

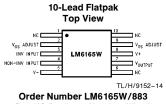
LM6165/LM6265/LM6365 **High Speed Operational Amplifier**

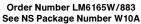
General Description

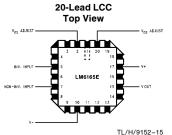
The LM6165 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300 V/µs and 725 MHz GBW (stable for gains as low as +25) with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5V.

These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which produces fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features ■ High slew rate

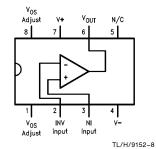

■ High slew rate	300 V/μs
■ High GBW product	725 MHz
■ Low supply current	5 mA
■ Fast settling	80 ns to 0.1%
■ Low differential gain	<0.1%
Low differential phase	<0.1°
■ Wide supply range	4 75V to 32V


■ Stable with unlimited capacitive load


Applications

- Video amplifier
- Wide-bandwidth signal conditioning
- Radar
- Sonar

Connection Diagrams



Order Number LM6165E/883 See NS Package Number E20A

$\begin{array}{c} \text{Military} \\ -55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq \ +125^{\circ}\text{C} \end{array}$	Industrial -25°C ≤ T _A ≤ +85°C	$\begin{array}{c} \text{Commercial} \\ 0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +70^{\circ}\text{C} \end{array}$	Package	NSC Drawing	
	LM6265N	LM6365N	8-Pin Molded DIP	N08E	
LM6165J/883 5962-8962501PA			8-Pin Ceramic DIP	J08A	
		LM6365M	8-Pin Molded Surface Mt.	M08A	
LM6165E/883 5962-89625012A			20-Lead LCC	E20A	
LM6165W883 5962-8962501HA			10-Pin Ceramic Flatpak	W10A	

Order Number LM6165J/883 See NS Package Number J08A

Order Number LM6365M See NS Package Number M08A Order Number LM6265N or

LM6365N See NS Package Number N08E

VIP™ is a trademark of National Semiconductor Corporation.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V $^+$ – V $^-$) 36V Differential Input Voltage (Note 6) $\pm 8V$ Common-Mode Voltage Range (Note 10) (V $^+$ – 0.7V) to (V $^-$ + 0.7V) Output Short Circuit to GND (Note 1) Continuous Soldering Information Dual-In-Line Package (N, J) Soldering (10 sec.) 260°C Small Outline Package (M)

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Storage Temp Range -65° C to $+150^{\circ}$ C

 $\begin{array}{lll} \mbox{Storage Temp Range} & -65^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \mbox{Max Junction Temperature (Note 2)} & 150^{\circ}\mbox{C} \\ \mbox{ESD Tolerance (Notes 6 and 7)} & \pm 700\mbox{V} \end{array}$

Operating Ratings

 $\begin{tabular}{llll} Temperature Range (Note 2) \\ LM6165, LM6165J/883 & -55^{\circ}C \le T_{J} \le +125^{\circ}C \\ LM6265 & -25^{\circ}C \le T_{J} \le +85^{\circ}C \\ LM6365 & 0^{\circ}C \le T_{J} \le +70^{\circ}C \\ Supply Voltage Range & 4.75V to 32V \\ \end{tabular}$

DC Electrical Characteristics

Vapor Phase (60 sec.)

Infrared (15 sec.)

The following specifications apply for Supply Voltage $=\pm15$ V, $V_{CM}=0$, $R_L\geq 100$ k Ω and $R_S=50\Omega$ unless otherwise noted. **Boldface** limits apply for $T_A=T_J=T_{MIN}$ to T_{MAX} ; all other limits $T_A=T_J=25$ °C.

215°C

220°C

Symbol Pa		Conditions	Тур	LM6165	LM6265	LM6365	Units	
	Parameter			Limit (Notes 3, 11)	Limit (Note 3)	Limit (Note 3)		
V _{OS}	Input Offset Voltage		1	3 4	3 4	6 7	mV Max	
V _{OS} Drift	Input Offset Voltage Average Drift		3				μV/°C	
lb	Input Bias Current		2.5	3 6	3 5	5 6	μA Max	
los	Input Offset Current		150	350 800	350 600	1500 1900	nA Max	
l _{OS} Drift	Input Offset Current Average Drift		0.3				nA/°C	
R _{IN}	Input Resistance	Differential	20				kΩ	
C _{IN}	Input Capacitance		6.0				pF	
A _{VOL} Large Signal Voltage Gain (Note 9)	Voltage Gain	$V_{OUT} = \pm 10V,$ $R_L = 2 k\Omega$	10.5	7.5 5.0	7.5 6.0	5.5 5.0	V/mV Min	
	(Note 9)	$R_L = 10 k\Omega$	38					
V _{CM} Input Common-Moo Voltage Range	V _{CM}	Input Common-Mode Voltage Range		+14.0	+13.9 + 13.8	+ 13.9 + 13.8	+ 13.8 + 13.7	V Min
			-13.6	−13.4 − 13.2	-13.4 - 13.2	-13.3 - 13.2	V Min	
	Supply = +5V (Note 4)	4.0	3.9 3.8	3.9 3.8	3.8 3.7	V Min		
			1.4	1.6 1.8	1.6 1.8	1.7 1.8	V Max	
CMRR	Common-Mode Rejection Ratio	$-10V \le V_{CM} \le +10V$	102	88 82	88 84	80 78	dB Min	
PSRR	Power Supply Rejection Ratio	$\pm 10 \text{V} \le \text{V}^{\pm} \le \pm 16 \text{V}$	104	88 82	88 84	80 78	dB Min	
V _O	Output Voltage Swing	Supply = $\pm 15V$, R _L = $2 k\Omega$	+14.2	+ 13.5 + 13.3	+ 13.5 + 13.3	+13.4 + 13.3	V Min	
			-13.4	-13.0 - 12.7	-13.0 - 12.8	-12.9 - 12.8	V Min	

DC Electrical Characteristics (Continued)

The following specifications apply for Supply Voltage $=\pm15$ V, $V_{CM}=0$, $R_L\geq 100$ k Ω and $R_S=50\Omega$ unless otherwise noted. **Boldface** limits apply for $T_A=T_J=T_{MIN}$ to T_{Max} ; all other limits $T_A=T_J=25$ °C.

Symbol	Parameter	Conditions	Тур	LM6165	LM6265	LM6365	Units
				Limit (Notes 3, 11)	Limit (Note 3)	Limit (Note 3)	
V _O (Continued)	Output Voltage Swing (Continued)	Supply = $+5V$ R _L = $2 k\Omega$ (Note 4)	4.2	3.5 3.3	3.5 3.3	3.4 3.3	V Min
			1.3	1.7 2.0	1.7 1.9	1.8 1.9	V Max
	Output Short Circuit Current	Source	65	30 20	30 25	30 25	mA Min
		Sink	65	30 20	30 25	30 25	mA Min
Is	Supply Current		5.0	6.5 6.8	6.5 6.7	6.8 6.9	mA Max

AC Electrical Characteristics

The following specifications apply for Supply Voltage $=\pm$ 15V, $V_{CM}=0$, $R_L\geq 100$ k Ω and $R_S=50\Omega$ unless otherwise noted. **Boldface** limits apply for $T_A=T_J=T_{MIN}$ to T_{MAX} ; all other limits $T_A=T_J=25^{\circ}C$. (Note 5)

				LM6165	LM6265	LM6365	
Symbol	Parameter	Conditions	Тур	Limit (Notes 3, 11)	Limit (Note 3)	Limit (Note 3)	Units
GBW	Gain Bandwidth	F = 20 MHz	725	575 350	575	500	MHz Min
	Product	Supply = ±5V	500				IVIIII
SR	Slew Rate	A _V = +25 (Note 8)	300	200 180	200	200	V/μs
		Supply = ±5V	200				Min
PBW	Power Bandwidth Product	$V_{OUT} = 20 V_{PP}$	4.5				MHz
ts	Settling Time	10V Step to 0.1% $A_V = -25$, $R_L = 2 k\Omega$	80				ns
φ _m	Phase Margin	$A_V = +25$	45				Deg
A _D	Differential Gain	NTSC, $A_V = +25$	< 0.1				%
φ _D	Differential Phase	NTSC, $A_V = +25$	<0.1				Deg
e _{np-p}	Input Noise Voltage	F = 10 kHz	5				nV/√Hz
i _{np-p}	Input Noise Current	F = 10 kHz	1.5				pA/√Hz

Note 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

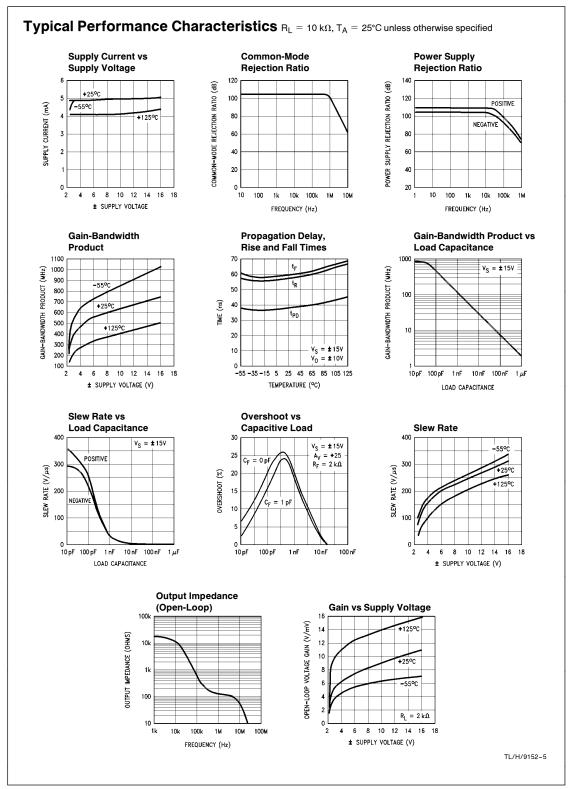
Note 2: The typical junction-to-ambient thermal resistance of the molded plastic DIP (N) is 105°C/Watt, and the molded plastic SO (M) package is 155°C/Watt, and the cerdip (J) package is 125°C/Watt. All numbers apply for packages soldered directly into a printed circuit board.

Note 3: All limits guaranteed by testing or correlation.

Note 4: For single supply operation, the following conditions apply: $V_{+} = 5V$, $V_{-} = 0V$, $V_{CM} = 2.5C$, $V_{OUT} = 2.5V$. Pin 1 & Pin 8 (V_{OS} Adjust) are each connected to Pin 4 (V_{-}) to realize maximum output swing. This connection will degrade V_{OS} .

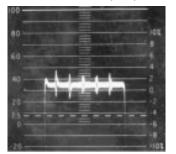
Note 5: C_I ≤ 5 pF.

Note 6: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors and probable degradation of the input parameters (especially V_{OS}, I_{OS}, and Noise).

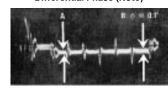

Note 7: The average voltage that the weakest pin combinations (those involving Pin 2 or Pin 3) can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500 Ω .

Note 8: $V_{\text{IN}} = 0.8 \text{V}$ step. For supply $= \pm 5 \text{V}$, $V_{\text{IN}} = 0.2 \text{V}$ step.

Note 9: Voltage Gain is the total output swing (20V) divided by the input signal required to produce that swing.

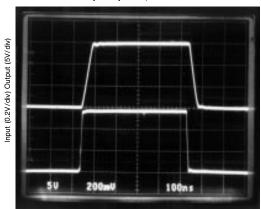

Note 10: The voltage between $\ensuremath{\text{V}^{+}}$ and either input pin must not exceed 36V.

Note 11: A military RETS electrical test specification is available on request. At the time of printing, the LM6165J/883 RETS spec complied with the **Boldface** limits in this column. The LM6165J/883 may also be procured as Standard Military Drawing #5962-8962501PA.



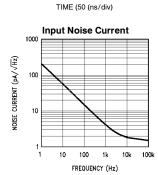
Typical Performance Characteristics (Continued) $R_L=10~k\Omega,\,T_A=25^{\circ}C$ unless otherwise specified

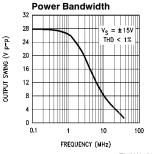
Differential Gain (Note)


Differential Phase (Note)

Note: Differential gain and differential phase measured for four series LM6365 op amps configured with gain of +25 (each output attenuated by 96%), in series with an LM6321 buffer. Error added by LM6321 is negligible. Test performed using Tektronix Type 520 NTSC test system.

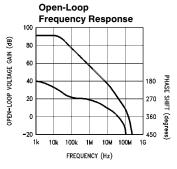
TL/H/9152-6

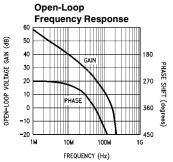

Step Response; Av = +25

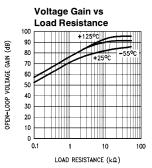


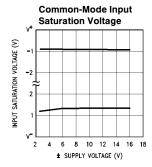
TL/H/9152-1

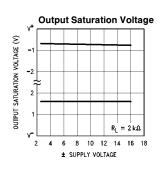
Input Noise Voltage NOISE VOLTAGE (nV/VHZ) 100 10

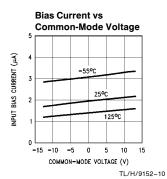

FREQUENCY (Hz)

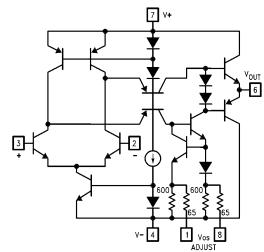





TL/H/9152-9


Typical Performance Characteristics (Continued) $R_L=10~k\Omega,\,T_A=25^{\circ}C$ unless otherwise specified





Simplified Schematic

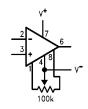
TL/H/9152-3

Applications Tips

The LM6365 is stable for gains of 25 or greater. The LM6361 and LM6364, specified in separate datasheets, are compensated versions of the LM6365. The LM6361 is unitygain stable, while the LM6364 is stable for gains as low as 5. The LM6361, and LM6364 have the same high slew rate as the LM6365, typically 300 V/ μ s.

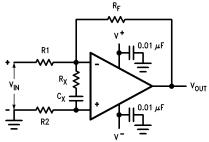
To use the LM6365 for gains less than 25, a series resistorcapacitor network should be added between the input pins (as shown in the Typical Applications, Noise Gain Compensation) so that the high-frequency noise gain rises to at least 25.

Power supply bypassing will improve stability and transient response of the LM6365, and is recommended for every design. 0.01 μF to 0.1 μF ceramic capacitors should be


used (from each supply "rail" to ground); an additional 2.2 μF to 10 μF (tantalum) may be required for extra noise reduction.

Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling between adjacent nodes, and can cause circuit gain to unintentionally vary with frequency.

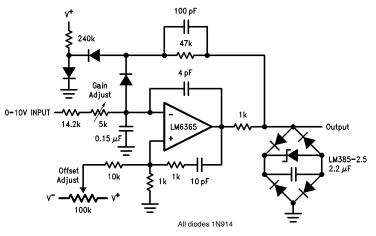
Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit performance.

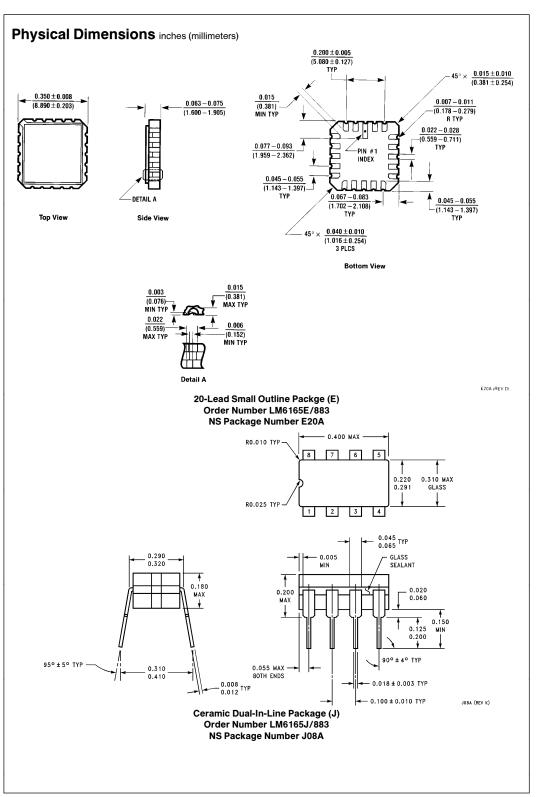

Typical Applications

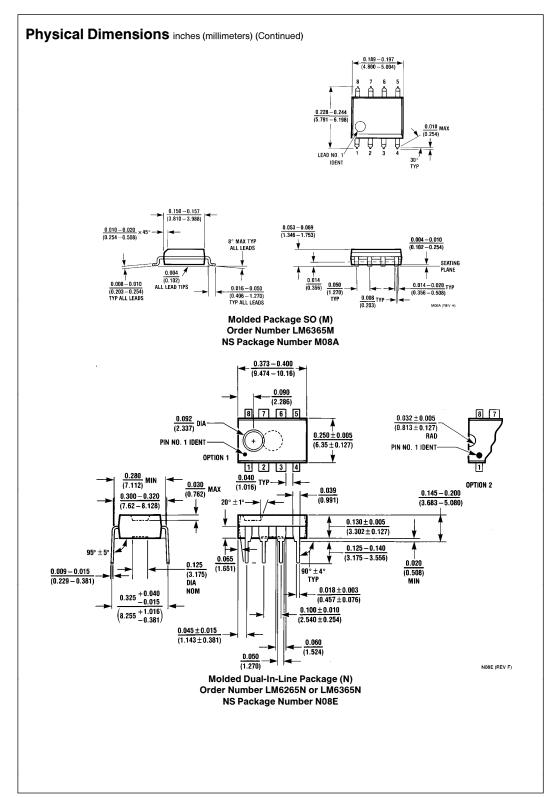
Offset Voltage Adjustment

TL/H/9152-11

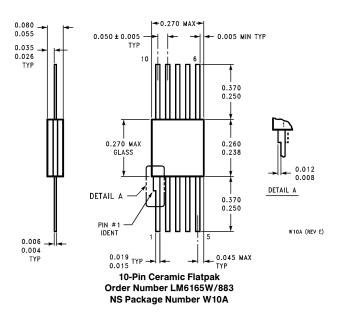
Noise-Gain Compensation


TL/H/9152-12


TL/H/9152-13


 $R_X C_X \ge 1/(2\pi \cdot 25 \text{ MHz})$ $[R1 + R_F (1 + R1/R2)] = 25 R_X$

1 MHz Voltage-to-Frequency Converter


 $(f_{OUT} = 1 \text{ MHz for } V_{IN} = 10V)$

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwgs@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408