is breaking; after a long slow twi- between jobs and spawned the concept of an oper-
light of design the sun is beginning to rise on theating system.
microprocessor revolution. For the first time we
have mass production computers; expensive cus
tom, cottage industry designs take on less impor-
tance.

Microprocessors are real computers. The
first and second generation devices are not ver
sophisticated as processors go, but the are generaf
purpose logic machines. Any microprocessor can
eventually be made to solve the same problems a
any large scale computer, although this may be a
easier or harder task depending on the micro-§ =
processor. (Naturally, some jobs require doing| =
processing fast, in real time. We are not discussing}_ |
those right now. We are discussing getting a big
job done sometime.) What differentiates the class-} .
es is a hierarchy of technology, size performance,|*
and curiously, philosophy of use.

A processor of given capability has a fixed
general complexity in terms of digital logic ele-
ments. Consider the computers that were built
using the first solid state technology. In short they
consisted of many thousands of individual transis- |
tors and other parts on hundreds of different print-
ed circuit boards using thousands of connection
and miles of connecting wire. A big computer was
a big project and a very big expense. This simple
economic fact fossilized a whole generation of
technology into the “big computer philosophy.”

Because the big computer was so expensive
time on the computer was regarded as a limited
and therefore valuable resource. Certainly the time photo 1: Systems architects Ritter (right) and Boney review some of the
was valuable to researchers who could now look 6809 design documents. This work results in a complete description of the
more deeply into their equations than ever before.desired part in a 200 page design specification. The specification is then
Computer time was valuable to business peopleused by logic designers to develop flowcharts of internal operations on a
who became at least marginally capable of analyz-cycle by cycle basis.

i
i T8
Il
=
e

" e

b
i
—
FI U —

| :'i.?:':-:_'—-'—_"-..':'_'-' = .
i __+--—-—* -.'.-"'".‘:ltl'-f - o 2

! | | | |I|| |: ==

Photo 2: 6809 logic design. Design engineeayWé Harington inspects a pdion of the 680% processor logic blueprint at the
Motorola Austin plant. The print is coled by systems engineers totam the logic for the logic-equivalent TThr eadboad.”

People were in the position of waiting for equipment and expertise. But most people, includ
the computernot because they were less impor ing scientists and engineers, still used only the
tant than the machine, but precisely because it wagery lage central machines. Rarely were mini
a limited resource (the problems it solved werecomputers placed in schools; few computer sci
not). ence or electrical engineering departments (who

Electronics know-how continued to develop, might have been at the leading edge of new gener
producing second generation solid state technolaation technology) used them for general instruc
gy: families of digital logic integrated circuits tion.
replaces discrete transistors desighhis new And so the semiconductor technologists
technology was exploited in two main thrusts: bigbegan a third generation technology: the ability to
computers could be made conceptually bigger (obuild a complete computer on a single chip of sil
faster or better) for the same expense, or computicon. The question then became, “How do we use
ers could be made physically smaller and lesshis new technology (to make money)?”
expensive.These newsmaller computers (mii The semiconductor produc¢emproblem with
computers) filled market segments which couldthird generation technology wa that an unbeliev
afford a sizable but not huge investment in bothably lage development expense was (and is)
required to produce just onedarscale integration
(LSI) chip.The best road to profit was unclear; for

About the Authors

Joel Boney and éfry Ritter ae with the Motosla 6800
Microprocessor Design @up inAustin TX. Joel isasponsible for thg
softwae inputs into the design of the 6800 familggassors and periph
eral paits and was a co-ahitect of the M6809.€fry Ritter is a mioo-
component ahitect, esponsible for the specification of the 68D9
advanced miaprocessar While with Motoola, Terry has been co
Architect of the 6809, and coglitect as well of the 6847 and 68047
video display generator integrated @iits. He holds a BSESofn the
University of €xas asAustin and Joel Boney has a BSnir the
University of South Florida.

a while, customer interconnection of gate array
integrated circuits was tried, then dropped.
Complete custom designs were (and are) found to
be profitable only in vary Ige volumes.

Another road to profit was to produce a few
programmable lare scale integration devices
which could satisfy the market needs (in terms of
large quantities of diérent systems) and the fac
tory;s needs (in terms of volume production of
exactly the dame device). Naturalthe general-
purpose computer was seen as a possible answer

So what was the market for a general-pur phases of the design.
pose computerPhe first thought was to enter the Logic design consists of the production of a
old second generation markets; ie: replacement afycle by cycle flowchart and the derivation of the
the complex logic of small or medium scale inte equations and logic circuitry necessary to imple
gration. Control systems, instruments and speciainent the specified desigthis is a job of
designs could all use a simular procesbat this immense complexity and detail, but it is absolute
designer was the keyesigners (or design man ly crucial to the entire projecThroughout this
agers)had to be converted from their heavy firsphase, the specification may be iterated toward a
and second generation logic design backgroundecal optimum of maximum features at minimum
to the new third generation technology so logic (and thus costlhe architectural design cen
doing, some early marketing strategists evertinues, and techniques are developed to cross-
looked the principal microprocessor markets. check on the logical correctness of the architec

Random logic replacement was by no meansure.
a quick and stiicient market for microprocessors. The third phase is the most hectic in terms of
In particular the design cycle was quite long, demands and involvement. By this time, many The other major device
users we often unsophisticated in their use of-compeople know what the product is and see thegﬁfecziggrv%fgzigg’gy
puters, and the unit volumes was somewhat smalfesulting part merely as the turning of an imple generator color TV
Only when microprocessors entered high volumanentation “crank.” It seems to those who are notinterface-is presently in
markets (hobhygames, etc) did the manufacturesinvolved in this phase that moref@t could case volume production.

. . . . Several versions are
begin to make money and thus provide a credibléhat crank to turn fasteBince the product could be ;ajiaple, many derived
reason (and funds) for designing future micro sold immediatelydelay is seen as a real loss of from the original
processors. Naturallyhe users who wanted more income. In actual practice, mordat will some Motorola architecture
features were surprised that it was taking so longimes “break the crank.”
to get new designs - they knew what was needed. A medium scale integration logic implemen

Thus semiconductor makers began to realizeéation (usually transistetransistor logic, for
that their market was more oriented to hobbyspeed) is required to verify the logic design.
applications that to logic replacement, and wagrocessor emulation may require tenfefiént
more generalized than they had thought. But evebhoards of 80 medium scale integrated circuits each
the hobby market was saturable. and hundreds of board to board interconnections.

Meanwhile companies continued to improve Each board will likely require separate testing, and
production and reduce costs, and competitioronly then will the emulation represent the preces
drove process down into the grouldhere could sor to come. Extensive test programs are required
they sell enough computers for real volume-proto check out each facet of the part, each instruc
duction, the wondered. One answer was the petion, and each addressing modlis testing may
sonal computer!

Design of Lage Scale Integration Parts

The design of a complex & scale integra
tion (LSI) part may be conveniently broken into
thee phases: the architectural design, the logic ang
the layout software and hardware (breadboard)
simulations. Each phase ha its own requirements.

The architect/systems designers represent thq
use of the device, the need of the marketplace ang
the future needs of all customeildey propose
what a specific customer should have that could
also be used by other customers, possible in dif
ferent ways.They advocate what the customers
will really want, even when if no customers can be
identified who know that they will want it. that it
is possible or that they will want iThe attitude
that “I know what is best for you” and be irritating

to mpst people,]E)Utl.'t '.St ndecessary m_or?r?r o makePhoto 3: 6809 emulator bodr Softwae and systems engineers implement
maximum use of a limited resource (in this case, a4 functional equivalent of the 6809 as a 6808gpam.A 6800 to 6809 arss

single LS| de_sign)The g_rchi_tect eventyally gerer assembler allows 6809 ggrams to be assembled and then executed as a
ates the design specification used in subsequen hack of the ahitectural design.

detect logic design errors that will have to be fixedbase that represents the chip design is sent to the
at all levels of design. mask shop (the mask is a photographic stencil of
Circuit design, in the context of the semieon the part used in the manufacturing processjhe
ductor industry depends upon running computer mask shop precision plotting and photographic
simulation (which require sophisticated devicestep and repeat techniques are used to produce
models) of signals at various nodes to verify thaglass plates for each mask layeach mask covers
they will meet the necessary speed requiremengn entire wafer with etched nickel or chrome-lay
Transistors are sized and polysilicon lines changeduts at real chip size. (pical LSI device will be
to provide reliable worst case operation. between 5 by 5 and 7.6 by 7.4 mm (0.2 by 0.2 and
Layout is the actual task of arranging transis 0.3 by 0.3 inches)These masks are used to expose
tors and interconnections to implement the logicphotosensitive etch resist the will protect some
diagram. Circuit design results will indicate appro areas of the wafer from the chemical processes
priate transistor sizes and polysilicon widths; thesavhich selectively add the impurities that create
must now be arranged for minimum area. Evenyransistors.
attempt is made to make general logic “cells” Actual processing steps are quite simular for
which can be used in many places across the inteach part. But the processing itself is a variable,
grated circuit, but minimization is the principal and it will not be known until final testing exactly
concern. how many parts will turn out to be saleable.
The layout for the chip eventually exists only Therefore, a best estimate is taken, and the
as a computer data base. Each cell is individuallyequired numbers of wafers (of a particular device)
digitized into the computerhere is can be arbi is started and processedhe whole industry
trarily positioned, modified or replicated as revolves around highly trained production engi
desired. Lage 2 by 3 m (6.5 by 10 feet) plots of neers, chemists and others who process wafers to
various areas of the chip are highly secret recipes. Some recipes work, some
Photo 4: Cicuit design. Detailed computer hand checked to the logic don't. You find out which ones do by testing.
simulations of the cbuit under design yield diagram by layout and eir Each die (ie: individual lge scale integra
predictions of on chip waveformsulley cuit designers as final tion circuit) is tested while still on the wafer; fail
Peters and Byant Wider decide to checks of the implemented ing devices are marked with a blob of inkie
enhance a pdicular critical transistor circuit. wafer is sawed into individual dies and the good
When layout is com devices placed into a plastic or ceramic package
plete, the computer data baseThe connection pads are “die bonded” to the

exposed internal lead frame with very tiny wire.vendors. Simply having dérent input and output

The package is then sealed and tested again. (1O) or using a dierent memory location is usual
Testing a device having only 40 pins butly enough to make the read only product useless.

which has up to 40,000 internal transistors is no Q: What is needed?

mean trick nor a minor expense. Furthermore, the A: 1. Position independent code.

device must execute all operations properly at the 2. Temporary variables on the stack.
worst case system conditions (which may be high 3. Indirect operations through the stack
or low extremes of temperature, voltage and{oadfor input and output.

ing) and work with other devices on a common 4. Absolute indirect operation for system

bus. Thus, the device is not specified to its ownbranch tables.
maximum operating speed, but rather the speed of
a worst case system. Motorola microprocessors And so it went. How could we make a device
can usually be made to run much faster (and mucthat would answer the software problems of two
slower) than their guaranteed worst case speeificagenerations of processors? How indeed!
tions.
Design Decisions
Project Goals
Usually an engineering project may be -pur

The 6809 project started life with a numbersued in many ways, but only one way at a time.
of (mostly unformalized) goal3he principle pub The ever present hope is that this one time will be
lic goal was to upgrade the 6800 processor to bthe only time necessarffurthermore, it would be
definitely superior to the 8 bit competition. (The nice to get the project over with as soon as possi
Motorola 68000 project will address the 16 bitble to get on with selling some products.répid
market with what we believe will be another supe return on investment is especially important in a
rior processoy Many people, including many cus time of rapid inflation.)To these honorable ends
tomers, felt that all that had to be done was to addertain decisions are made which delineate the
another index register (Y), a few supportinginvestment and risk undertaken in an attempt to
instructions (LDY STY) and correct some of the achieve a new product.
past omissions (PSHX, PULX, PSHU,m PJL The 6809 project was no exceptidio. mir+
Since this would mean a rather complete redesigimize project risk it was decided that the 6809
anyway it made little sense to stop there.

A more philosophical goal — thus one much
less useful in discussions with engineers and-man
agers (who had their own opinions of what the
project should be) — was to minimize software
cost. This led to an extensive, and thus hard to
explain sequence of logic that went somewhat like
this:

Q: How do we reduce software costs?

A: 1. Write code is a block structured high
level language.

2. Distribute the code in mass production
read only memories.

Q: Why arent many read only memories
being used now?

A: 1. The great opportunities for error in
assemble language allow many mistakes which
incur sever read only memory costs.

2. The present architecture is not suitable
for read only memories.

Q: In what way are the second generation
processors unsuitable?

A ltis very dificult to use aread only mem ppotg 5: Checking the flowchar Logic and cicuit designer Byant Wider
ory in any other context than that for which it was ¢ompaes the specification to one of the flowdsaihe flowchas are used
originally developed. It is hard to use the same o develop Boolean equations for treguired logic; those equations er
read only memory on systems built byfeient then used to generate a logic diagram.

Instruction Class Percent Usage

Loads 23.4
Stores 15.3
Subroutine calls and returns 13.0
Conditional branches 11.0
Unconditional branches and jumps 6.5
Compares and tests 6.2
Increments and decrements 6.1
Clear 4.4
Adds and subtracts 2.8
All others 11.3

Table 1: 6800 instuction types based on static analysis
25,000 lines of 6800 sate code. In static analysis th
actual number of occuences of each ingtction is ta
lied from pogram listings. In the alternate techniqu
called dynamic analysis, the numbers of ocences of
an instuction is tallied while the gram is unning.An
instruction inside a psgram loop would thefore be
counted ma than once

of

o

would be built on the same technological base as
the recently completed 6800 depletion loa
redesign. In particularthe machine would be a
random logic computer with essentially dynamic

6800. 6800 programmers could be programming
for the 6809 almost immediately and could learn
and use new addressing mode and features as they
were neededlhis decision also ended any consid
eration of radically new architecture for the
machine before it was begun.

A corporation selling into a given market is
necessarily limited to moderate innovatidmy
vast product change requires reeducation of both
the internal marketing ganization and the cus
tomer base before mass sales can proceed.
Consequentlydesigners have to restrict theircre
ativity to conform to the market desireShe
amount of change actually implemented, produced
and seen by society is the true meaning of a-com
puter “generation.” In the end, society itself
defines the limits of a new generation, and a
design years ahead of its time may well fail in the
marketplace.

M6800 DataAnalysis

Once the initial philosophical and marketing

dtrade-ofs were made, construction of the final

form of the M6809 began. By this time adar
numbers of M6800 programs had been written by

internal operation. It would use the reliable 6800°°th Motorola and our customers, so it was felt
type of storage registefFunctions would be com | | £ existi
patible with the defined 6800 bus and 6800 periph@"alyz€ lage amounts of existing 6800 source

erals.This decision would extend the like of parts
already in production and minimize testing
peripheral devices for a particular processor (680

versus 6809). Buss compatibility dodshave

mean identity — the new device could have-con
siderably improved specifications but could not do
worse than the specifications for the existing
device.This mandate was a little tricky when you
consider that we were dealing with a more eom

to

plex device using exactly the same technalbgy

there was a slight edge: the advancing vergelar

scale integration (VLSI) learning curve.

One wide range decision wa that the ne

device would be an improved 6800 pafhe

widely known 6800 architecture would be iterated

that a good place to start design of the 6809 was to

code. Surprisinglythe data gathered about 6800
usage of instructions and addressing modes agreed

éubstantially with simular data previously com

piled for minicomputers and maxicomputers. By
far the most common instructions were load and
stores, which accounted for over 38 percent of all
6800 instructions. Next were the subroutine calls
(Direct, Extended, Immediate, Indexed, Relative,
Accumulator) had nearly equal usage, which-indi
cated that programmers actually took advantage of
the bytes to be saved by direct (page zero) address
ing and indexed addressing. Furthermore tlie of

Wsets for indexed instructions were either O or less

than 32 (see table 2).
This information was used to greatly expand

and improved, but no radical departure would béhe addressing modes (as discussed later) with out

considered. In fact, the new devise should be cod

compatible with the 6800 at some level.

@aking the 6800 programs require more code
when converted to run on the 688%0 the num

Compatibility was the basis for the 6809 ber of increment or decrement index register

architecture design. It implied that the 6809 Couldnstructions in loops indicated that autoincrement

capitalize on the existing familiarity with the

Table 2: Size of offsets used in Index Offset

Percent Usage

6800 indexed addssing, based 0 40.0
on static analysis of 25,000 lines 1-31 53.0
of 6800 souze code. 32-63 1.0

64-255 6.0

ing and autodecrementing would be beneficial.

Auto decrementing and autoincrementing are

simular to indexing except the index register

used is decremented before, or decremented
after, the addressing operation takes place.

As all programmers and even architects

like ourselves eventually learn, consistent and
uniform instruction sets are used moreetive-

ly than ipstruction sets that t_regt s_imilar resource [X INDEX REGISTER)
(10, registers or data) in dissimilar ways. For
example, the least used instructions on the 680C
were those that dealt with the accumulator in
specific ways that did not apply to the B accumu
lator (eg:ABA: add B toA, CBA: compare B to | _UUSER STACK POINTER |
A). It's not that these instructions are not useful,

it's just that programmers will not use inconsistent | SHARDWARE STACK POINTER | |
instructions or addressing modes. Consistency

[Y INDEX REGISTER |

POINTER REGISTERS

became the battle cry of the M6809 designers! [Pc | PROGRAM COUNTER
Customer Inputs | A B | AccumuLATORs
At the completion of the 6800 analysis stage, °
the first preliminary design specification for the DIRECT PAGE REGISTER
6809 was generatedhis preliminary specifica
tion was then taken to about 30 customers who E|F]H|IIN|Z|VIC| CC-CONDITION CODE REGISTER
represented a cross section of current 6800 users L g@ggzlgevmow
as well as some customers and consultants knowtr ZERO

to be hostile to the 680With these customers vis NEGATIVE
INTERRUPT REQUEST MASK

its we hoped to resolve two major questions about L HALFCARRY

the 6809 architecture: L FASTINTERRUPT REQUEST MASK
L ENTIRE STATE ON STACK

1) Which architecture was more desirable 8 Figure 1: 6809 pogramming model.
bit or 16 bit?

2) Did 6809 compatibility with the 6800
need to occur at the object level or at the sourc
level.

g)w occurrence 6800 instruction were combined
into consistent 2 byte instructions, allowing the
more useful instruction to take fewer bytes and
Most customers felt that an 8 bit architecture€Xecute fasteAlso, some 6800 instructions were

was adequate for their upcoming applications, an&:liminated completely in favor of 2 instruction
they did not want to pay the price penalty for 16squencesThese sequences are generated-auto
bit as long as the 6809 included the most commofhatically by our assembler when the 6800
16 bit operations such as add, subtract, load, stor8IN€mMonic 1s recognlzed'hls remappln.g in favor
compare and multiply Many were interested of more often used functions results in 6809-pro

though, in Motorola advanced 16 bit processor grams that require only one half to two thirds as
(68000) for future 16 bit applications. From the MUCh memory as 6800 programs, and run faster
very inception of the6809 project it was a require
ment that the 6809 would be compatible with the
6800.Wether this compatibility needed to occur at)
the object level or at the assembly language What, then, are the per_tlnent features that
(source code) level was a question we felt our cugnake .the 6809 a next gengratlon process,.or?. In the
tomers should help us answeirtually every cus foIIO_N|ng paragraphs we will attempt to highlight
tomer indicated that source compatibility was suf € improvements made to the 680he pro
ficient because they would not try to use 6800 read'@mming model for the 6809 (figure 1) consists
only memories in 6809 systems. Most customerf four 8 bit registers and five 16 bit registers.
indicated that they would take advantage of the. ~ 1heA and B accumulators are the same as
6800 compatibility in order to initially convert th0Se Of the 6800 except that they can also be cate
running 6800 programs into running 6809 -pro nated into theA:B pair, called the D registefor

grams, and then modify the 6800 code to take 0 DIt operatiop's. :
advantage of the 68G9features. The condition codes are simular to the 6800,

The decision not to be object code compati with the inclusion of two new bit3he F bit is the

ble was an easy one for us since it meant that wgterrupt mask bit for the new fast interruphe
could remap the 6800 op codes in a manner—guaFaSt interrupt (FIRQ) only stacks the program
anteed to produce more byteigient and faster counter and condition code register when an-inter
6809 programsThe remapping of op codes was rupt occursThe interrupt routine is then responsi
greatly afected by the 6800 data analysis. SomeP!€ for stacking any registers it us@tie E bit is

M6809 Registers

Nonindirect Indirect
+ | + + | +
Type Forms Source Post Byte ~ | # | Source Post Byte ~ | #
Constant no offset R 1RR00100 0O [LR] 1RR10100 3]0
offset from R 5 bit offset n,R ORRnnnnn 110 defaults to 8-bit
8 bit offset n,R 1RR01000 111 [n,R] 1RR11000 | 4 | 1
16 bit offset n,R 1RR0O1001 | 4 | 2 [n,R] 1RR11001 712
Accumulator A register offset AR 1RR00110 110 [AR] 1RR10110 | 4 | O
offset from R B register offset B,R 1RR00101 110 [B,R] 1RR10101 4 10
D register offset D,R 1RR0O1011 | 4 | O [D,R] 1RR11011 710
Autoincrement/ | increment by 1 R+ 1R000000 21|10 not allowed
—decrement R increment by 2 ,R++ 1RR00001 3|0 [[R++] 1RR10001 6 | 0
decrement by 1 -R 1RR00010 210 not allowed
decrement by 2 R 1RR00011 310 [,--R] 1RR10011 6 |0
Constant offset 8 bit offset n,PCR 1XX01100 111 [n,PCR]| 1XX11100 4 |1
from program 16 bit offset n,PCR 1XX01101 5|2 [n,PCR]| 1XX11101 8 | 2
counter
Extended use nonindexed [n] 10011111 512
Table 3: Indexed adéssing modegll instructions with indexed adessing The last 16 bit register is the program ceunt

have a base size and number of cycles. Thad %, columns indicate the er. In certain 6809 addressing modes, the program
number of additional cycles and bytes for thetigatar variation. The post ~ counter can also be used as an index register to
byte op code is the byte that immediately follows the normal op code. achieve position independent code.

Addressing Modes

set when the registers are stacked during interrupts
if the entire register set was saved (as in nonmask It was out opinion that the best way to
able and maskable interrupts) or cleared if thdmprove an existing architecture and maintain
short register set was saved (for a fast interrupt). source compatibility was to add powerful address
On the 6800, an instruction with direct modeing modes. In out viewthe 6809 has the most
(or page zero) addressing consisted of an op cod®@werful addressing modes available on any
followed by an 8 bit value that defined the lowermicroprocessor Powerful addressing modes
eight bits of an addreshe upper eight bits were helped us achieve out goals of position independ
always assumed to be zefidhus, direct address €nce, reentrangyecursion, consistency and easy
ing could only address locations in the lowest 256mplementation of block structured high leveldan
bytes of memoryThe 6809 adds versatility to this guages.
addressing mode by defining an 8 bit direct page All the 6800 addressing modes (immediate,
register that defines the upper eight bits of addressxtended, Direct, IndexeAccumulator Relative,
for all direct addressing instructioriBhis allows and inherent) are supported on the 6809 with the
direct mode addressing to be used throughout th@direct mode of addressing made more useful by
entire address space of the machifemaintain the inclusion of the direct page register (DPR).
6800 compatibility the direct page register is set The direct page register usage and direct
to 0 on reset. addressing need some explanation, since they can
Four 16 bit indexable register are included inbe very efective when used correctlffor exam
the 6809They are the XY, U and S register§he Ple, since global variables are referenced freguent
X register is the familiar 6800 index registand Iy in high level language execution, the direct page
the S register is the hardware stack poifiteeY register can be used to point to a page containing
register is a second index register; the U register i€ global variables while the stack contains the
the user stack pointefll four registers can be local variables, which are also referenced- fre
used in all indexing operations and the U and Siuently This creates very g€ient code which is
resisters are also stack pointéfae S register is safe since the compiler keeps track of the direct
used during interrupts and subroutine calls by théage registefThe direct page register can also be

hardware to stack return addresses and machirsed efectively and safely in a multitasking envi
states. ronment where the real time operating system

00001 NAM AUTOEX

00003 OPT LLEN=80

00004 *

00005

00006 * COMPARE STRINGS SUB

00007 *

00008 * FIND AN INPUT ASCII STRING POINTED TO BY THE
00009 * X-REGISTER IN A TEXT BUFFER POINTED TO BY THE
00010 * Y-REGISTER. THE BUFFER IS TERMINATED BY A
00011 * BYTE CONTAINING A NEGATIVE VALUE. ON ENTRY
00012 * A CONTAINS THE LENGTH OF THE INPUT STRING. ON
00013 * EXITY CONTAINS THE POINTER TO THE START
00014 * OF THE MATCHED STRING + 1 IFF Z IS SET. IFF Z
00015 * IS NOT SER THE INPUT STRING WAS NOT FOUND
00016 *

00017 * ENTRY:

00018 * X POINTS TO INPUT STRING

00019 * Y POINTS TO TEXT BUFFER

00020 * A LENGTH OF INPUT STRING

00021 * EXIT:

00022 * IFF Z=1 THEN Y POINTS TO MATCHED STRING + 1
00023 * IFF Z = 0 THE NO MATCH

00024 * X IS DESTROYED

00025 * B IS DESTROYED

00026 *

00027

00028 *

00029 0100 6 ORG $100

00030 0100 E6 AO 6 CMPSTR LDB Y+ GET BUFFER CHARACTER

00031 0102 2A 01 3 BPL CMP1 BRANCH IS NOT AT BUFFER END
00032 0104 39 5 RTS NO MATCH, Z=0

00033 0105 E184 4 CMP1 CMPB X COMPARE TO FIRST STRING CHAR.
00034 0107 26 F7 3 BNE CMPSTR BRANCH ON NO COMPARE
00035 *SAVE STATE SO SEARCH CAN BE RESUMED IF IT FAILS

00036 0109 34 32 9 PSHS AXY

00037 010B 30 01 5 LEAX 1,X POINT X TO NEXT CHAR

00038 010D 4A 2 CMP2 DECA ALL CHARS COMPARE?

00039 010E 27 0C 3 BEQ CMPOUT IF SO, IT'S A MATCH, Z=1

00040 0110 E6 AO 6 LDB Y+ GET NEXT BUFFER CHAR

00041 0112 2B 08 3 BMI CMPOUT BRANCH IS BUFFER END, Z=0
00042 0114 E1 80 6 CMPB X+ DOES IT MATCH STRING CHAR?
00043 0116 27 F5 3 BEQ CMP2 BRANCH IF SO

00044 0118 35 32 9 PULS AXY SEARCH FAILED, RESTART SEARCH
00045 011A 20 E4 3 BRA CMPSTR

00046 011C 35 B2 11 CMPOUT PULS AX)Y,PC FIX STACK, RETURN WITH Z
00047 *

00048 0000 END

Listing 1: 6809 autoin@menting example. This sobtine seaches a text buffer for the oceance of an input string. In autoirenent

mode, the value pointed to by the indegister is used as the effective aaidr and the indexegister is then ine@mented.

allocates a diérent base page register for eachachieving maximum byte fdiency. The inclusion

task. of the 16 bit ofset allows the role of index regis

On the other hand, it would be quite danger ter and ofset to be reversed if desiredl.further
ous to indiscriminately reallocate the direct pageesnhancement allows all of the above modes to
register frequentlysuch as within subroutines or include an additional level of indirection. Even
loops, since it might become very easy to loseextended addressing can be indirected (as a special
track of the current direct page register valueindexed addressing mode). Since either stack
Therefore, even though the direct page register ipointer can be specified as a base address in
unstructured, we included it because, when usethdexed addressing, the indirect mode allows
correctly the byte savings are significaAtso, to addresses of data to be passed to a subrottiee.
make direct addressing more useful, the read-modubroutine can then reference the data pointed to
ify write instruction on the 6809 now have all with one instructionThis increases thefafiency
memory addressing modes: Direct, Extended andf high level language calls that pasguaments by
Indexed. reference.

The major improvements in the 6889’ M6800 data indicated that quite often the
addressing mode were made by greatly expandinimdex register was being used in a loop and incre
the indexed addressing modes as well as makingnented or decremented each tiffieis moved the
all indexable instructions applicable to the¥XU pointer though tables or was used to move data
and S registers (see table 3). from one area of memory to another (block

Indexed addressing with anfgédt is familiar moves). Therefore, we implemented autoincre
to 6800 users, but the 6809 allows thisetfto be ment and autodecrement indexed addressing in the
any of four possible lengths: 0, 5, 8 or 16 bits, andvM6809. In autoincrement mode the value pointed
the ofsets are signed tw®’'complements values. to by the index register is used as thieaive
This allows greater flexibility in addressing while address, and then the index register is increment

00010
00011
00012
00013
00014
00015
00016

Listing 2: Array subscript calculations. This 6809ogram fetches a 16 bit valueofn a two-
dimensional aray called CA, with dimensions: CRA(100,30).

0100
0100
0104
0106
0108
0109
010B

108E 1000
96 32
C6 64
3D

D3 33
EC AB

1

ed.Autodecrement is similar except that the indexused as an ffet to any indexable registefor
register is first decremented and then used texample, consider fetching a 16 bit value from a
obtain the dkctive address. Listing 1 is an exam two dimensional array called TAwith dimen

ple of a subroutine that searches a textfdodbr sions: CA (100,30). Listing 2 shows the 6809
the occurrence of an input string. It makes heavgode to accomplish this fetcfthese addressing
use of autoincrementing. modes can also be indirected.

Since the 6809 supports 8 and 16 bit opera Implementation of position independent
tions, the size of the increment or decrement casode was one the highest priority design goals.
be selected by the programmer to be 1 ofti2 The 6800 had limited position independent code
post increment, predecrement nature of theapabilities for small programs, but we felt the
addressing mode makes it equivalent in operatio8809 must make this type of code so easy to write
to a push and pull from a stadkhis allows the X that most programmers would make all their-pro
andY registers to also be used as software stacgrams position independeifo do this a addition
pointers if the programmer needs more than twal long relative (16 bit déet) branch mode was
stacks.All indexed addressing modes can alsoadded to all 6800 branches as well as adding pro
contain an extra level of post indirection. gram relative addressing. Program relative
Autoincrement and autodecrement are more versaddressing uses the program counter much as
tile than the block moves and string commandsndexing uses on of the indexable regist@itsis
available on other processors. allows all instructions that reference memory to

Quite often the programmer needs to calcureference data relative to the current program
late the dfset used by an indexed instruction-dur counter (which is inherently position independ
ing program execution, so we included an indexent). Of course, program relative addressing can
mode that allows th&, B, or D accumulator to be be indirected.

The addressing modes of the 6809 have cre

ORG $100 “
4 LDY #CAT LOAD BASE ADDRESS OF ARRAY ated a processor that has been termed a “pregram
4 LDA SUBLl GET FIRST SUBSCRIPT i
> LDB #100 MULTIPLY BY FIRST DIMENSION mer's dream.machlneTo date all the beqqhmgrks
1 MUL we have written for the 6809 are position inde
6

ADDD SUB2 ADD SECOND SUBSCRIPT

9 LDD DY . FETCHVALUE pendent, modulareentrant and much smaller than

comparable programs on other microprocessors. It
is easier to write good programs on the 6809 than
bad ones!

New or Innovative Instructions

The 6809 does not contain dozens of new
innovative instructions, and we planned it that
way. What we wanted to do was clean up the 6800
instruction set and make it more consistent and
versatile We do not feel a processor with 500-dif
ferent assembler mnemonics for instructions is
better than on with 59 powerful instructions that
operate on dférent data in the manndor exam
ple, the 6809 contains a transfer instruction of the
form TFR R1, R2 that allows transfer of any like-
sized registersThere are 42 such valid combina
tions on the 6809, and clearly ofER instruction
is easier to remember than 42 mnemonics o the
form: TAB, TBA, TAP, TXY, etc. Also an
exchange instruction (EXG) exists that has identi
cal syntax to th@FR instruction and has 21 valid
forms. In the time it took to read three sentences
you just learned 63 new 6809 instructiorss
another example, we combined the instructions
that set and cleared condition code bits on the
6800 into two 6809 instructions th&aND or OR
immediate data into the condition code register

Other significant new instructions include

the new 16 bit operationhe D register can be
loaded, stored, added to subtracted from, -com 6809 STACKING ORDER
pared, transferred, exchanged, pushed and pulled FFFF
All the indexable registers (16 bits) and be loaded,

stored and comparedhe load dective address 2
instruction can also be used to perform 8 or 16 bit

¢
b)
C

arithmetic on the indexable registers as describec PC, PUSH ORDER
later. 10,3 PC,

Two significant new instructions are the mul uss, l
tiple push and multiple instructions on the 6809. 85 Us,

With one 2 byte instruction any register or set of
registers can be pushed or pulled from wither

stack. These instructions greatly decrease the 0s i
overhead associated with subroutine calls in both s
assembly and high level language programs. In 45 X
conjunction with instructions using autoincrement 38 DPR
and autodecrement, the 6809 cdiiciently emu 25 B
late a stack computer architecture, which means it 1S A
zﬂgutlsee"kee‘f.uent for Pascal p-code interpreters OR US) 0s cen g

The orders in which the registers are pushed L l
or pulled from the stacked is given in figure 2.
Note that not all registers need to be pushed or 0000
pulled, but that the order is retained if a subset is

b))
¢
b))
T

Figure 2: 6809

pushedThis stacking order is also identical to theread only memory into indexable register U: PL:Sh’pLi” : If_”d
order used by all hardware and software interruptd-EAU DG, PCR; or to find out where a position g}deer;up stacking

One new instruction in the 6809 is a sleeperindependent read only memory is located: YEA
The load dkctive address to indexable register®, PCR (orTFR PC)Y). Our benchmarks show the
(LEA) instruction calculates thefettive address LEA instruction to be the most used new 6809
from the indexed addressing mode and deposité§struction by far
that address in an indexable registather than An unsigned 8 bit by 8 bit to 16 bit multiply
loading the data pointed to by théeetive address Was provided for the 6809he A accumulator
as in a normal loadrhis instruction was original ~ contains one gument and the B the othdihe
ly created because we wanted a way to let théesult is put back onto theB (D) accumulatarA
addressing mode hardware already present in tHaultiply was added because multiplied are used
processor calculate the address of a data object §& calculating array subscripts, interpolating-val
that it could be passed to a subroutiAiter the Ues and shifting, as well as for more conventional
index addressing modes were completed it wagrithmetic calculationsAn unsigned multiply was
realized the LEAnstruction had many more uses, selected because it can be used to form multipreci
and once again, allowed us to combine othepion multiplies.
instructions into one powerful instruction. For Another facet of good programming practice
example to add the D accumulator to thindex that we wanted to encourage was the use of-oper
register the instruction is: LEX D, Y; to add 500 ating system calls or software interrupts (SWI).
to the U register: LEAU 500, U; and to add 5 to theThe 6800 SWI has beenfettively used by 6800
value is the S register and transfer the sum to th8upport software for breakpoints and disk operat
U register: LEAU 5, S. ing system callsThat's nice, but unfortunately

In writing position independent read only there was only one software interrupt, and since
memory programs it is sometimes necessary tdlotorola’s software used that one the customer
reference data in a table within the same read onffpund it difficult to shareThe 6809 provides three
memory This is generally a tedious process eversoftware interrupts, one of which Motorola prom
in computers that claim to support position inde ises never to use. It is available for user systems.
pendent code because the register that points to the One new instruction on the 6809, SYNC,
table must eventually contain an absolute addresg/lows external hardware to be synchronized to the
The LEAinstruction, in conjunction with program software by using one of their interrupt lines.
counter relative addressing, makes this possibl&/sing this instruction, very tight, fast instruction
with one instruction on the 6809. For example, tosequences can be created when it is necessary to
put the address of a table DG located in a relativ@rocess data from very fast input and output

Figure 3: TheASR
(arithmetic shift
right) instruction
is used as a “test
and clear” and ST
(store) is used for
“unbusy.” These
primitive opera
tions ae used for
implementing crit
ical section exclu
sion on the 6809.

INSTRUCTIONS

00008 0100 ORG $100

00009 0100 B6 F002 5 LDA PIABC LOAD PIA CONTROL REG. - SIDE B
00010 0103 84 F7 2 ANDA #SF7 TURN OFF B-SIDE INTERRUPTS
00011 0105 B7 F002 5 STA PIABC

00012 0108 8E 3000 3 LDX #BUFFER GET POINTER TO BUFFER

00013 010B C6 80 2 LDB #128 GET SIZE OF TRANSFER

00014 010D 1A 50 3 ORCC #$50 DISABLE INTERRUPTS

00015 *WAIT FOR ANY INTERRUPT LINE TO GO LOW

00016 010F 13 2 LOOP SYNC SYNCHRONIZE WITH 1/O

00017 0110 B6 FO00 5 LDA PIAAD LOAD A-SIDE DATA; CLEAR INTERRUPT
00018 0113 A7 80 6 STA X+ STORE IN BUFFER

00019 0115 5A 2 DECB DONE?

00020 0116 26 F7 3 BNE LOOP BRANCH IS NOT

00021 0118 B6 F002 5 LDA PIABC TURN B-SIDE INTERRUPTS BACK ON
00022 011B 8A 08 2 ORA #$08

00023 011D B7 F002 5 STA PIABC

Listing 3: Hadware synchonization using SYNC, a new ingttion in the 6809 tessor that allows external ttware to be synclor

nized to the softwarby using one of the intept lines. ¥ry fast instuction sequences can besated using SYNC when it is necegsar

to process data &m vey fast input and output devices.
devices. Listing 4 gives an example of the use ointo the LOCK and UNLOCK necessary for mutu
SYNC. It is assumed that tieside of the periph
eral interface adapter (PIA) is connected to a higlior allocation of resources.

al exclusion of critical sections of the program, or

speed device that transfers 128 bytes of data to a And lastly never let it be said the 6809 has
memory buffer. When the device is ready to sendno SEX appeal—sign extend, that The SEX
a piece of data, it generates a fast interrupt (FIRQipstruction takes an 8 bit twecomplement value
from theA side of the peripheral interface adapterin the B accumulator and converts it to a 16 bit
Program lines 12 and 13 set up the transfer; linesvo’s complements value in the D accumulator by
16 through 20 are the synchronization loop. Orextending the most significant bit (sign bit) of B
each pass through the loop, the program waits anto A.
the SYNC instruction until any interrupt line is Table 4 is a convenient way to look to look a
pulled low When the interrupt line goes lpthe all the instructions available on the 680Ehe
processor executed the next instruction. In order tootation first page/second page/third page op
use SYNC, all other devices tied to any of thecodes have the following meaning: first page op
interrupt line must be disabled. For this example ittodes have only one byte of op code. For example:
was assumed that the B side of the peripherdbad A immediate has an op code of hexadecimal
interface adapter also had interrupts enabled; pr@8. All second page op code are preceded by a
gram lines 9 thoughlldisable the interrupts and page op code of 10. For example, the op code for
line 21 through 23 reenable it. Line 14 is includedCMPD immediate is hexadecimal 1083 (two
to keep the interrupt by tieside of the peripher bytes). Similarly third page op codes are preceded
al interface adapter from going to the interruptby a hexadecimalllA CMPU immediate is1183.
routine. Note that interrupts do not need to beSome instructions are given two mnemonics as a
enabled for SYNC to work, and in fact are nor programmer convenience. For exam@&L and
mally disabled. LSL are equivalent. Notice that the long branch op
Another improvement to the instruction setcodes LBRAand LBSR were brought onto the
was brought about by the inclusion of the hard first page for increased coddieiency.
ware signal BUSY BUSY is high during
read/modify/write types of instructions to indicate
to shared memory multiprocessors that and-indi
visible operation is in progresss shown in figure As mentioned previouslyhe 6809 has many
3 this fact can be used to turn existing instructiongeatures that support stack usage. Most modern
block structured high level languages make exten
sive use of stacks. Even though stacks are useful in
the typical textbook example of expression evalu
ation, their major usage in languages such as

Stacks

BEFORE AFTER

ASR 0—»[000000 1]—»[c] Pascal is to implement control structures.
NOT BUSY NOTBUSY __ \ren) Mlcroprocessorl users alr_eady realize the advgn
SR . o tage of a stack in nesting interrupts and subroutine
calls. Most high level languages also pass data on
BusY Buor GRANTED) the stack and allocate temporary local variables
Lon from the stack

Listing 4 and figure 4 show an example of a
high level language subroutine linkage. Before
calling the subroutine the caller pushed and

BUSY NOT BUSY

addresses of two guments and the answer on theroutine body presumable does something with the
stack and then executed the jump to subroutinarguments and finishes with an answer in the D
which puts the return program counter on theregister The subroutine exit saved this value. It
stack. The subroutine then saves the old stackhen puts the return address in X and restores the
mark pointer on the stack as well as reservingrevious stack mark pointefFhe whole stack is
space on the stack for the local variables for théhen cleaned up (deleted) and return is made to the
subroutine. In this example, size locations are usedaller.
but the subroutine body during calculatiéw this
point the stack mark pointer is set to a new valuestack pointers on the 6809 point to the last value
for this subroutineThe stack mark pointer is used pushed on the stack rather than the next free loca
because the S register may very during executiotion, as on the 680@his was done so that autein

of the subroutine body due to local subroutinescrement and autodecrement would be equivalent
etc. It is much more convenient for the compiler toto pulls and pushes. For example:ASFS is
generate d$ets to the parameters is the U is usedquivalent to PSHA; and LDA,S+ is equivalent

for this purpose instead of the S.
Once U is set it is used to fetch the twguar
ments using indexed indirect addressifige sub

Motorola 6800 users should note that the

to PULS SThis also means the X andregisters
can be used as stack pointers if the programmer
desires. For example: 8T-X is a push on a stack

Table 4: 6809 op code map and cycle counts. The numbers by each op code indicate the number of maclenaimgtlesaxecute
each instuction. When the number contains an | (eg: 4+1), and additional number of machine cycles equaling | ey (see
table 3). The prsence of two numbers, with the second on iarpiheses, indicate that the ingttion involves a branch. The tger
number applies if the branch is taken. The notation first page/second papp#abe has the following meaning: first page op codes
have only one bye of op code (eg: Idannmediate has an op code of hexadecimal 86)age 2 op codes ampreceded by a page
op code hexadecimal 10 (eg: the op code for CMPD immediate is hexadecimal 1083 — two bytes). Sinilpdgetop codes ar
preceded by a hexadecimdl. A CMPU immediate is183. Some ingtictions ae given two mnemonics as agrammer convenience
(egASLand LSLare equivalent). Notice that the long branch op codes LBRIALBSR wer biought onto the first page to ireased
code efficiency

Most Significant Four Bits
DIR REL ACCA|ACCB| IND | EXT | IMM | DIR | IND | EXT [IMM | DIR | IND | EXT
0000 | 0001 0010 0011 | 0100 | 0101 0110 0111 | 1000 | 1001 | 1010 | 1011 |1100 [1101 |1110 |1111
1 2 3 4 5 6 7 8 9 A B C D E F F
6 PAGE |3 BRA 4+1 2 2 6+ 7 2 4 4+ 5 2 4 4+ 5
0000 NEG |2 LEAX NEG SUBA SUBB
PAGE |3 BRN/ 4+ 2 4 4+ 5 2 4 4+ 5
0001 I E 5LBRN |LEAY CMPA CMPB
2 3 BHI/ 4+ 2 4 4+ 5 2 4 4+ 5
0010 NOP [5(6)LBHI |LEAS SBCA SBCB
6 2 3 BLS/ 4+] 2 2 6+l 7 | 46,6+, /5,7,7+|,g 5,77+.8] 2 4 4+ 5
0011 COM |SYNC|5(6) LBHS | LEAU COM susD / cmPD / CMPU ADDD
6 3BHS 5+1/by 2 2 6+l 7 2 4 4+| 5 2 4 4+ 5
0100 LSR |~ |5(6) BCC [PSHS LSR ANDA ANDB
3 BLO/ 5+1/by 2 4 4+ 5 2 4 4+ 5
a| o101 — |~ |5(6) (BCS)|PULS BITA BITB
«Q 6 5 3BNE/ |[5+1/by 2 2 6+ 7 2 4 4+ 5 2 4 4+ 5
3 | o110 ROR |LBRA [5(6) LBNE | PSHU ROR LDA LDB
L,g 6 9 3BEQ/ |5+1/by 2 2 6+ 7 4 4+ 5 4 4+ 5
§ | 0111 7 |ASR |LBSR|5(6) LBEQ|PULU ASR STA STB
b= 6 ASL 3BVC/ 2 2 6+ 7 2 4 4+ 5 2 4 4+ 5
2 1000 (LsL)y |~ |s6) LBVC| — ASL (LSL) EORA EORB
7 6 2 3BVS/ 5 2 2 6+ 7 2 4 4+ 5 2 4 4+ 5
| 1001 ROL |DAA [5(6) LBVS [RTS ROL ADCA ADCB
- 6 3 3BPL/ 3 2 2 6+ 7 2 4 4+ 5 2 4 4+ 5
1010 DEC |ORCC |5(6) LBPL | ABX DEC ORA ORB
3 BMI/ 6/15 2 4 4+ 5 2 4 4+ 5
1011 — |~ |5(6) LBMI |RTI ADDA ADDB
6 3 3 BGE/ 20 2 2 6+l 7 4,6,6+I,7/5,7,7+I,8 57,7+.8] 3 5 5+l 6
1100 INC |ANDCC |5(6) LBGE [CWAI INC CMPX / CMPY / CMPS LDD
6 2 3 BLT/ 11 2 2 6+ 7 7 7 7+l 8 5 5+ 6
1101 D [TST [SEX [5(6) LBLT |MUL TST BSR JSR STD
3 8 3BGT/ 3+ 4 |355+,6 / 4,66+.7| 355+.6 / 46,6417
1110 E [JMP |EXG [5(6) LBGT IMP LDX LDY LDU LDS
6 7 3 BLE/ 19/20/20| 2 2 6+l 7 55,6 / 6,6+,7 55+,6 / 6,6+,7
1111 CLR |TFR [5(6) LBLE |Swi/2/3 CLR STX STY STU STS

FFFF Restart
FFFC NMI
Table 5: Hexadecimal FFFA Swi -
addresses of the 6809 FFF8 IRQ
restat and interupt vee FFF6 FIRQ AL AL
tors. FFF4 Swiz T T
FFF2 SWi3
FFFO Reserved | APDRESS |
14 OF ARG 1
defined by X.The possible ambiguity between | ADDRESS |
where the stack pointer points on the 6800 and t 12 OF ARG 2
6809 may be less of a problem than it seems, Sin orrseT FROM ADDRESS
of 68005 TSX becomes the 68G9TFR S, X STACKMARK - -
without adding 1 and@XS becomes dFR X, S) 10 OF ANS
without subtracting 1 — think about iThe only RETURN
danger is in programs that used the stack pointer s | . 1 <« s
an index registerin these programs the stack
pointer may point on location away from where i | OLbSTack
did previously 6 MARK (U")
Interrupts >l -
4
The 6809 has three fully vectored hardwar s | LocAL |
interrupts.The nonmaskable interrupt (NMI) and i .
maskable interrupt (IRQ) are the same as tt 2 | VARIBLES
68005 NMI and IRQ.The new interrupt is the fast 1
maskable interrupt, or FIRQ, that stacks the- pr o | | e——u
gram counter and condition code register only ¢
interrupt. Table 5 gives the addresses of the inte L A
rupt vectors for the 6809. T T
A new signal (IACK) has been added that i -+——S

available anytime an interrupt vector is fetchec

This signal together with address bus linkd
'S Sig 9 w us i Part 2, entitled “instruction Set Dead-Ends,

throughA3 can be used to implement in interrupt0|d_|_ i dApologies.” will b) d
scheme in which each device supplies its own rails andApologies,” will be a question an

interrupt vectar answer di_scussion about the design philosophy
The interrupt control and prioritization logic that went into the 6808.

of the 6809 have been defined very carefully — not

redundant or indeterminate conditions can exist

when several interrupts occur simultaneouBhe

details of the interrupt structure are precisely

defined in Motorola documentation for the 6809.

00006 0500 34 40 6 SUBR PSHS U SAVE OLD STACK MARKER
00007 0502 32 66 5 LEAS 6,S RESERVE LOCAL STORAGE
00008 0504 1F 43 6 TFR S,U GET NEW STACK MARKER
00009 0506 EC D8 OE 10 LDD [14,U] GET ARGUMENT 1

00010 0509 AE DE 0OC 10 LDX [12,U] GET ARGUMENT 2

00011 *

00012 * SUBROUTINE BODY

00013 *

00014 050C ED D3 0A 10 STD [10,U] SAVE ANSWER

00015 O50F AE 48 6 LDX 8,U GET RETURN ADDRESS
00016 0511 EE 46 6 LDU 6,U RESTORE U’

00017 0513 32 E8 106 LEAS 16,S POP EVERYTHING OFF STACK
00018 0516 6E 84 3 JMP X RETURN

Listing 4: Use of stacks on the 680®gessarln this typical high level language sohitine example, Wind S'are the mark stack point

er and the hatware stack pointerespectivelyjust prior to the call. U and S arthe sameegisters during execution of the sabtine

body Befoe calling the sulwutine the caller pushes the adds of two gyuments and the answer on the stack and then executes the jump
to suboutine which puts thesturn pogram counter on the stack. The sufiine then saves the old stack mark pointer on the stack as
well as esewing space on the stack for the local variables for theautbre (see figuw 4).

Copyright 1978 by
Terry Ritter and Joel
Boney

Photo 1: Layout.
Layout designer any
Riccio adds a line in a
large layout cell.
Their various coloed
lines represent differ
ent types of conduc
tors (metal, polysik
con, N_, etc) which
will be formed on the
integrated cicuit.
(The yellow dotsep
resent poblems to be
corrected.)

A Microprocessor for the Revolutiothe 6809 light of the complete desighVe are not aware of
any such errors at this time.

Part 2: Instruction Set Dead Ends, Qldhils and Point 1:

Apologies

The replaced instructions (PSHA/PULA,
TAB/TBA, INX/DEX) all take more cycles and
bytes than beforaVhy did you do such a thing?

Terry Ritter and Joel Boney
Motorola, Inc.

3501 Ed Bluestein Blvd
Austin, TX 78721 Answer 1:

In part 1 of this series (see January 1979 Consider: the question is not just

BYTE, page 14) we discussed the instruction sebgya/pULA. but rather PSHA/PULA/PSHB/
and other details of the Motorola 6809 processorpuLB/PSHX}PULX/PSHY/PUh{/PSHU/PULU
Part 2 is a question and answer discussion of thg. a5 well as simular op codes for the other stack,
design philosophy that went into the 6809. Thete ae only 256 1 byte op codd§the PUSHSs

_ Any change from old to new finevitably ,n4 py|s are made 1 byte, others must be made
brings criticism from someone. Indeed, any failure, byte, andhesewill take more cycles and bytes
to change to include someosget ideas brings its o0 efore And the macrosequenced PUSH or
own criticisms.We have not been isolated from o), | instructions arenore efficientthan byte op
sometimes severe criticism, nor from its political . yas when more than one register is involved
implications. ber of decisions h Similarly, as more registers are added, the

Howevey a number of our decisions have ey of possible transfer paths become combi

been reasonably challenged, and here we hope Hjatorially lager Do you really want to give up
present illumination and defensélhile we are that number of 1 byte op codes?

aware of a number of improvements which might As for INX/DEX, we find that these we fre

have been |r_1c|uded, the whole point is _to Se_" aquently used in 6800 code because they were more
reasonably sized (and thus reasonably priced) int&.) venient than any other alternativiée now

grated circuitWe hope that architectural errors of offer autoincrementing and autodecrementing
commission, as they are found, will be seen 'qndexing as a viable (ie: shorten cycles and

bytes) alternativeWe also allow arbitrary addi coupling between the processors. Closely coupled

tions to X,Y, U, and S. processors usually communicate through some
common memory; loosely coupled processors
Point 2: communicate through input/output ports, serial

lines, or other “slow” communications channels.
| don't see any facility for expanding the 64K Loosely coupled systems can usually be under
address space. stood as networks of quasi-independent proces
sors.
Answer 2: Now, let's consider a concept that we call
“smart memory One reason for wanting more
True. Memory expansion is possible, butaddress space on a processor is to randomly access
consider this: microprocessors are products of a lage store of on line data. Most of your proecess
mass production technology - processor cost is nimg is spent cataloging data, sorting data, moving,
longer a system limiting factodt is generally searching and updating data. If you want to handle
inappropriate to use a single $20 processor te comore data, you put on more memory and the sys
trol $10,000 worth of memory; the single proces tem gets bigger and slower
sor could use only a fraction of the bandwidth But suppose you put a processor on each rea
resource available in that much memory (heresonable piece of memory (16K or whatever).
bandwidth means the maximum possible rate oMake the program for that processor really dumb
change of storage state under processor corfirol). - make it just take orders for data. Its whole-pur
far more reasonable approach is to place the sanp®se is to handle data for the command processor;
total store on ten processors and give yourself thi stores, moved, searches and updates. But for
possibility of major throughput improvement. now, it does only memory operations. Now hook a

Naturally you'll have to learn how to control all lot of these “smart memory” modules onto your
this powey but if you're an innovative systems system (the IEEE 488 bus should work), and-com
designerthats exactly your job. mand a searchll the modules search in parallel,

There are two principal divisions of multi and if you grow and put more modules, you-han
processor systems, depending on the degree dfe more data just as fast as ever!

!'1-.-".

-~ e

Photo 2: Beadboad
design. After patti-
tioning the logic, the
mos (metal oxide
semiconductor) dia
gram is translated to
TTL. The equired ten
boads ae then
designed and built.
Meanwhile, Bill
Keshlear validates
the logic changes on
the master copy of the
logic diagrams, since
they will imply
changes on the
boards.

a1

[T]

- B

The second major approach to multipreces Point 4:
sor systems is what we call shared bus mukHipro
cessing. Multiple microprocessors are closely-cou No bit manipulation, either
pled through a common bus and a proper subset of
their memory address space. It is crucial to see the Answer 4:
common bus as the bandwidth limiting resource;
each processor should use its own local memory Are you really willing to pay 10 to 20 percent
and stay dfthe common bus until it needs accessmore just for bit manipulation? Program coded bit
to the common store. manipulation takes a little longdyut is more gen
Multiple requests for common memory eral, and probably is located is a very lightly used
access might be issued by various processors portion of your program, thus having very little
exactly the same moment. It is there fore neceseffect on your total throughput or program size.
sary to arbitrate among them, switching exactly
one processor onto the common bus, and allowing Point 5:
it to proceed with its memory access while the
other are helahot-READY. Why no undefined op code trap?
It should be clear that the same concept (a
common bus arbitration and switching node) can Answer 5:
be hierarchically extended. Furth#ére addressing
capability can be expanded and possibly remapped Because the machine is a random logic
at each node to allow fast random access to hugeplementationThe unused op codes are used as
amounts of on line mass storage. Such obviouslon’t cares’in derivation of internal logic equa
extension is left as an exercise for the serious stuions, thus allowing reduced logic and integrated
dent. Perhaps you are thinking that you baitd circuit size. Failure to include the dorcares in
it, but nobody can write the software to control it.the logic equations would result is adar and
We are not insensitive to the problem, just unRhapmore expensive circuit.
py with the attitudeWe worked hard to give you
the tool; all you have to do is learn to use it. Every Point 6:
new technology is like this - our scientists still
don't know how to fully control the atom, but that Some other processors allow both indexed
doesnt stop atomic fusion from being one of the before indirect (indexed indirect) operation and
most attractive “games” around since the piyof indirect before indexed (indirect indexed) opera
are huge. tion, but yours does notvhy?
Nobody has achanceto develop complex
multiprocessor software until she or he has a real Answer 6:
multiprocessor system. Now for $500 and a little

work, you've got the hardware. dt'time to start First of all, we wanted our addressing modes
learning to control these systems. I§ iiard one to operate on all of our memory instructions.
way, do it anotherThe power is there for use. Secondly indirect indexed addressing has much
lower utility than our indexed indirect form.
Point 3: Thirdly, we didnt strip down our instruction set,

so real features were getting a little precious.
You still didnt include block operations, did Everything has to fit on one chip, remember
you? We had considered the possibility of includ
ing a sort of chained addressing, in which the
Answer 3: memory data would be interpreted as a new
indexed postbyte capable of specifying a complete
No - and we could have. But have you lookednew addressing operatiohhis sort of thing could
at how often block instructions could really be continue to indefinite levels, of course. But such
used in your programs®nd how much code is an instruction would then be executing data, which
needed to duplicate them yoursédird how often is usually a bad idea (self-modifying code) and is
they dont really do exactly what you wantedfdd also the reason why we included no EXEcute
how fast they would run compared to your pro instruction. (NaturallyEXEcute can be emulated
grammed version? Please do lodWe think the if you really need it. but since EXEcute is usually
autoincrement and autodecrement index addressised to make up for the lack of powerful address
ing is a far more general solution. ing modes, it will not likely be missed from the
6809) Furthermore, this executed data would

almost certainly be discontiguous in the memory
space, making even the analysis of the simple cas
(read only memory) programs extremelyfidiilt.
Placing such an uncontrollable gimmick in a
processor design would be like placing a glittering
knife in front of a babyand would be similarly
irresponsible.

Point 7:
You have a MULtiply but no DI\ide.
Answer 7:

True enough. Multiply operations are
required in high level language subscript array cal
culations, but how often do you really need
divide? Do you really want to pay for something
you will rarely use and can do easily with a-pro
gram.Additionally, the unsigned multiply is easily
capable of extension into multiple precision arith
metic. (Try that with a singed multiply!) Divide
does not decompose as nicdllis combined with :
the absence of similar instructions in the machine
(divide needs 24 bits of parameters, both in and
out) was enough to leave it out.

Point 8:

Your registers are all special purpose. ed

Answer 8:

Photo 3: \kual inspection. Some of theogs pocessing aors or poblems
that occur with pobing equipment can be detected visuadigre, lead po-
duction operator May Celedon checks a 6802 wafer

Well, in a way as we have 16 bits of accu
mulator and 64 bits of useable pointers plus som
others.This basic dichotomy of data and pointers

to data exists in practice, and is therefore rarely @uant ofsets of up to 16 bits in three versions (x 3)
problem with out implementation. But the EXG (geq oy at lower right). But if you work in assem
instruction allows convenient manipulation bly language, you dohheed to figure addressing
between these groups in any unusual CiFcUMgJ the diferent constant fdets modes may be
stances. ignored. And if you select an addressing mode
which is not available, the assembler will politely
inform you of your indiscretion.

Alternately you can specify autoincrement
or autodecrement operations (x 2), by either one or
two (x 2), which may be indirected (x 1.5) (except
there is no indexed autoincrement and autodecre
ment by one indirect - think about it). Finalbon
stant ofsets are allowed from the program coeunt

. i ; er (x 3) and these may also be indirected (x 2).
ing modes, and quite heavilyhere are a lot of There are a lot of modes, no doubt about it.

different indexed options. But notice that thegiéar g relatively few new ideas are required to gain

number of diferent modes is a result of including ¢ control over those powerful new features.
all permutations of a few basic ideas.

Fundamentally you can index from any Point 10:
pointer register (x 4), use indexed indirect access
(x 2), and have accumulatorfeéts (x 3) or con

Point 9:

Why did you include all those new address
ing modes? I'll never use them.

Answer 9:

We expect that yowill use the new address

| would have liked an operating system call

The notation (x n
means ther ar n
ways to perform
that paticular
operation. (x 1.5)
means thex are
two ways to per
form that opera
tion but not ever
addressing mode
is allowed...RGAQ

instruction which carried a parameter to the eperit becomes dffcult to analyze exactly which value
ating system. is being accessed by any given subroutirteus
many programmers will use the U register as a
stack markpointer fixed at some previous loca
tion of the stack pointeAll lower level modules
So would we. Unfortunatelythe location 1 will then be able to refer to the same data by-iden
want to use for parameters may not (and probablyical offsets from the U register
will not) be what you want to use. It is desirable to
allow both constant and variable parameters to the
operating systemWhat you do get is two more
trap-like software interrupt (SWI) instructions; the Why do the 6809 stack pointers point to the
instructions SWI2 and SWI3 do not mask interruptlast item on the stack rather than the next free loca
as SWI does, thus allowing use even in interruption, as on the 68007
derived programs. Parameters may be passed in
any registeror on the stack, or as the next byte of
in line code.All of this will require some over
head, but the scheme is for more general than a
trap that carries a parameter

Answer 10:

Point 12:

Answer 12:

This architectural change was virtually man
dated by the following the chain of logic that
resulted from extending the 6800 into double byte,
autoincrement and stack indexable operations.

First, let us assume the above extensions

Tell me again about the stack pointers: whywith a 6800 style stack: the stack pointer thus
two stack pointers? points one byte below (lower in memory) the last
byte deposited. Naturally the other pointers should
work similarly (allowing their use as additional
stacks, and requiring no new understandimg)s

Good point.The original reason for adding means that the autoindex operations have to be
the user stack pointer was to facilitate the creatiopreincrement and postdecrement. N@uppose
of a data stack in memory that is separate from theve have a stack or table of double byte data; the
program stack.This avoids one of the serious data pointer must be set up one byte below the data
problems of using a second generation processao prepare for autoincrement (or pull) operations.
in a modular programming environment - that of To access the first value the expression LDD ,+S
returning parameters to a calling routikide want must be used, while succeeding operations appear
to pass parameters in a position independent mato need LDD ,++SThis result is not great for
ner, of course, but the return from subroutineloops.Alternately the stack pointer could be made
(RTS) instruction uses the top element of the stacko pointtwo bytes above the stack for double byte
as a return address, and this address is placed data only This would require dferent ofsets
the stackbefore the subroutine is entered. On the from the stack pointer (to access, ,ste top of
6800 there will be a lot of stack rearrangementhe stack) depending upon the size of the data
going on to get around this problerfihe user being accessed. Dérent ofsets would also be
stack pointer was created as a new stack -unemequired, depending on whether the data was just
cumbered with return addresses (or interrupt statbeing used, or being pulled from the stathis is
information) to allow data to be passed betweenwvorkable, but not great conceptualyother pos
routines of diferent levels in a reasonable manner sibility is to form the dective address from the
And since the new stack works exactly like thevalue of the pointer after only tHigst increment.
old, there is a relatively small silicon cost This “kluge” solution would be hard to implement
involved. anyway so we changed the stacks.

We do suspect, howevéhat many program This change of reasoning is an example of
mers will elect to accept the overhead involvedthe diference between architectural design and
with passing parameters on the hardware stackist slapping instructions together
(note that the overhead problem is greatly reduced
with the 6809).These programmers will be con
cerned with the access of parameters placed on the
stack by higher level routines. Notice that, as more
elements are added to the stack, theame
parametersare referred to by varying fsets with
respect to the stack pointer itself: this is bad, since

Point 11.:

Answer 1:

Point 13:
Why not have more registers?

Answer 13:

Good designs are often the result of engiusing absolute address and a concurrent throuPhoto 4: Editing the
neering compromise3o meet product size goals, put increase of 20 percent. It now becomes poslayout. Drafting man
only so many things can go on an integrated cirble to optimize code, perhaps allowing an eveager Wyne Busfield
cuit. You can have registers, or features, or somsized program to fit within discrete read onland senior layout
combination.The 6809 does have approximately memory boundarie§.he direct page register maydesigner Rick Secrist
20 addressing modes. also be used in a multitasking environment Mmake changes indi

Registers for the sake of registers amount tallow single copies of routines to operate witcated by engineering
little more than separate, very expensive andnultiple independent processes. Howepeovig- analysis. This itera
restricted memory areahe register resource is ing a separate stack area and having each roullVe PlOCeSS Impoves
always insuicient to hold temporary results of a store local values on the stack may be a be@erfqrmangeland ol
large program, and must be reallocated in variousolution. uction yield, and

:) thus lowers cost.
routines.This allocation process is an error prone Because a number of 6809 instructions (e
programming overhead separate register set for INC/DEC, ASL/ASR/ROL/ROR/LSL, TST/
interrupt processing is suitable only for one inter COM/CLR/NEG) operate directly on memotie

rupt level and, otherwise, is mostly wasted. direct page area may be used very much like
A few registers fully supported by features processor with 256 8 bit registers to hold counte
are better than just having a lot of registers. flags and serial information. So, perhaps mc._.
importantly the direct page register relaxes the
Point 14: system requirement for programmable memory at

a particular location (page 0) to use direct address
Why no instructions to load or store theing; the cost is a single 8 bit register and no new

direct page register? instructions.
The programmer is cautioned to tread eare
Answer 14: fully when using direct page registétl forms of

absolute addressing for temporary values and
The direct page register is one of those-posparameters present problems in the development
sible dangerous features which was just too goodf large programsAttempts to enlage the number
to pass up (in terms of substantial benefits forminof direct locations by manipulating the direct page
imum cost). The benefits include an operation register may be trickyAnd manipulation of the
length reduction of 33 percent for instructionsregister by subroutines may lead to errors which

switch the calling routines direct page in remote Answer 15:

(ie: subroutine) unobvious cod&herefore, this

register is made deliberately fitiult to play with. The Z flag is undécted by LEAS or LEAU
Typically, it should be set up once and left there but conditionally set by LEAX or LEXA depend

To load the direct page register you can proceed asg on the value loaded into the registéris pro
follows: EXGA,DP; LDA#NEWDP; EXGA,DP. vides 6800 compatibility with INX/DEX (imple
Alternately the direct page register is also avail mented as LEAX 1,S or LEAX -1,X) and
able in PUSH/PULLinstructions, but misuse is INS/DES (implemented as LEAS 1,S and LEAS -

discouraged through lack of LDD#nd STDP 1,S), respectively
Now clearly if most 6800 programs are
Point 15: going to run on the 6809, the use of INX/DEX for

event counts must be recognized. But in 6809 pro
You preach consistencyet you give us grams, releasing local stack area before executing
LEA, an instruction with dferent condition codes RTS will b a very frequent action (LEAS -9,S;
for different registerswhy is this so? RTS) “cleaning up the stack.You do want to
return a previous condition code value undamaged
by the LEAS, so you get two types of LEA.

Point 16:

What about position independent code?
Doesnt the 6800 allow it, too?

Answer 16:

Position independent code is one crucial fac
tor in achieving low cost software. (Position inde
pendent temporary storage and input/output must
also be available.) Only read only memories which
may be used in arbitrary gt systems are eco
nomically viable in the context of mass produc
tion. And only these read only memories can result
in low cost firmware for us all.

The 6800 is capable of position independent
code execution in relatively small programs.
Somewhere around a 4 K byte limit the program
can no longer support all control-transfer paths
using branch branch instructions (even allowing
the use of intermediate branch “islands”). Either a
long branch subroutine must be used (at a cost of
100+ cycles for each LBSR) or the program must
be made position dependent.

Point 17:
What about dynamic memory?

Answer 17:

There are two problems associated with
dynamic memories: address bus multiplexing and
refresh. Address bus multiplexing is the most
vere problem but requires multiplexing 6+6
&dress lines (for 4 K memories) or 7 + 7 lines (for
16K memories); these values are particularly
a{ convenient for 8 bit processors (which usually
multiplex address/dataJhus, we have yet to see

Photo 5: First silicon engineering analysis. Logic andceit design engi
neer Bob Thompson tracks down a weak node in the first batch of 6803‘9
chips. The 6801 die is packaged, but not sealed, so that internal nodes ma

be pobed while in operation.i®ving though a micoscope, a mbe can be
placed at critical points equivalent to the layout plot. The chip itselins r
ning a modifies EXORcisor system, and the scope actually displayed
internal signal with excessively slow rise time.

a processor address this problem.
Microprocessors that automatically refresh
memory during most unused bus cycles waste
power on unnecessary refreshes and unnecessaril
increase bus activityfhe 6809 can easily refresh
dynamic memory in software (a timer cause inter ABx
rupt execution of FCB $1063 times, theflR or ADCA, ADCB
can support hardware refresh (a direct memory ANDA, ANDB
access [DMA] sequence, or isolatec board -auto ANPCC

. o ASLA, ASLB, ASL
matic refresh) at minimal cost. ASRA, ASRB. ASR

BITA, BITB

CLRA, CLRB, CLR
CMPA, CMPB
COMA, COMB, COM
DAA

DECA, DECB, DEC
EORA, EORB

_ _ ~ EXGR1,R2
The 6809 will be more expensive than in- |NcA, INCB, INC

production second generation 8 bit designs. ForLDA, LDB
one thing, it is bigger and also new - both reasonsLSLA, LSLB, LSL
imply reduced yield compared to older paks. LSRA, LSRB, LSR
moderately higher price should not be a problem, MUL

i h t is a very minor part of theNEGA’ NEGB, NEG
S|r_10et € processor cos y p ORA, ORB
price of a whole systenThe total 6809 system orcc
s_hould be nearly as p(_JwerfuI and much less expen psig (register)g
sive than 16 bit designg.he cost of not using
6809, on the other hand, will likely be severe in
terms of increased programming error rategidar
read only memories and decreased throughput.

In “Part .3: FlnaIThoughts (Marqh 1979 ROLA, ROLB, ROL

BYTE), we will conclude this series with a €is rora, RORB, ROR
cussion of clock speed, timing, condition codes spca, SBCB

and software deign philosophy STA, STB
SUBA, SUBB
TSTA, TSTB, TST
TFR R1, R2

Mnemonic

Point 18:
What about price?

Answer 18:

PSHU (register)g
PULS (register)g
PULU (registen)§

Table 1: 6809 instruction set.

8 BIT OPERATIONS

Description

Add B register to X register unsigned.

Add memory to accumulator with cary.

And memory with accumulator.

And memory with condition code register.
Arithmetic shift left accumulator or memory.
Arithmetic shift right accumulator or memory.
Bit test memory with accumulator.

Clear accumulator or memory.

Compare memory with accumulator.
Complement accumulator or memory.
Decimal adjust A accumulator.

Decrement accumulator or memory.
Exclusive or memory with accumulator.
Exchange R1 with R2.

Increment accumulator or memory.

Load accumulator from memory.

Logical shift left accumulator or memory.
Logical shift right accumulator or memory.
Unsigned multiply (8 bit by 8 bit = 16 bits).
Negate accumulator or memory.

Or memory with accumulator.

Or immediate with condition code register.

Push register(s) on hardware stack.
Push register(s) on user stack.
Pull register(s) on hardware stack.

Pull register(s) on user stack.

Rotate accumulator or memory left.
Rotate accumulator or memory right.

Subtract memory from accumulator with barrow.

Store accumulator to memory.
Subtract memory from accumulator.
Test accumulator or memory.
Transfer register R1 to register R2.

16 BIT OPERATIONS

Mnemonic

ADD

SUBD

LDD

STD

CMPD

LDX, LDY, LDS, LDU
STX, STY, STS, STU

CMPX, CMPY, CMPU, CMPS
LEAX, LEAY, LEAS, LEAU

SEX
TFR register, register
EXG register, register

PSHS (register)g
PSHU (register)g
PULS (register)g
PULU (registen)§

Description

Add to D accumulator.
Subtract from D accumulator.
Load D accumulator.

Store D accumulator.
Compare D accumulator.
Load pointer register.

Store pointer register.
Compare pointer register.
Load effective address into pointer register.
Sign extend.

Transfer register to register.
Exchange register to register.

Push register(s) on hardware stack.
Push register(s) on user stack.
Pull register(s) on hardware stack.

Pull register(s) on user stack.

Table 1: continued:

INDEXED ADDRESSING MODES

Mnemonic Description

O,R Indexed with zero offset

[0,R] Indexed with zero offset indirect

R+ Autoincrement by 1.

JR++ Autoincrement by 2

[[R++] Autoincrement by 2 indirect

-R Autodecrement by 1

R Autodecrement by 2

[--R] Autodecrement by 2 indirect

n,P Indexed with signed n as offset (n=5, 8, or 16
bits)

[n,P] Indexed with signed n as offset indirect

AR Indexed with accumulator A as offset

[AR] Indexed with accumulator A as offset indirect
B,R Indexed with accumulator B as offset

[B,R] Indexed with accumulator B as offset indirect
D,R Indexed with accumulator D as offset

[D,R] Indexed with accumulator D as offset indirect

Note: R=X, Y, U, or S; P =PC, X, Y, U, or S. Brackets indicate indirection. D
means use AB accumulator pair.

6809 RELATIVE SHORT AND LONG BRANCHES.

Mnemonic Description
BCC, LBCC Branch if carry clear.
BCS, LBCS Branch if carry clear.
BEQ, LBEQ Branch if equal.
BGE, LBGE Branch if greater than or equal (signed).
BGT, LBGT Branch if greater (signed).
BHI, LBHI Branch if higher (unsigned).
BHS, LBHS Branch if higher or same (unsigned).
BLE, LBLE Branch if less than or equal (signed).
BLO, LBLO Branch if lower (unsigned).
BLS, LBLS Branch if lower or same (unsigned).
BLT, LBLT Branch if less than (signed).
BMI, LBMI Branch if minus.
BNE, LBNE Branch if not equal.
BPL, BPL Branch if plus.
BRA, LBRA Branch always.
BRN, LBRN Branch never.
BSR, LBSR Branch to subroutine.
BVC, LBVC Branch if overflow clear.
BVS, LBVS Branch if overflow set.
6809 MISCELLANEOUS INSTRUCTIONS
Mnemonic Description
CWAI clear condition code register bits and wait for
interrupt.
NOP No operation/
JMP Jump.
JSR Jump to subroutine.
RTI Return from interrupt.
RTS Return from subroutine.
SEX Sign extend B register into A register.

SWI, SWI2 SWI3 Software interrupt/
SYNC Synchronize with interrupt line.

A Microprocessor for the Revolutiofhe 6809
Part 3: Finallhoughts

Terry Ritter and Joel Boney
Motorola Inc.

3501 Ed Bluestein Bivd.
Austin, TX 78721

Clock Speed

In part 3 we conclude our discussion of the
Motorola 6809 processor with some thoughts on
clock speed, timing signals, condition codes and
software design philosophy for the 6809.

We expect that our logic and circuit design
cohorts will be able to get significant production at
a 2 MHz bus rate (and possibly faster) with the J&&
6809. But this value alone means next to nothing
as a figure of processor merit (we did consider
using a very high frequency on chip oscillator so
we could win the clock rate race, but decided at th
last minute that a resonant cavity would not be

acceptable to most users).
Other processors use an internal stat¢Photo 1: Pocessing. Photosensitized wafers axposed with a pacular

machine to implement the required internal operaMask pattern using ultraviolet light. The eatienvionment is othevise

tions.These processors frequently require multipleultraviolet-free.
states and multiple clock edges to implement-opet

ations which are done in one cycle on 6800 class

processors.

The 6800 class machines are all random
logic machines with multiple dynamic sequencers.
This method of microprocessor design selects a
different set of engineering tradefofis opposed
to the state machine approach. In particuless
critical timing is necessanbut suspending the
processor for a long time is fidult. We provide
two external methods of stopping the machine:
DMAREQ (which has a maximum asynchronous
latency of 1.5 bus cycles, and which will recover
the bus from DMAdirect memory access) period
ically to allow the dynamic microprocessor toper
form a refresh cycle) and HAL(which has a max
imum latency of 21 cycles, but releases this bus
completely).

Signals

The 6809 processor will be made in two-ver =
sions: the on chip clock version (for small sys Je=
tems) and the bfchip clock version (with extra

signal lines for additional processor status infor ppoto 2: Beadboad debug. The gate level TThodel of the mcessor

mation).This will allow a cost déctive utilization jnvolves ten boals of 80 to 120 integrated cisits each. Many of the

of pins for each proposed market. required 10,000 connections will beawy. The system must be tested to find
The bus timing signals are E and Q. E is theand corect constuction and logic emwors.

same as on 6800 systems (previously cadllecdh Crowds ae not unusual; her we have Donigtjen, Katy Miller James

square wave clock with a period equal to one bu.Tietjen, Steven Messinger (almost hidden), Mike Sbagid Bill Keshlear

cycle. Q is the quadrature clock, and leads E b

Photo 3: Plotting the cauit layout. Huge pecision plotters display the cem

one quarter bus cycle. Good addresses should be
available from the processor on the leading edge
of Q; data is latched (by the processor or selected
memory or peripheral) on the trailing edge of E.

Two signals are used for clock control in the
on chip clock version. DMAREQ halts the proces
sor internally (and puts the output lines of the
processor in the high impedance state using three
state circuitry) but allows E and Q to continue to
run to provide system clocks for a DM#ansfer
MREADY being low extends a memory access in
increments of the high frequency oscillator period
untii MREADY is brought high. If BA=0 (the
processor is running) BS=1 means that a vector
fetch is occurring (IACK)This signal can be used
to develop vecteby-interrupting-device hardware
that transfers control directly into the desired
interrupt handler without polling.

Two signals are available in thef athip
clock version to assist in multiprocessor systems.
The last instruction cycle (LIC) pin is high during
the last execution cycle of any instruction, thus
giving bus arbitration a head start. BU&Yhigh

puter data base which will become the chip. The layout plot is then checkedlyring read modify write, (from the read through

by circuit engineers both for pper inteconnection and exact transistorsiz
ing. Any poblems thus uncoved will be epaired by editing the data base.

Photo 4: Digitizing. Computer aided design (CAD) technician Lisankers

to modify) to indicate the memory exclusion is
required. Exclusion is required in multi-processor
systems.

Condition Codes

The 6809 condition code flags are the same
as those used in the 6800 (NMZand C), and are
affected similarly by most operations. Some
exceptions are double byte operations, since the
flags are always set to represent the result of the
entire operation, whether single or double byte.
(This implied by the fact that both data length
operations have the same root mnemonics).

While very simple in concept (the condition
flags being mere by-products of arithmetic and
logic unit [ALU] operations), their use with vari
ous data representations and the rich set of eondi
tional branch conditions can seem quite complex.
First, we will define the flags as follows.

N: set if and only if the most significant bit of the
result is set (this would be thes2tomple
ment “sign” bit).

Z: set if and only if all bits of the result are clear
(the result is exactly 0).

V: set if and only if the operation causes a 2’
complement overflonNotice that the expres
sion (NO V) will give the correct sign, even

a cell layout into the data base. The cursor on the light table is used te trans if the sign is not properly represented in the

fer precision meas@ments to the computer&n already digitized cell is
shown on the video display

result.
C: set if and only if the operation causes a carry
from the most significant bit (fohkDD, ADC)

or,

set if and only if the operation does not cause
a carry from the most significant bit of the
arithmetic and logic unit (for subtract-like
operations — SUB, SBC, CMP carry flag
represent a borrovgr,

set according to rules for rotate or shifts
or,

set if and only if bit 7 of the result is set (for
MUL).

* Notice that the C flag is not the simple result of
the carry in the 8 bit arithmetic and logic unit,
but depends on the type of operation-per
formed.

* Notice also that the carry flag represents a bor
row after subtract-like operation¥his was
done on the 6800, for convenience.

Next, lets define the use of the branches.
Simple conditional branches:

Test True False
Z=1 BEQ BNE
N=1 BMI BPL
c=1 BCS BCC
V=1 BVS BVvC

Photo 5: Diffusion.
Into the furnace
goes another batch

Signed conditional branches:

If register is less than memory value

Test True False (2's complement value) (NOV)=1. 4t wafers in the
(NOV)AZ =1 BGT BLE If register is lower than memory value process of becom
NOV) =1 BGE BLT (unsigned values) C=1 ing integrated ci
Z=1 BEQ BNE If register is equal to memory value cuits. Operating
(NOV)v Z=1BLE BGT (signed or unsigned) Z=1. near 1000 C, the
'('N—D_VF =1 BLT BGE quartz liner glOWS

Because some instruction do not (and shoulcincandescent.
not) afect carry only the equal and not equal
branch tests (BEQ and BNE) are useful after thes:
instructions (INC, DEC, LD, STTST, CLR,

Unsigned conditional branches:

gs/t\ - -1 ;:T ';?_lsse COM) operate on unsigned valu&ghen operat
ing on 25 complement values, all signed branches
c=1 BHS BLO are correctly available.
z=1 BEQ BNE
CvzZ=1 BLS BHI Some Software Design Philosophy
C=1 BLO BHS

. . The design of successful software feli§
Note: The unsigned branches are not, in-genfrom other types of engineering design in that
eral, useful after INC, DEWD, ST, TST, CLRor good software can be easily changed, but is

COM. exceedingly unfagiving. The creation of working
software involves intimate contact witjuality.
And finally, the results of known conditions Any program, working or unworking, is a
of comparison are as follows. representative of the philosophy ofuth; the

After SUB, SBC, CMP: machine will execute the program, good or bad.

Photo 6: \dfer

probe. Each ciruit

is separately
checked while still
on the wafer This

equipment auto
matically steps to
the next chip after
any bad esults or
when all tests &

good.A production

6800 is shown.

Only applicable programs are useful, however Every attempt should be made to code in
and utility is where we encounter qualitany modules. Modules are self-contained entities-(usu
individuals indoctrinated into a society foundedally subroutines) which allocate and deallocate
upon truth can scarcely understand why sucliheir own local storage. Naturallthe actual code
truthful programs do not work, for igndne truth should be heavily commented to allow a reader to
just as good as another? understand what is being attempted. But one mark

Any program that is to be fixed or changedof a good module is that it contains a header block
must be analyzed: the written code must be readhich fully describesall aspects of the inputs to
and understood. Reading is a problem — most comthe module and results from ithis description
puter languages are very fititilt to read simply should be so detailed as to allow the module to be
because so many options are possible from eadbtally recoded from this information aloné/e
statement. Finding the coherent design of a prohope that the description was arrivedefor the
gram is nearly impossible when, as it is begin readnodule was written. It is a mark of good software
thousands of options exists. It is the paradox oflesign that the actual coding is but a minor part of
programming that a disciplined, restricted, struc the project; it occurs after all modules have been
tured programming language gives programmersompletely describedThe finished modules
greater freedom to understand their programs. which are recoded at a later date must pass the

Consider the analysis of programs: any-pro original tests.
gram segment having multiple conditional branch
es that cannot be separated must be analyzed for Software in the Revolution
all possible conditions of input data before we can
be assured that the program will operate correctly The microprocessor revolution is fueled by

Program segments having branch paths thatontinual technical advancement that produces
cross may be impossible to analyze rigorously dudardware with ever higher capability and ever
to the combinatorially lgier number of paths that lower cost.Yet, it is a requirement of the revelu
the program may execut¥here control struc tion that software be written to make that cheap
tures are always properly nested, crossed brandiardwaredo anything.
path cannot occur and analysis is easier Most present microprocessor software is-cus

Programming structures which have basical tom software written for a specific project. Project
ly one entry point and one exit are easily detachedpecific software is rarely published, partly in the
from the surrounding code and are easier to undefunreasonable) hope of maintaining trade secrete
stand and tesfThis is the fundamental tenet of protection, and partly because finished project
structured programming. software is rarely of publication quality
Commercial software is rare for a number ofrea
sons: there must be a market for the (machine spe
cific) software before the investment in program
development is made, but the customer base may
not exists until good programs are available. It is
also dificult to consider inventing in software that
can be so easily copied (stolen) and used.

The copying problem is not new; musical
reproductions have long coexisted with the possi
bility of consumer recording and reproduction for
a close circle of friendsThis occasionally hap
pens, but it is usually too much bother to tape the
music you want (assuming that the original prod
uct is available at a reasonable cost). Software
should be distributed as a reasonably priced-phys
ical product that is useful to a broad consumer
base.

¥
-
+
:

. Fevgeli, PRy ; This is an old idea, but it just hasmorked.

"lll,‘ |‘

The problem is not in the idea, but in the second
generation microcomputer architecture which
limit the applicability of any particular program
read only memoryThe 6809 microprocessor is
designed specifically — through the use of position
independent code, stack indexing, and indirect

N

addressing — to allow the creation of standard pro
gram read only memorie3his creates a market
opportunity for a brand new standard software
industry We knew this when we included these
features; you're welcome, entrepreneurs!

Summary

We wrote this series of articles not only to
disclose the 6809 but mainly to put down in print
the rational and reasoning behind the 6809. It
would have benefited us if the designers of the
6800 had documented their rationafée would
also like to think we have stimulated some interest
in the personal computing community for solu
tions to the software problem and for the study of
computer architectureThe big challenge for
architects in the next decade and beyond will be to
design computers that carfestively utilize the
huge number of devices — 1,000,000 transistors by
1985 — that semiconductor technology will be able
to put on one 25 mhpiece of silicon.

No computer is designed in a vacume, and
we would like to thank all of our customers and
the people at Motorola who gave us valuable
input. Special thanks go to the dozens of people —
two many to enumerate — who have been or are
still actively involved in the design, implementa
tion and production of the MC680®@/ithout their
individual talents and dedication to what seemed
to be impossible tasks and impossible schedules,
the MC6809 could not have been realised.

