ALUORITHM ALLEY

- AFast Infeger Square Root

Peter Heinrich

omplex calculation has always frus-

trated speed-conscious programmers,

since mathematical formulas often

form bottlenecks in programs that
rely on them. To cope with this problem,
three primary tactics have evolved: elimi-
nate, simplify, and be tricky.

Rarely will a programmer eliminate a
calculation completely. (If a program op-
erates without it, why was it there in the
first place?) Instead, integer or fixed-point
may replace expensive floating-point math,
At the same time, a simpler version of the
formula may be sought— one which is
easier to compute but gives roughly the
same result,

If this proves difficult (as it often does),
a tricky solution may provide the answer.
This approach requires almost as much
luck as programming skill, and is defi-
nitely the most difficult, Then again, the
fun is in the challenge.

Trick or Treat
The square-root function certainly quali-
fies as a complex calculation, as anyone
who has actually computed one by hand
will readily attest. In general, square roots
are avoided in speed-critical code, and rank
even higher than division on the list of
things to avoid. The technique I present
here is an iterative approach to finding
NJ, the largest integer less than or equal
to the square root of N, Like many tricky
solutions, it's also simple, fast, and elegant.
Before attacking the actual algorithm,
it might be useful to look briefly at two
other iterative methods for computing the
Square root. Example 1(a) simply applies
Newton’s Method, a straightforward way

Peter is a video and computer game pro-
grammer who has worked on products for
Amiga, PC, Sega, 3DO, and Macintosh.
He's currently working for Starwave and

can be contacted at peterb@starwaye. com.

Dr. Dobb’s Journal, April 1996

10 zero in on a value given an initial guess,
This method is theoretically fast, having
order O(log,N). Unfortunately, it uses a
lot of multiplication, which may form a
bottleneck in itself.

Example 1(b) uses a different approach,
summing terms until they exceed N The
number of terms summed to that point is
the square root of N, While this method
eliminates the multiplication, it has a high-
er order of OAN),

It would be nice to find a practical al-
gorithm that also is efficient, that is, one
which requires only elementary operations
but also is of low order. The Binomial The-
orem suggests a possible approach. As-
sume VYN is the sum' of two numbers,
and v. Then N=(u+1)2=12+ 23412, Choos-
ing # and v carefully may simplify calcu-
lation of the quadratic expansion. But
what constitutes a good choice?

Finding Your Roots
For any number A, it's €asy to determine
log,N|— simply find the position of the
highest set bit, Similarly, I_logz\/N_l= l_log2
N12]=|1/2 log,N] indicates the position
of highest bit set in result, [VN. Now the
problem just entails finding which of the
remaining (less significant) bits, if any, also
are set in [V],

Let u=2| V2log, N, thay is, let u take the
value of the highest bit set in the result,
(VAL 1t isne known if the next-lower bit
is also set in the result, so let v take its
value, then solve 1242up+y2. This calcu-
lation is easy because each term is a sim-
ple shift. Since v is known to be a power
of two, even the middle term, 2uy, re-
duces to a shift operation,

If the sum of all three terms is less than
or equal to N, the next-lower bit must be
set. In that case, the result just computed
will be used for 2 and u=y+v for the next
iteration. If the sum is greater than N, the
next lower bit isn't set, so u remains un-

changed. In either case, move on to the
next-lower bit and repeat the process un-
til there are no more bits to test,

Example 2(a) implements (in C) an al-
gorithm that appears to satisfy both de-
sign goals. It uses only elementary oper-
ations (addition and shift) and is extremely
efficient, weighing in at O(log, VN). How-
ever, a few minor optimizations still can
be performed: determining | 1/2 log, N
can be improved; v doesn’t have to bé re-
computed from scratch every iteration;
and noticing that 2up+y2=y(; 2u+p) simpli-
fies some computation inside the loop.
Example 2(b) is the final result,

Actually, many assembly languages
make the first optimization moot. In fact,
two of the three assembler listings pre-

@) 7/ Newton's Method -- 0(log2 N)
-unsigned long sqroot(unsigned long N)
[

‘- unsigned long n, p, low, high;

s AE(25 N)

e return(N };

V. dew =g

X"t high =.N;

" while(high 3 ‘low +17)
€ .

“m= (high + low) -/ 2:
P Encoking
CALCN<Cp)

else if(N> p.)
i:low =y
~else A

i bréak

¥ e E

fretu;x}:‘(Nie=-p-? n-¢low)
3} : .

(®) // . Suming vermy. -~ 0(sqrt N)
-unsigned :long sqrost(unsigned long N)
{ 4
unsigned long m,. u,.v;
ARy ot

return(N);
4
55

<8

T

or(-ni=ciyiu <= N; nt+)

i

Wity
V4227
} ;
return{ . n.)

L 3
Example 1: (@) Newton’s Method:
(b) summing terms.

113

iohn C. Dvorak [
PC MAGAZINE

of the OSes already installed.
Commander does the rest. . .5
s you install new OSes, System

1 adds the new OS to its menu.

and easy to evaluate new OSes

)OS‘iI’l PCs, ‘Syﬁtem Commander
npatible OSesononePC. - . -

;008 Services shufunction 09h -
I; diaplay char string o/ ds:x

;00§ som:d ehafunciion STh
} taminate and stay nisident
E alefstum code du=parmgraphe

B H ?ﬁ!ﬂnl
SEEE——
1d Windows codel s
reates commented listings for any
secific BIOS works! Adds over 75K
1serts labels like "int_10_video".
rates detailed Listings of Windows

& OS/2 NE files. Windows Source
function calls, API calls like "Get-
s, VxD functions and much more.

(@ 7
// Binomial Theorem -- 0{ 1/2 log2 N)
‘unsigned long sqroot(unsigned long N)
(

unsigned long 12, v, v, u2. v2, uv2, n:

if(2> N} o :
return(N');

u =N;

12 = 8; 3

vhile(u %= 1)
12++;

12 »=1;

u. = 1L <128

u2 = << 12§

vhile(12---)

(

v =il << 123
v2 =viC<12; B
uv2 = u. << (12 + 1):
n =ul +uvl +v2;
if(n.<=N)

{

ute v
ul’ =n}

)

4 ,
return{ u)
3 ¢

®)

// Optimized Binomial Theorem -
unsigned long sqroot(unsigned long N)
{ : : 8

ungigned long 12, u, v, uZ, nj
if(2>N) e
return(N.}; =
u =N;
12=0;
while{ u »= 2)
24+

u = 1L << 12;

Yy =u;

u2 = u << 12;

while(12--)
v =1 - .
n = (ut+tuty) <l
n 4mou2;
if(n ¢ N)
(| = v

u2 = n;

) “a

)
return{ v);

stem Commander $99.95

urcer & Windows Source $249.95

urcer, BIOS & Windows Source $289.95
© . WWW.N-com.com

Example 2: (a) Binomial theorem;
(b) optimized binomial theorem.

sented here use a shortcut. Only the ARM
processor lacks a specialized instruction
to find the highest set bit in a number (but
it's a RISC chip, after all). Listings One
through Three (listings begin on page 130)
present implementations of the optimized
algorithm for the Motorola 68020, Intel
80386, and ARM family of processors, re-
spectively.

Conclusion ‘
For programmers developing hxgh-per—
formance code, complex mathematical
calculation is not always practical. Some
may spurn floating-point math altog.eth’-
er, especially if a math coprocessor isn't
guaranteed to be present on the target
platform. The algorithm I present here
computes an integer square root suitable
for just such situations. Even as hard-
ware speeds increase, programs dem{md
more and more. Fast and elegant little
tricks like this one can still be useful.

25, CAresidents add sales t%xig\glsSA/MClAmex/con

IADER SERVICIZ CARD

DDJ
(Listings begin on page 130.)
Dr. Dobb’s Journal, April 1996

UNDOCUMENTED CORNER

What Is

Undocumented MFC?

Scot Wingo and George Shepherd

FC comes with full source code

and a great set of online docu-

mentation. However, while writ-

ing our book, MFC Internals, we
discovered a plethora of interesting un-
documented classes, functions, and MFC
behavior. Since then, we've spent a great
deal of time learning how these undocu-
mented aspects of MFC work, what they
do, and documenting them.

Microsoft only documents the non-
implementation portions of MFC so that
it can change the implementation details
from release to release. As a C++ class li-
brary provider, this is desirable since it al-
lows the maximum flexibility to change
classes around from release to release.
How MFC programmers will find
themselves having_to decipher undocu-
mented MFC behavior time and time again
when writing MFC applications that push
the bounds of the MFC documentation.
For example, have you ever ended up in
the middle of undocumented MFC class-
es when debugging? Or have you ever
tried to customize the MFC print-preview
engine? Do you need to know how MFC
OLE Automation is implemented so you
can extend it? How about OLE documents
or OLE controls?

In this series of articles, we will expose
interesting undocumented MFC behavior
discovered during our many MFC spelunk-
ing sessions and in the process answer
many of the aforementioned questions. In
addition, we will show you how to ex-

.Scot is a cofounder of Stingray Software,

an MFC extension company. He can be
contacted at ScotWi@aol.com. George is
a senior computer scientist with
DevelopMentor where be develops and
delivers courseware for developers using
MFC and OLE. George can be contacted
at 70023.1000@compuserve.com. They
are the coauthors of MFC Internals
(Addison-Wesley, 1996).

Dr. Dobb’s Journal, April 1996

P S PPN

e s b+

ploit the unc
MFC applicar
MFC source-
tioned so yc
editor, or do
your own. '
Of course
claimers ap|
probably wil|
eas of MFC,
details you
at your own
ing, we'll al
sion of MFC
sions of MF(
what we're d}
the undocurn
are in flux. ¥
that Microsof
has been verf
cover some «
ior of MFC. I
to thank Dea
crosoft, for h
i
Interesting
Behavior

take a peek 4
of CDocume

cept for the
umented
document us:

[| ALGORITHM ALLEY

Listing One

MACHINE MC68020
EXPORT sqroot

¢ unsigned long sqroot(unsigned long N).

;i This routine assumes standard standard Macintosh C calling conventions,
i3 so it expects argument N to be passed on the stack. Macintosh C register
i3 conventions specify that d@#-d1/a@-al are scratch.

PROC
3 If N < 2, return N; otherwise, save non-scratch registers.

sqroot

move.l 4(sp) ,do ; just past the return address
cmpi.l #2,d0
bes.b

done
movem,l d2-d3,-(sp)

i Compute the position of the highest bit set in the root.
; Using a loop instead of BFFFO will make this code run
i on any 680xD processor,

movea.l 4o, a2 + preserve N for later
bfffo 40(0:0},d3

neg.l d3

addi.l #31,d3

1sr.1 #1,43

: Determine the initial values of u, u*2, and v.

moveq.l #1,d0

1s1.1 d3,do s u

move.l d@.d1 : v starts equal to u
movea.l dd,at

1s1.1 d3,dt 3 ut2

exg.l di,al

s Process bits until there are no more.

checkBit dbf.w d3,nextBit
movem, 1 (ap)+,d2-d3
done rts

: Solve the equation u*2 + 2uv + vA2,

nextBit lsr.1 #1,dL ; v = next lower bit
move.l di.dz2
add.1l d9.d2
add.l do.dz2 in=utv
1s1.1 d3.d2
add.l al1,d2 ;n=ut? +v(2u +v)

;o= ut2 4 2uv + vA2

; If n <= N, the bit v is set.
cmpa.l d2,a0
bes.b checkBit
add.1 d1,de ut= v
movea,l d2,al ;U2 =0
bra.b checkBit
END

)

Listing Two
NAME sqroot
PUBLIC -5qroot

3 unsigned long sqroot(unsigned long N).
This routine assumes the argument N ig passed on the stack. and eax-edx
are scratch registers.

TEXT SEGMENT PUBLIC 'CODE'
ASSUME CS:TEXT
P386
-8qroot PROC FAR
: If 2 > N, return N; otherwise, save the non-scratch registers.
mov eax, [esp+4] : just past the return address
cmp eax, 2
ib short done
push edi
push esi
: Compute position of the highest set bit in the root, It's just
: half the position of the highest bit set in N.
mov esi,eax ; preserve N for later
bsr ecx,eax
shr ecx,1
: Determine the initial values of u, u*2, and v.
mov eax,1
shi eax,cl HE')
mov ebx,eax ; v starts equal to u
mov edx,eax
shl edx,cl HE o]
; Process bits until there are no more.
checkBit dee ecx
is short restore
; Solve the equation u*2 + 2uv + vA2,
shr ebx,1 i v = next lower bit
mov edi,eax
add edi,eax
add edi,ebx in=2u+tyvy
shl edi,cl

130

u'2 + v(2u + v)

add edi,edx i n=
o= ut2 4 2uv + A2

: If n <= N, the bit v is set.

cmp edi,esi
ja short checkBit
add eax,ebx sut=v
mov edx, edi ;ut2=n
jmp short checkBit
restore pop esi
pop edi
done i Return to caller.
mov edx,eax
shr edx, 16 ; mecessary, but seems silly...
retf
_sqroot ENDP
TEXT ENDS
EXD

Listing Three

AREA object,CODE

EXPORT 8qroot

:: unsigned long sqroot(unsigned long N).

i This routine observes the ARM Procedure Call Standard (APCS), so it expects
ii the argument N to appear in r® (referred to as al by the APCS). Likewise,

:: the first four registers, r@-r) (al-a4 in the APCS), are treated as scratch.

sqroot ROUT
i IE N < 2, return N; othervise, save non-scratch registers.
cmp al,#2
movee pe.lr
stmfd sp!,{vi,v2,1r)

: Compute position of the highest bit set in root. It's just
i half the position of the highest bit set in N.

mov a2,al : preserve N for later
mov a3,al
mov vi. 40
findlog2 movs a3,a3,LSR #2
addne vi,vi, #1
bne findlog2
: Determine the initial values of u, u*2, and v.
mov al,#1
mov al,al,LSL v1 HR
mov al,al : v starts equal to u
mov a4,al,LSL vi H]
i Process bits until there are no more.
checkBit cmp V1,40
ldmeqfd sp!,{vi,v2,pc}
sub vi,vi, #1

3 Solve the equation u*2 + 2uv + v*2,

mov a3,a3,LSR #1 : v = next lower bit

add v2,a3,al,LSL #1 in=2utv

add v2,a4,v2,LSL vi ;o= ut2 +v(2u +v)
;= ut2 4 2uv 4+ vh2

: If n <= N, the bit v is set.

emp v2,a2

addls al,al,a3 Pu b=y

ldmeqfd sp!,{vi,v2,pc) ; exit early if n == N

movls a4,v2 iut2=n

b checkBit

END

UNDOCUMENTED CORNER

Listing One

CFile® CDocument::GetFile(LPCTSTR lpszFileName, UINT nOpenFlags,
CFileException* pError)

(
CMirrorFile* pFile = new CMirrorFile;
if (!pFile->Open(lpszFileName, nOpenFlags, pError))
delete pFile: pFile = NULL:
return pFile;
" e
Listing Two

class CMirrorFile : public CFile
// Implementation
public:
virtual void Abort():
virtual void Close():
virtual BOOL Open(LPCTSTR lpszFileName, UINT nOpenFlags,
CFileException* pError = NULL); protected:
CString m_strMirrorName;

(continued on page 133)

Dr. Dobb’s Journal, April 1996

