National Semiconductor

DM74ALS652/74ALS652-1 Octal TRI-STATE[®] Bus Transceiver and Register

General Description

This device incorporates an octal transceiver and an octal D-type register configured to enable transmission of data from bus to bus or internal register to bus.

This bus transceiver features totem-pole TRI-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high level logic drive provide this device with the capability of being connected directly to and driving the bus lines in a bus organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The 'ALS652-1 version features the same performance as the standard versions, with the addition of increased current drive capability to meet the current requirements of various bus architectures. For all ALS-1 products, the recommended maximum I_{OL} is increased to 48 mA.

The registers in the 'ALS652 are edge-triggered D-type flipflops. On the positive transition of the clock (CAB or CBA), the input data is stored into the appropriate register. The CAB input controls the transfer of data into the A register and the CBA input controls the B register.

The SAB and SBA control pins are provided to select whether real-time data or stored data is transferred. A low input level selects real-time data and a high level selects stored data. The select controls have a "make before break" configuration to eliminate a glitch which would normally occur in a typical multiplexer during the transition between stored and real-time data.

The enable (GAB and GBA) control pins provide four modes of operation: real-time data transfer from bus A to B, realtime data transfer from bus B to A, real-time bus A and/or B data transfer to internal storage, or internal stored data transfer to bus A and/or B.

Features

- Maximum I_{OL} increased to 48 mA for 'ALS652-1 product
- Switching specifications at 50 pF
 - Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- TRI-STATE buffer-type outputs drive bus lines directly
- Independent registers and enables for A and B buses
- Multiplexed real-time and stored data

RRD-B30M36/Printed in U. S. A

http://www.national.com

March 1996

Absolute Maximum Ratings

Supply Voltage	7V
Input Voltage	
Control Inputs	7V
I/O Ports	5.5V
Operating Free-Air Temperature Range	0°C to +70°C
Storage Temperature Range	-65°C to +150°C
Typical $\theta_{\rm JA}$	
N Package	44.5°C/W
M Package	80.5°C/W
Note: This product mosts application requirement	a of EOO tomporatura av

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note: This product meets application requirements of 500 temperature cycles from $-65^\circ C$ to $+150^\circ C.$

Recommended Operating Conditions

Sumbo		Baramotor			DM74ALS652/74ALS652-1				Unito	
Symbo		Parameter				Nom	Nom Max		Units	
V _{CC}	Supply Voltage	Supply Voltage			4.5	5	5.5		V	
VIH	High Level Input	High Level Input Voltage			2				V	
VIL	Low Level Input \	/oltage					0.8		V	
I _{OH}	High Level Outpu	t Current					-15	-15		
IOL	Low Level Output	Low Level Output Current ALS652					24		mA	
		ALS652-1					48			
f _{CLK}	Clock Frequency				0		40		MHz	
tw	Pulse Duration, C	locks Low or	High		12.5				ns	
tsu	Data Setup Time, B before CBA	Data Setup Time, A before CAB or B before CBA			10 个				ns	
t _H	Data Hold Time, B after CBA	Data Hold Time, A after CAB or B after CBA							ns	
TA	Free Air Operatin	Free Air Operating Temperature					70		°C	
Elect	rical Characterist	iCS over red	commende	d free air te	emperature ra	ange		1		
Elect	rical Characteris	iCS over red	commende	ed free air te	emperature ra	ange		1		
Symbol	Parameter		Test C	Conditions	•	ange Min	Тур	Max		
Symbol V _{IK}	Parameter Input Clamp Voltage	V _{CC} = Min	Test C n, I _I = −18	onditions mA		Min		Max -1.2		
Symbol V _{IK}	Parameter Input Clamp Voltage High Level Output	$V_{CC} = Min$ $V_{CC} = 4.5$	Test C n, $I_{I} = -18$ V to 5.5V	mA I _{OH} = -	-0.4 mA	Min V _{CC} -	2		V	
Symbol V _{IK}	Parameter Input Clamp Voltage	V _{CC} = Min	Test C n, $I_{I} = -18$ V to 5.5V	Conditions mA I _{OH} = - I _{OH} = -	-0.4 mA -3 mA	Min V _{CC} - 2.4			V	
Symbol V _{IK} V _{OH}	Parameter Input Clamp Voltage High Level Output Voltage	$V_{CC} = Min$ $V_{CC} = 4.5$ $V_{CC} = Min$	Test C n, $I_1 = -18$ V to 5.5V	Conditions $I_{OH} = -$ $I_{OH} = M$	-0.4 mA -3 mA lax	Min V _{CC} -	2 3.2	-1.2	V	
Symbol V _{IK} V _{OH}	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output	$V_{CC} = Min$ $V_{CC} = 4.5$	Test C n, $I_1 = -18$ V to 5.5V	$\begin{array}{c} \text{Conditions} \\ \text{mA} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	- 0.4 mA - 3 mA lax 2 mA	Min V _{CC} - 2.4	2 3.2 0.25	-1.2	 	
Symbol V _{IK} V _{OH}	Parameter Input Clamp Voltage High Level Output Voltage	$V_{CC} = Min$ $V_{CC} = 4.5$ $V_{CC} = Min$	Test C n, $I_1 = -18$ V to 5.5V	$\begin{array}{c} \text{Conditions} \\ \text{I}_{OH} = -\\ \text{I}_{OH} = -\\ \text{I}_{OH} = M\\ \text{I}_{OL} = 12\\ \text{I}_{OL} = 24 \end{array}$	-0.4 mA -3 mA lax 2 mA 4 mA	Min V _{CC} - 2.4	2 3.2 0.25 0.35	-1.2 0.4 0.5	 	
Symbol V _{IK} V _{OH}	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output Voltage	$V_{CC} = Min$ $V_{CC} = 4.5$ $V_{CC} = Min$ $V_{CC} = Min$	Test C h, $I_1 = -18$ V to 5.5V h	$\begin{array}{c} \text{Conditions} \\ \text{mA} \\ \hline I_{OH} = - \\ I_{OH} = - \\ I_{OH} = M \\ \hline I_{OL} = 12 \\ I_{OL} = 24 \\ \hline I_{OL} = 48 \end{array}$	-0.4 mA -3 mA lax 2 mA 4 mA 3 mA	Min V _{CC} - 2.4	2 3.2 0.25	-1.2 0.4 0.5 0.5	- V - V	
Symbol V _{IK} V _{OH}	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output	$V_{CC} = Min$ $V_{CC} = 4.5$ $V_{CC} = Min$	Test C h, $I_1 = -18$ V to 5.5V h	$\begin{array}{c} \text{Conditions} \\ \text{IMA} \\ \hline I_{OH} = - \\ \hline I_{OH} = - \\ \hline I_{OH} = M \\ \hline I_{OL} = 12 \\ \hline I_{OL} = 24 \\ \hline I_{OL} = 48 \\ \hline I/O \text{ Ports} \end{array}$	-0.4 mA -3 mA lax 2 mA 4 mA 3 mA s, V ₁ = 5.5V	Min V _{CC} - 2.4 2	2 3.2 0.25 0.35	-1.2 0.4 0.5 0.5 100		
Symbol V _{IK} V _{OH} V _{OL}	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output Voltage Input Current at Max Input Voltage	$V_{CC} = Min$ $V_{CC} = 4.5$ $V_{CC} = Min$ $V_{CC} = Min$ $V_{CC} = Ma$	$\frac{\text{Test C}}{1, l = -18}$ $\frac{V \text{ to } 5.5 \text{ V}}{1}$ $\frac{1}{1}$	$\begin{array}{c} \text{Conditions} \\ \text{IMA} \\ \hline I_{OH} = - \\ I_{OH} = - \\ I_{OH} = - \\ I_{OL} = - 12 \\ I_{OL} = - 12 \\ I_{OL} = - 24 \\ I_{OL} = - 48 \\ I/O \text{ Ports} \\ \hline \text{Control I} \end{array}$	-0.4 mA -3 mA lax 2 mA 4 mA 3 mA	Min V _{CC} - 2.4 2	2 3.2 0.25 0.35	-1.2 0.4 0.5 0.5 100 100	ν - ν - μ.	
Symbol VIK VOH VOL	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output Voltage Input Current at Max Input Voltage High Level Input Current	$V_{CC} = Min$ $V_{CC} = 4.5$ $V_{CC} = Min$ $V_{CC} = Min$ $V_{CC} = Ma$ $V_{CC} = Ma$	Test C n, $I_1 = -18$ V to 5.5V n x x, $V_1 = 2.7$	$\begin{array}{c} \text{conditions} \\ \text{mA} \\ \hline I_{OH} = - \\ I_{OH} = - \\ I_{OH} = - \\ I_{OH} = - \\ I_{OL} = - \\ 1_{OL} = - $	-0.4 mA -3 mA lax 2 mA 4 mA 3 mA 3 mA $s, V_{1} = 5.5V$ nputs, $V_{1} = 7$	Min V _{CC} - 2.4 2	2 3.2 0.25 0.35	-1.2 0.4 0.5 0.5 100 100 20	 	
Symbol V _{IK} V _{OH} V _{OL}	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output Voltage Input Current at Max Input Voltage	$V_{CC} = Min$ $V_{CC} = 4.5$ $V_{CC} = Min$ $V_{CC} = Min$ $V_{CC} = Ma$	$\frac{\text{Test C}}{1, I_{1} = -18}$ $\frac{\text{V to 5.5V}}{1}$ $\frac{1}{1}$ x $x, V_{1} = 2.7$ x,	$\begin{array}{c} \text{Conditions} \\ \text{ImA} \\ \hline I_{OH} = - \\ I_{OH} = - \\ I_{OH} = M \\ \hline I_{OL} = 12 \\ I_{OL} = 22 \\ \hline I_{OL} = 48 \\ \hline I/O \text{ Ports} \\ \hline Control I \\ \hline V, (Note 1) \\ \hline Control I \end{array}$	-0.4 mA -3 mA 1ax 2 mA 4 mA 3 mA 3 mA $s, V_1 = 5.5V$ nputs, $V_1 = 7$ 7	Min V _{CC} - 2.4 2	2 3.2 0.25 0.35	-1.2 0.4 0.5 0.5 100 100 20 -200	ν - ν - μι - μι	
Symbol VIK VOH VOL I IH IL	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output Voltage Input Current at Max Input Voltage High Level Input Current Low Level Input Current Low Level Input Current	$V_{CC} = Min$ $V_{CC} = 4.5$ $V_{CC} = Min$ $V_{CC} = Min$ $V_{CC} = Ma$ $V_{CC} = Ma$ $V_{CC} = Ma$ $V_{CC} = Ma$	Test C n, $I_{I} = -18$ V to 5.5V n x x, $V_{I} = 2.7$ x, (Note 1)	$\begin{array}{c} \text{conditions} \\ \text{imA} \\ \hline I_{OH} = - \\ I_{OH} = - \\ I_{OH} = M \\ \hline I_{OL} = 12 \\ I_{OL} = 24 \\ \hline I_{OL} = 48 \\ \hline I/O \text{ Ports} \\ \hline Control I \\ V, (Note 1) \\ \hline Control I \\ \hline I/O \text{ Ports} \end{array}$	-0.4 mA -3 mA 1ax 2 mA 4 mA 3 mA 3 mA $s, V_1 = 5.5V$ nputs, $V_1 = 7$ 7	Min V _{CC} - 2.4 2 2	2 3.2 0.25 0.35	-1.2 0.4 0.5 100 100 20 -200 -200	ν - ν - μι - μι	
Symbol VIK VOH VOL I IH IL O	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output Voltage Input Current at Max Input Voltage High Level Input Current Low Level Input Current Output Drive Current	$V_{CC} = Min$ $V_{CC} = 4.5$ $V_{CC} = Min$ $V_{CC} = Min$ $V_{CC} = Ma$	Test C n, $I_1 = -18$ V to 5.5V n x x x, $V_1 = 2.7$ x, (Note 1) x, $V_0 = 2.3$	$\begin{array}{c} \text{conditions} \\ \text{mA} \\ \hline I_{OH} = - \\ I_{OH} = - \\ I_{OH} = - \\ I_{OL} = - $	-0.4 mA -3 mA -3 mA 2 mA 4 mA 3 mA $5, V_{I} = 5.5V$ $nputs, V_{I} = 7$ $nputs$ s	Min V _{CC} - 2.4 2	2 3.2 0.25 0.35 0.35 	-1.2 0.4 0.5 0.5 100 20 -200 -200 -112	ν - ν - μι - μι	
Symbol V _{IK} V _{OH} V _{OL}	Parameter Input Clamp Voltage High Level Output Voltage Low Level Output Voltage Input Current at Max Input Voltage High Level Input Current Low Level Input Current Low Level Input Current	$V_{CC} = Min$ $V_{CC} = 4.5$ $V_{CC} = Min$ $V_{CC} = Min$ $V_{CC} = Ma$ $V_{CC} = Ma$ $V_{CC} = Ma$ $V_{CC} = Ma$	Test C n, $I_1 = -18$ V to 5.5V n x x x, $V_1 = 2.7$ x, (Note 1) x, $V_0 = 2.3$	$\begin{array}{c} \text{Conditions} \\ \text{ImA} \\ \hline I_{OH} = - \\ I_{OH} = - \\ I_{OH} = M \\ \hline I_{OL} = 12 \\ I_{OL} = 24 \\ \hline I_{OL} = 48 \\ \hline I/O \text{ Ports} \\ \hline Control I \\ V, (Note 1) \\ \hline Control I \\ \hline I/O \text{ Ports} \end{array}$	-0.4 mA -3 mA 1 lax 2 mA 4 mA 3 mA 3 mA $s, V_1 = 5.5 \text{V}$ $n \text{puts}, V_1 = 7$ n puts s High	Min V _{CC} - 2.4 2 2	2 3.2 0.25 0.35	-1.2 0.4 0.5 100 100 20 -200 -200	Uni V V - V - μι μι μι μι μι μι μι μι μι μι	

Note 1: For I/O ports the TRI-STATE output currents (IOZH and IOZL) are included in the IIH and IIL parameters.

Symbol	Parameter	Conditions	From (Input)	DM74ALS652/ 74ALS652-1		Units
	i ulullotoi	oonaliono	To (Output)	Min	Max	-
t _{PLH}	Propagation Delay Time Low to High Level Output	$V_{CC} = 4.5V \text{ to } 5.5V,$ $C_{L} = 50 \text{ pF},$	CBA or CAB to A or B	10	30	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	$R_1 = R_2 = 500\Omega$, $T_A = Min \text{ to Max}$	CBA or CAB to A or B	5	17	ns
t _{PLH}	Propagation Delay Time Low to High Level Output		A or B to B or A	5	18	ns
t _{PHL}	Propagation Delay Time High to Low Level Output		A or B to B or A	3	12	ns
t _{PLH}	Propagation Delay Time Low to High Level Output (with A or B Low) (Note 2)		SBA or SAB to A or B	12	35	ns
t _{PHL}	Propagation Delay Time High to Low Level Output (with A or B Low) (Note 2)		SBA or SAB to A or B	6	20	ns
tрLH	Propagation Delay Time Low to High Level Output (with A or B High) (Note 2)		SBA or SAB to A or B	6	25	ns
t _{PHL}	Propagation Delay Time High to Low Level Output (with A or B High) (Note 2)		SBA or SAB to A or B	5	20	ns
t _{PZH}	Output Enable Time to High Level Output		GBA to A	3	17	ns
t _{PZL}	Output Enable Time to Low Level Output		GBA to A	5	18	ns
t _{PHZ}	Output Disable Time from High Level Output		GBA to A	1	10	ns
t _{PLZ}	Output Disable Time from Low Level Output		GBA to A	2	16	ns
t _{PZH}	Output Enable Time to High Level Output		GAB to B	6	22	ns
t _{PZL}	Output Enable Time to Low Level Output		GAB to B	6	18	ns
t _{PHZ}	Output Disable Time from High Level Output		GAB to B	1	10	ns
t _{PLZ}	Output Disable Time from Low Level Output		GAB to B	2	16	ns
	ction 5 for test waveforms and output loa parameters are measured with the interna		er opposite to that of the	bus input.		

Fund	Function Table								
Inputs					Data I/O (Note 3)		Operation or Function		
GAB	GBA	CAB	CBA	SAB	SBA	A1 thru A8	B1 thru B8		
х	Н	1	H/L	Х	Х	Input	Not Specified	Store A, Hold B	
L	Х	H/L	1	Х	Х	Not Specified	Input	Store B, Hold A	
L	н	1	1	Х	Х	Input	Input	Store A and B Data	
L	Н	H/L	H/L	Х	Х	Input	Input	Isolation, Hold Storage	
L	L	Х	Х	Х	L	Output	Input	Real-Time B Data to A Bus	
L	L	Х	H/L	Х	Н	Output	Input	Stored B Data to A Bus	
н	н	х	х	L	Х	Input	Output	Real-Time A Data to B Bus	
н	н	1	1	Х	Х	Input	Output	Stored A Data to B Bus	
н	Н	1	1	X (Note 4)	Х	Input	Output	Store A in both Registers	
L	L	1	1	Х	X (Note 4)	Output	Input	Store B in both Registers	

Note 3: The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

Note 4: Select control = L; clocks can occur simultaneously Select control = H; clocks must be staggered in order to load both registers.

H = High Logic Level, L = Low Logic Level, X = Don't Care (Either Low or High Logic Levels, including transitions), H/L = Either Low or High Logic Level excluding transitions, \uparrow = Positive-going edge of pulse.

Logic Diagram

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.