K

COMPUTER
RECREATIONS

A program called MICE nibbles its way to

victory at the first Core War tournament

by A. K. Dewdney "

cialized programs do their level

best to destroy one another—
was in the spotlight late last year at the
first international Core War tourna-
ment held at the Computer Museum
in Boston, Mass. Of 31 programs en-
tered, three emerged as most robust.
The ultimate victor was a program
called Micke. Its author, Chip Wendell
of Rochester, N.Y., received a hand-
some trophy that incorporated a core-
memory board from an early CDC
6600 computer.

Core War has already appeared
twice in this department in recent
years [see “Computer Recreations,”
May, 1984, and March, 1985]. Written
by human beings, the Core War pro-
grams are on their own as they spar
in the arena of a computer’s memory.
The section of memory reserved for
the struggle is called the core, after an
obsolete form of memory construct-
ed from miniature ferromagnetic rings
known as core elements. The game has
generated so much enthusiasm that it
has sparked the formation of the Inter-
national Core Wars Society. The game
was recently modified by the society;
the new version lays out the format
that players will follow for now.

The basis of Core War—and the am-
munition of the recent tournament—is
a battle program written in a special,
low-level language called Redcode. A
set of 10 simple instructions enables
a program to move information from
one memory location to another, to
add and subtract information, to al-
ter the order in which its instructions
are executed and even to have several
instructions executing simultaneously
[see illustration on page 10]. One basic
instruction, for example, is the move
command MOV. It consists of three
parts—an instruction code and two ad-
dresses—that all occupy the same loca-
tion in the core. The command is most
generally written as MOV 4 B. If 4
happens to be 102 and B is —35, the

Core War—the game in which spe-

8

computer will go forward 102 addres-
ses and copy what it finds there into
the location five addresses behind the
MOV instruction.

The simplest Redcode program con-
sists of just one MOV instruction:
MOV 0 1. The program, which is
called 1Mp, causes the contents at rela-
tive address 0 (namely the MOV in-
struction itself) to be transferred torel-
ative address 1, just one address ahead
of itself. Redcode instructions are nor-
mally executed - consecutively. This
means that after the MOV 0 1 instruc-
tion is executed the computer will try
to execute an instruction at the next
address. There is, of course, now an in-
struction occupying that address: the
MOV 0 1 command just copied there.
As a consequence IMP patters from
address to address through the core,
mindlessly destructive. It leaves a trail
of MOV 0 1 instructions behind it.

An IMP can even steal an enemy pro-
gram’s very soul, its execution. To see
how this can happen, imagine that a
battle program is being executed in the
usual manner, in the order of its in-
structions. An IMP enters the program
from the top, overwriting the code
with an endless sequence of MOV 0 1
instructions. Sooner or later the sub-

verted program will probably transfer -

execution back to the overrun section.
At such a point the program becomes
a new IMp. It flies the same flag but is
now doomed to follow in the tracks of
the enemy IMP until the battle is over.

To avoid being overrun a Core War
program must at the very least con-
tain an IMP-STOMPER. The safeguard
consistsPof two instructions executed
cyclically:

MOV #0 —1
JMP —1

The first command moves the integer
0, symbolized by #0, to the relative
address — 1; in other words, every time
the MOV command is executed the lo-

cation just above it (the only direction
from which MP’s can attack) is filled
with a 0. The second instruction is the
JMP command. When it is executed, it
transfers the stream of execution, or
flow of control, to the address at rela-
tive location — 1, namely the address
just above the JMP. Each execution
cycle of the program causes a 0 to be

~ slammed down on any mMp that may

have arrived just above the IMP-STOMP-
ER. Consequently the 1MP is erased.
There are-two basic rules in Core
War. The first rule is that the two com-
peting programs must take turns ex-
ecuting their instructions. The alter-
nation is governed by MaRs, the Mem-
ory Array Redcode Simulator. As the

-somewhat strained military mnemonic

suggests, MARS simulates the action of
a computer. It continually updates the
contents of the core array in accor-
dance with the instructions being exe-
cuted. In doing so, it allows just one in-
struction per side to be executed per
turn. The second rule is that if a pro-
gram ceases torun, it loses.

As a program runs, it can have more
than one stream of execution. If execu-
tion encounters the command SPL A4
in a Redcode program, it splits into
two streams. One stream goes to the
instruction that immediately follows
SPL A4 and the other jumps to the in-
struction at relative address 4. Unfor-
tunately the MARS system cannot exe-
cute both instructions -simultaneous-
ly; it executes one of the instructions
on the next turn and tlie other instruc-
tion on the turn after that. What might
be thought an incredible advantage is
somewhat adumbrated; the:more con-
current streams ofexecution a pro-
gram has, the slower each stream pro-
ceeds. This is only fair, however. In the
case of multiple streams of execution
a battle program is declared the win-
ner- when all its opponent’s streams
have died out. At such a point MARS,
which would still expect to find an ex-
ecutable instruction, can find only
the computational equivalent of shell
holes and bomb craters.

To illustrate the SPL command,
here are the first five instructions of
my own entry in the Core War tourna-
ment. It is called coMMAaNDO for rea-
sons that will soon become clear.

MOV #0 —1
JMP -1
SPL —2
MOV 10113
SPL 112

Readers will recognize an IMP-STOMP-
ER in the first two instructions. Exe-

cution of the actual program begins
at the third instruction, SPL. —2. On
COMMANDO’s next two turns the first
and fourth instructions will be execut-
ed. On the two turns after those, the
second and fifth instructions will be
executed, Each stream proceeds inde-
pendently of the other and at half the
speed, so to speak. In the code above,
COMMANDO sets the IMP-STOMPER run-
ning on its own. Then it moves another
IMP (patiently waiting 10 addresses be-
yond the second MOV instruction) to
a distant location (113 addresses be-

yond). The second mMp is activated by
the second SPL command.
COMMANDO’S remaining instructions
copy the entire program into a new
segment of the core, 100 addresses
beyond its present location. The new
copy, like a commando just parachut-
ed into enemy territory, is activated by
a JMP command in the original pro-
gram. The old copy of COMMANDO,
except for the IMP-STOMPER, ceases to
run. Then the entire cycle of copying

‘begins again.

How would coMMANDO fare against

B EEERREAREREERR

R E RN SRR AENEA NG NRA T SR N

e e AL SRR YR SECRANREAANRI R R AR

'»»«:;-cg&@aasnh;»tnsaési‘:gﬁﬁs‘a&ﬁﬂ-&&&

its competitors? The tournament was
organized to provide for as many en-
gagements as possible between the 31
entries. A complete round robin, in
which every program fought all others
in turn, would have required 465 bat-
tles, more than time would allow. Con-
sequently the entries were divided ar-
bitrarily into two nearly equal groups,
division I and division II. A round rob-
in was then held within each division.
Imagine the strange mixture of emo-
tions I felt when coMMANDO emerged
as the winner of division II. On one

Early and late stages in a battle between yice (red) and cruincl (blue)

hand I was proud that my cybernetic
child had done so well. At the same
time I was somewhat mortified at the
prospect of winning the tournament
overall. Since I had consented to serve
as a commentator for the finals, my
objectivity (and credibility) would un-
doubtedly be strained.

The top four programs from each
division were then entered in a new
round robin. Three programs emerged
victorious from the fray, CHANG1 by
Morrison J. Chang of Floral Park,
N.Y., and two entries by Chip Wen-
dell, MIDGET and MICE. My COMMANDO
fell by the wayside, mortally wounded.
The final win by MICE came oddly;
MIDGET and MICE both fought CHANG1
to a draw, but MICE captured the decid-
ing point by beating MIDGET.

The contest between each pair of fi-
nalists consisted of four consecutive
battles. The time limit on each engage-
ment was 15,000 instructions per side,
or approximately two minutes of real
time. In each case the two battle pro-
grams were placed in random, non-
overlapping positions in the core and
allowed to have a go at it. As it hap-
pened, each battle between a given
pair of programs always had the same
result. In the case of MICE versus
CHANG the result was four draws.

It is fascinating to watch a Core War
in progress. The display used at the
tournament shows the core as a suc-
cession of cellular strips [see illustra-
tion on preceding page). Each cell repre-
sents a single address in the core, and
the last cell in the bottom row is con-

tiguous with the first cell in the top
row, in keeping with the circular struc-
ture of the core. The program that has
the first move initially occupies ad-
dress 0 and subsequently fills consecu-
tive core locations. Its color is light
blue. The opposition occupies a ran-
domly selected segment of locations
not overlapping those assigned to the
first program. The color given to the
second program is bright red. The col-
or of a cell in the display is determined
by the last program to alter the address
it represents. In this way one has an en-
gaging overview of the action.

Against a dark blue screen MICE and
CHANG1 crept about, launched MP’s,
hurled bombs and reproduced (parthe-
nogenetically). One of the contests was
typical: CHANG1 began as a strip of
blue cells in the upper left-hand corner
of the screen and the birth of MICE was
heralded by a red strip that appeared
less than halfway down the screen. Im-
mediately MICE began to proliferate
rapidly.

One of the shortest self-replicating
programs I know, MICE has just eight
instructions, two of which create a new
copy of the program some 833 ad-
dresses beyond its present location in
the core [see top illustration on opposite
page]. The two instructions demon-
strate a few additional features of the
Redcode language:

loop MOV @pitr <5
DIN loop ptr

The word loop, which is simply a label

INSTRUCTION MNEMONIC ARGUMENTS EXPLANATION

Data statement DAT B A nonexecutable statement;

B is the data value
Move MOV A B Move contents of address A to address B,
Add ADD A B Add contents of address A to address B.
Subtract suB A B Subtract contents of address A from

address B.
Jump JMP A Transfer control to address A.
Jump if zero JMZ A B Transfer control to address A

if contents of address B are zero
Jump if not zero JMN A B Transfer control to address A

if contents of address B are not zero
Decrement: DJN A B Subtract 1 from contents of address B
Jump if not zero and transfer control to address A

if contents of address B are not zero.
Compare CmMmP A B Compare contents of addresses A

.) and B; if they are equal,

skip the next instruction.
Spiit SPL A Split execution into next instruction

and the instruction at A.

A summary of Redcode, an assembly language for Core War

10

that stands for an address, makes Core
War programs easier to write. The
DJN (short for decrement and jump
on nonzero values) command causes
execution to jump to the instruction la-
beled loop if the value stored at anoth-
er address (labeled prr) is not yet zero.
The @ sign indicates a system of refer-
ence known as indirection; when the
MOV command is executed, it does
not move the contents of the location
labeled ptr but instead moves the con-
tents of the contents, so to speak. The
number stored at ptr is the address of
the datum to be moved. In this case the
datum is one of MICE’s instructions.

The number stored at p#r continual-
ly changes owing to the decrementing
function of the DIN command. The
number starts at the last program ad-
dress and steadily decrements to zero,
at which point the copying loop is fin-
ished. In a similar manner the address
at which the instructions are to be
stored is also given by indirection. The
relative address 5 initially holds the
number 833 and the first instruction
moved by Mice lands 832 addresses
beyond the MOV command; as indi-
cated by the < sign, the target address
is decremented and MOV is executed.
MICE copics itself tail first.

An SPL (split) command immedi-
ately following the loop transfers exe-
cution to the new copy of MiCE. But
following this successful birth the par-
ent program begins anew. There is no
limit to how many progeny a single
program of this type may produce.
And each new program does the same
thing. MICE, indeed!

So it was that in a typical contest
with CHANG1, MICE bred with incredi-
ble rapidity. Soon the screen was full
of little red strips. In the meantime

. cHaNG1 had activated a kind of mMp

factory at its downstream end. The
factory was achieved with only three
instructions: :

SPL2
JMP —1
MOV O1

When execution arrives at the SPL
command, it splits into two branches.
One of them transfers execution to~
MOV 0 1. The other executes the IMP
—1 instruction, which begins the proc-
ess anew. In the meantime one Mp has
already left the assembly line on a
mousing mission. One problem with
profligate iMp production is that a
farge number of independent streams
of execution slows down every proc-

- ess executed; 1,000 mmP’s move 1,000

times slower and more painfully than
a single mMp. In any event, the fateful
horde emerged slowly at the top of the
display screen as an ever lengthening

'
|

»

solid blue strip. Would they be able to
subvert MICE?

While the 1MP’s were reproducing,
some of the MICE copies were killed by
data bombs from cHaNG1. A data
bomb usually consists of a 0 that is
launched by a MOV command into
what one hopes is enemy territory. The
key instruction in Chang’s program is
MOV #0 @ — 4. The 0 is moved to an
address contained in a location that
is four instructions above the MOV
command. The location is continually
incremented by 16 to ensure a well-
spaced barrage.

As some MICE were dying in this
manner, the IMP’s began to exert their
destructive influence. But each copy
of the original MICE program carries
with it a suicide option; it continually
checks on whether its first instruction
(which is a data statement consisting
of 0 alone) is still zero. If it is not, MICE
allows execution to proceed to a (non-
executable) data statement and dies
quietly rather than lose its soul to a
tiny fiend.

If some copies of MICE were being
killed by data bombs and others were
executing their own execution, so to
speak, to avoid capture, how did MICE
survive? The answer surely lies in its
profligate spawning of new copies.

" Many of these, after all, landed on

enemy iMP’s. Indeed, before time was
called one copy of mice had landed
on CHANG1’s home program and de-
stroyed it. cHANG1, however, had cre-
ated enough mP’s to tide it over until
the closing buzzer sounded. The battle
was a draw.

The art of Core War program-
ming is surely still in its infancy. Prog-
ress will be incremental and cumula-
tive. Some intrepid programmer will
discover infallible remedies against
iMp’s and another will discover simple
means of self-repair. Readers wanting
to keep abreast of the latest develop-
ments may subscribe to The Core War
Newsletter by writing to William R.
Buckley at 5712 Kern Drive, Hunting-
ton Beach, Calif. 92649. Readers who
want to write battle programs should
probably join the International Core
Wars Society. Mark Clarkson current-
ly directs the society and would wel-
come new members. He lives at 8619
Wassall Street, Wichita, Kan. 67210-
1934. One does not have to join the so-
ciety, however, to order the all-impor-
tant “Core War Standards” document
from Clarkson. It precisely describes
the syntax and semantics of Redcode
programs; its cost is $4. One cannot be
a Core Warrior without it.

Battle programs of the future will
perhaps be longer than today’s win-
ners but orders of magnitude more ro-
bust. They will gather intelligence, lay

L
-
CHANGH1 MICE
MOV #0 -1 ptr DAT #0
JMP -1 start MOV #12 ptr
DAT +9 loop MOV @ptr <5
start SPL -2 DJN loop ptr
SPL 4 SPL @3 ’ :
ADD #-16 -3 ADD #8653 2
MOV #0 @-4 JMZ -5 -6
JMP -4 DAT 833
SPL 2
JMP -1
MOV 0 1

Contenders for the Core War championship

false trails and strike at their oppo-
nents suddenly and with determina-
tion. Such trends may already be in
evidence at the second international
Core War tournament to be held at the
Computer Museum this fall. In the
meantime readers have ample oppor-
tunity to express their cleverness and
cunning in Redcode language.

Last fall’s tournament owes much
of its success to Mark and Beth Clark-
son as well as to Gwen Bell, president
of the Computer Museum, and Oliver
Strimpel, its associate director and cu-
rator. It seems worthwhile to conclude
with a brief note on the museum itself.

The Computer Museum in Boston
is apparently the only museum in the
world devoted entirely to computers.
Housed in a renovated (and now chic)

warehouse on the Boston waterfront,

it features old vacuum-tube monsters,
PC’s for personal play, walls adorned
with stunning graphics, a complete
NORAD SAGE computer system and a
host of exhibits that entertain and edu-
cate. Readers visiting a certain famous
old ship in the Boston harbor can have
their computational cup of tea right
next door.

In this department last October I
described a program called FACE-

BENDER, inspired by the work of Susan-

E. Brennan of Hewlett-Packard Labo-
ratories in Palo Alto, Calif. As input
the program takes the digitized version
of a face to be caricatured, which it
then compares with an average refer-
ence face, similarly digitized, in mem-
ory. The program then distorts, or ex-
aggerates, each feature of the input
face by an amount that is proportional
to its distance from the corresponding
feature in the reference face; an ear
that is moderately large compared
with the reference ear will be enlarged
still further by multiplying all the dif-
ferences by an exaggeration factor 1.
Readers who want to implement the
FACEBENDER program may have been
daunted by the prospect of digitizing
their own face from a photograph. Pat

Macaluso of White Plains, N.Y ., uses
the reference face as the basis of its
own caricature. “The key,” says Maca-
luso, “is to scale the range of variation
to the size of each feature. Thus an ear
receives more absolute variation than
the chin cleft. Simply calculate the en-
closing ‘box’ by calculating the max-
imum and minimum of the x and y
coordinates for each feature.” Within
this framework the amount of distor-
tion is governed by random numbers
selected by the program. In this way
an endless variety of faces can be pro-
duced by Macaluso’s self-referential
version of FACEBENDER. One of the
caricatures so produced resembled Le-
onardo da Vinci. It is shown below.

A reader known only as DMI from
Pasadena, Calif., has a suggestion for
avoiding “facelessness,” the dreaded
state that occurs when the exaggera-
tion factor is too large; all features de-
generate into a wild and unrecogniz-
able bird’s nest of polygons. Imagine
that the face to be caricatured is super-
posed on the reference face and that
corresponding points are connected by
springs. The distortion process now at-
tempts to displace the points of the in-
put face, but in doing so it encounters
resistance from the springs. Small dis-
tortions are thereby hardly affected,
but large ones are pulled up short of
the faceless state.

Self-caricature of the average face

11

