Lo 2oy

FLEX EXPLAINED

Paul Izod and Alan Stirling look at the industry standard FLEX OS with
particular reference to the E&CM hi-res computer system.

1t has often been pointed out in this series of articles that FLEX only
comes to life when disc drives are added to a system. Last month we
described the disc controller card for the E& CM computer system
and this month we look at the inplementation and operation of the
FLEX OS on the system.

Before going into the details of FLEX, it is necessary however to
discuss the general features of single-user operating systems. Since
these all require the use of disk drives, a brief explanation of the
means of data storage on a disk is appropriate.

The Data Format

The data areas on all disks are split up into circular tracks on the disk,
with each of these tracks sub-divided into sectors— normally between
10 and 32 per track. Each sector holds between 128 and 1024 bytes
of information. The smaller the number of bytes per sector, the more
s¢ctors per track. A 5%" disk holds about 2,5 60 data bytes per track
iri single density. A 40 track single-sided/ single-density 5% disk has
atotal capacity of 102,400 bytes. The start of each track is marked by
an index hole in the disk near it’s hub.

There are two systems used to correctly identify the sectors .

around each track. The most popular, called ‘Soft Sectored’, uses a
simall header area recorded onto the disk, in front of each sector,
which holds the track and sector number of the sector that follows (see
Fig 1). This information is recorded at the time that the disk is
formatted, since without it the disk drive head assembly is not able to
check its position on the disk. The other method, called ‘Hard
Sectored’, used extra holes around the hub of the disk to mark the start
of each sector. Extra circuitry counts pulses generated by these holes
and generates the sector numbers. Soft sectored disks operate more
reliably, since each sector is uniquely coded, but this is at the expense
of total data capacity, as the header information takes up valuable
data information space on the disk.

The interface between the computer system, and the disk drive is
undertaken by a disk controller card. The key component on this
board is the disk controller chip, which controls the operation of the
disk drives completely. Since this chip is itself as complex as a small
microprocessor, it only requires a few support chips to fully control
most types of disk drives. It is the task of the disk controller card to
communicate with the disk drive, reading or writing sectors of data as
required. Only complete sectors of information are transferred.

Due to the intelligence of the disk controller chip, it is only
riecessary to write short machine code routines (called “Drivers”) to
gain access to any individual sector. With the addition of some form
of disk drive selection hardware, it becomes a simple matter to read
gectors from one disk drive and write them to another, thus copying
data between two disks. Without a detailed record of where data is
gtored on each disk however, this basic system is unable to ensure that
the sectors that it is reading contain the required data and the sectors
that it is writing to do not already contain valuable information.

What is needed is a system of indexing the data stored on a
particular disk. Although this index or directory can be held in
memory, the obvious place to keep it is on the disk itself, alongside the
data. In all disk operating systems, the start of this directory is
defined, so that the machine knows where to start searching for the
name allocated to the data for which it is searching. Alongside the
name entry in the directory is further information about the data. This
includes the track and sector where the data starts and finishes, the
number of sectors that the data occupies and the type of data itself
(i.e. machine code programs, text files, basic programs etc.). Data in
this format is normally known as a file.

It is for the control and manipulation of these files and their

a4 — ELECTRONICS & COMPUTING MONTHLY

TRAGCK DETAILS TITLE NO_OF BYTES CONTENTS
Start of Track -
Index Hole in Disk Details of Pre-amblie Gap
1 t] 1 i t
| Pre-amble i 1 Pre-amble i 40 i FF ot
i 1 i Sync Field i é | [B
| Gap ' | Index Mark I 1 1 FC 1
! i | Post Index Gap | 26] FF i
. | : I L
1 DN
1 [N
| Sector 1 ! N
' 1 AN
1 1 N Details for Each vector
1 [.
1 [t 1 i [N
| iy i Sync Field i 6 Voo
I Sector 2 ty i 10 Address Mark [1 ' FE 1
1 LI | Track Number { 1 | 00~27 |
i [IY i Side Number [} 1 } 00-01
! 1 | Sec tor Number 1 1 i 00-0A
I [I Sector Size i 1 | o1t
1 I \ i C R C Characters i 2 | 00-FF 1
t Sector 3 [} A | [| |
[} 1 \ i Post 10 Gap ! 1 1 FF 1
I i \ I | | 1

i v Sync Field ' 6 1 0o 1
[l] ‘| Data Address Mark i 1 o FB 1
1 1 Y I Sector Data | 256 | 00-FF 4
{1 Sector a ! V! C R C Characters | 2 I 00-FF 1
I ¢ t t I i
1 i ‘.l Post Data Gap § 42 | FFE o
1 3 ! { ! i
I 1
1 [
{ Sector S i
I 1
[} 1
- S
| |
| |
| Sector é i
I 1
1 |
11 i
[} 1
J 1
| Sector 7 !
Rl 1
1 1
I} 1
I 1
1 i
| Sector 8 i
1 I
1 i
1 [}
[} i
1 1
| Sector 14 [
i |
' t
I e 1
| i
| i
I Sector 10 1
i 1
| I Details of Final Gap
1 !
i i | i i
t I 1 Fre-Index Gap i 170 ! FF |
| Fina)l Gap t) ! | |
I | P
! [
] 47
End of Track -
Ladex Hole im,pcsk
Figure 1. Standard IBM34 Format for 256 byte per sector for 5%
N
floppy discs.

relevant directory entries that disk operating systems (DOS) have
been developed. However since disks using the same DOS will
normally be compatible, meaning that disks recorded on one systemn
can be read by another — even if the two systems are produced by
different manufacturers, most operating systems go further, providing
a completely compatible software environment within each machine,
so that programs written to run on one type of machine can be
transferred on compatible disks to another machine, giving identical
results when run.

Software Compatibility

This is obtained using standard routines within the DOS. The address
of these routines and their functions is provided to the programmer
within the documentation of the DOS. The addresses and functions of

. AUGUST 1983

TECHNICAL FEATURE

these routines do not change between different types of machines,
providinig the DOS is the same, Any differences between the
machines hardware configurations, such as the address of the I/O
port or memory mapped screen are taken into account when the DOS
is implemented on that machine. During the implementation,
machine code routines are used to link the DOS to the I/0 routines of
the machine. It is important that these routines are written such that
they allow the DOS to perform in identical ways on differing
machines. Programs written to link with the standard addresses
defined in the DOS therefore should have the same results on any
system. It is difficult however, to write sophisticated output routines
without knowing the exact screen size and format. Thus the
standardisation is limited to programs with simple I/ O requirements—
programs with complicated graphics requirements will only run on
similar hardware, since this will be accessed directly by the program.

An Overview Of FLEX

FLEX was originally written in 1977 for systems using the Motorola
MC6800 processor, by Technical Systems Consultants Inc, of
Forest Hill, North Carolina, USA. In1977 it was converted to run on
the MC6809 and has become a standard for these machines. It is used
on many makes of machine, including SWTPC, Positron, Gimix,
Smoke Signal and Mororola, with implementations on Apple II,
Tandy Colour Computer and Hitachi machines. With many users
world-wide there is a wide range of system software with a number of
good applications packages available. With the recent adaptation for
the Dragon 32, this operating system will become even more popular.

FLEX Disk Formats

Although many other operating systems use sectors of 128 bytes,
FLEX uses 256 bytes per sector. This gives 10 sectors per track on
SU" single sided/single density (SS/SD) disks, or 15 sectors on 8"
" SS/SD. InFLEX the sectors are numbered from 01 (Hex) upwards
and the first and outermost track is numbered 00 (Hex). Table 1 gives
details of the track, sector & capacities for the more popular disk
formats,

The figures in this table reflect the total amount of data that can be
stored in practice, since the theoretical maximum can never be
reached since track zero on each disk is reserved for the directory and
other information, sectors themselves only hold 252 bytes of data,
and track zero is always recorded in single density, even on double
density disks in order to maintain compatibility with single density
systems, .

FLEX File Format '

Files can be of any length, and are made up from a collection of linked
sectors. These are linked by the first two bytes of each sector, which
hold the track and sector number of the next sector of the file. In this
way afile can occupy any unused sectors on the disk, since successive
sectors do not have to be physically consecutive. The last sector of a
file has these two link bytes set to zero, On most files the following
two bytes hold the consecutive sector number within the file, starting
with sector 1 as the first sector. Since each sector has 256 bytes and
four are used by the system, there remain 252 bytes available to the
user. This slight loss in storage capacity is outweighed by the
flexibility of file layout on the disk. Even the directory information on
track O uses the same format.

All empty or unusued sectors on the disk are linked as one large
file, called the ‘Free Chain’. This file also uses the track and sector
links, but does not maintain a consecutive sector number.

When a file is to be written to the disk, FLEX removes the first
sector from the free chain, and allocates it as the first sector of the new
file. As the new file requires more sectors, FLEX re-allocates them
from the free chain to the new file, They are already linked toghether,
since they were linked in the free chain. Atthe end of the file, FLEX
un-links the last sector of the file, (track and sector equal to zero),
updates the directory entry for the file, and and changes the pointer to
the start of the free chain. Ifa file is deleted, it is linked to the end of'the
free chain and it’s entry is deleted from the directory. Although it has
been deleted, with it's directory entry removed, the data will still be
intact, until overwritten by another file. The disk is full when the free
chain has no further free sectors,

TABLE 1 - Track, Sector and Byte Capacities of Different Sizes of FLEX Disks,

Largest Largest Total Total Total

Disk No. of Data No. of Track Sector Disk Data Data
Size Sides Density Tracks Track (Dec/Hex) Secotrs Sectors Bytes
5 1 Single 40 89/27 10/0A 400 380 68280
5 1 Double 40 39/27 18/12 712 702 176904
5 2 Single 40 39/27 20/14 800 780 186560
5" 2 {Double 40 39/27 36/24 1424 1404 353808
5 1 Single 80 79/4F 10/0A 800 790 198080
5" 1 Double 80 79/4F 18/12 1432 1422 358344
5 2 Single 80 79/4F 20/14 1600 1580 398160
5 2 Double 80 79/4F 36/24 2864 2844 716688
8" 1 Single 77 76/4C 15/0F 1155 1140 287280
8" 1 Double 77 76/4C 26/1A 1991 1976 497952
8" 2 Single 77 76/4C 30/1E 2310 2280 674560
8" 2 Double 77 76/4C 52/34 3982 3952. 995004

(Dec: Decimal, Hex: Hexadecimal)”
<
AUGUST 1983 ELECTRONICS & COMPUTING MONTHLY ~ 45

»

| TECHNICAL FEATURE . Lo
g.fz

Track Zero Information

This track has a special significance since it holds the disk directory
and certain other important information. ‘

The first sector holds the boot loader program. This program is
machine specific, and is called into the machine by the monitor
program, when FLEX is booted. Once loaded into the machine, it
loads FLEX into memory, from wherever it is located on the disk.
Finally, it passes control to FLEX, which begins operation. If the
boot program is too large to fit into one settor, the second sector may
also be used. :

The third sector is called the* System Information Record’ (SIR).
This holds information regarding the disk itself, and the chain of free
sectors on the disk. See Table 2, This information is read by FLEX
prior to accessing a disk file, so that FLEX can adapt to the individual
disk’s format. . =~ : .

TABLE 2~ List of Information held on System Information |

Record (SIR),
Volume Name of Disk (8 Characters)
Volume Number of Disk (1 - 65535)
Creation Date (MM/DD/YY)
Start of Free Chain - (Track/Sector)
End of Free Chain (Track/Sector)

Length of Free Chain - (No of Sectors)
Highest Sector Address on Disk (Track/Sector)

Sector 4 is left blank, and is reserved for future expansion.

The directory file starts at sector 5, and continues through all the
other sectors on track zero. Each directory entry takes 21 bytes,
giving 12 entries per sector. If more directory entries are required,
over and above those available on track zero, FLEX automatically
allocates extra sectors, as required from the free chain.

FLEX File Specifications

As with all operating systems, there is a structured syntax to be
complied with, when entering the details of a disk file to be used.
FLEX numbers the disk drives from‘0* to‘3’, this number being used
at the beginning of the file name. The file name itself must not be more
than 8 characters. FLEX also allows files to use extension names of
up to three letters, in order to describe the file type. The main
extensions used are:

BIN Binary Program Files

TXT Text files

CMD FLEX Command Files

BAS Basic Source Code Files

SYS FLEX System Files

BAK Back-up Copy of Text File "

BAC Basic Compiled (Tokenised) Files

OUT Printer-Spooling Output Files
The drive number normally precedes the file name, whereas the
extension follows it. They are separated by a full stop, thus

CLLETTERTXT, is a text file on drive ‘1°, called ‘LETTER’.
| Many commands presume default options in terms of drive number

- and extension, thus in most situations it is only necessary to enter the
| file name alone.

46 — ELECTRONICS & COMPUTING MONTHLY

. FLEX Command Structure

There are only two memory resident commands within FLE)
although others can be added if required. ‘GET is used to load
binary file into memory, where it will be loaded ino the same memo;
locations from which it was saved. ‘MON’ is used to exit fros
FLEX, back to the system monitor. All other cammmands sre loade
from disk. To initiate a command, simply emter the name of
command file. FLEX will look for a file with the same name, on th
systenti disk, (normally Drive ‘0’), and with the extension of*.CMD
signifying a command file. Thus entering ‘CAT will loade th
catalogue command from drive ‘0’ Its full file specification ;
‘0.CAT.CMD>’. Any of the default options can be changed merely b
entering the option desired. For example to run £ binary program o
drive ‘1, called ‘TEST, enter ‘1. TEST.BIN..

The system also controls the default options om two drives, knowr
as the ‘System Drive’ and the ‘Working Drive’. The system drive i
where FLEX looks for command files, and the working drive for tex
and other files. Thus if the system drive is set to ‘0 and the working
drive to*1’, the command ‘LIST LETTER’, will load the commanc

* file ‘0.LIST.CMD’, which will in turn list on the screen the contents

of the text file ‘| LETTER. TXT . These default drive numbers car
be controlled using the ‘ASN’ (Assign) command. Using this same
-philosophy, many commands use a string of parameters entered
after the command name in order to control the detailed operation of
the command.

Within this simple framework, it is possible to control the
operation of a sophisticated 6809 based computer, particularly if the
range of commands is augmented, which is done by just adding the
command file to the system disk. ESCM

Next Month: More on Flex and the £& CM Hi-Res Computer.

HI-RES COMPUTER

For those of you wanting to catch up
on this project we've put together a
complete re-print of the articles to
date. ‘

The pages are attractively bound
and the tome provides all the details
necessary to build a powerful 6809
based system capable of running
the industry standard FLEX OS.

Fully Inclusive of VAT and p&p.

Send orders to Electronics And Computing (Reprints),
153 Farringdon Road, London ECIR 3AD.

- AUGUST 1983

