FDH/FDLL 400 / 444

LL-34

THE PLACEMENT OF THE EXPANSION GAP HAS NO RELATIONSHIP TO THE LOCATION OF THE CATHODE TERMINAL

COLOR BAND MARKING

DEVICE 1ST BAND 2ND BAND

BROWN BROWN VIOLET GRAY

High Voltage General Purpose Diode

Sourced from Process 1J.

Absolute Maximum Ratings*

DO-35

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units	
W _{IV}	Working Inverse Voltage	FDH/FDLL 400 FDH/FDLL 444	150 100	V V
I _O	Average Rectified Current		200	mA
I _F	DC Forward Current		500	mA
i _f	Recurrent Peak Forward Current		600	mA
İf(surge)	Peak Forward Surge Current Pulse width = 1.0 second Pulse width = 1.0 microsecond		1.0 4.0	A A
T _{stg}	Storage Temperature Range		-65 to +200	°C
T _J	Operating Junction Temperature		175	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 200 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units	
		FDH/FDLL 400 / 444		
P _D	Total Device Dissipation Derate above 25°C	500 3.33	mW mW/°C	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	300	°C/W	

High Voltage General Purpose Diode (continued)

Electrical Characteristics

TA = 25°C unless otherwise noted

Symbol	Param	eter	Test Conditions	Min	Max	Units
B _V	Breakdown Voltage	FDH/FDLL444	I _R = 100 μA	150		V
	-	FDH/FDLL400	$I_R = 100 \mu\text{A}$	200		V
I _R	Reverse Current	FDH/FDLL444	V _R = 100 V		50	nA
			$V_R = 100 \text{ V}, T_A = 150^{\circ}\text{C}$		100	μΑ
		FDH/FDLL400	$V_R = 150 \text{ V}$		100	nΑ
			$V_R = 150 \text{ V}, T_A = 150^{\circ}\text{C}$		100	μΑ
V _F	Forward Voltage	FDH/FDLL444	$I_F = 200 \text{ mA}$		1.1	V
			$I_F = 300 \text{ mA}$		1.2	V
		FDH/FDLL400	$I_F = 200 \text{ mA}$		1.0	V
			$I_F = 300 \text{ mA}$		1.1	V
C_{o}	Diode Capacitance	FDH/FDLL444	$V_R = 0$, $f = 1.0 \text{ MHz}$		2.5	pF
		FDH/FDLL400			2.0	pF
T_{RR}	Reverse Recovery Time					
		FDH/FDLL444	$I_F = I_R = 30 \text{ mA}, I_{rr} = 3.0 \text{ mA},$		60	nS
		FDH/FDLL400	$R_L = 100 \Omega$ $I_F = I_R = 30 \text{ mA}, I_{rr} = 3.0 \text{ mA},$		50	nS
			$R_L = 100 \Omega$			