
TL/D/9214

E
rro

r
D

e
te

c
tio

n
a
n
d

C
o
rre

c
tio

n
T
e
c
h
n
iq

u
e
s

fo
r

N
a
tio

n
a
l
S
e
m

ic
o
n
d
u
c
to

r’s
E
E
P
R

O
M

P
ro

d
u
c
ts

A
N

-4
8
2

National Semiconductor
Application Note 482
February 1987

Error Detection and
Correction Techniques for
National Semiconductor’s
EEPROM Products

This application note provides the non-volatile memory sys-

tem designer who cannot tolerate the very low failure rate

associated with National Semiconductor’s E2PROMs, with a

method to assure data integrity and extend the life span of

the product.

With a minimum additional parts cost, the following error

detection and correction techniques allow the designer to

extend the usable life of an EEPROM device. The technique

is applicable for applications requiring 100,000 or more

erase/write cycles per register.

All EEPROMs fail with extended erase/write cycling. Nation-

al Semiconductor EEPROMs fail in a statistically predictable

and well behaved fashion as the number of erase/write cy-

cles increase. The failure of one bit cell does not influence

the operation of adjacent bit cells. Since bit failure is a grad-

ual wearout phenomenon which only affects discrete cell

locations one at a time, it is possible to apply simple encod-

ing techniques which can determine the locations of cell

failures so that faltering memory addresses can be avoided

in the future.

Single parity checking is the simplest way to check for er-

rors in a binary code. In a parity checking system an extra-

parity-bit is chosen so that the number of 1s in the block of

data, including the parity bit, is even. In practice this is ac-

complished using modulo 2 addition (i.e., 0 a 0 e 0; 0 a

1 e 1; 1 a 0 e 1; 1 a 1 e 0; 0 a 0 a 1 e 1; etc.).

Modulo 2 addition is quickly accomplished through an exclu-

sive OR gate. When the data is read back, the number of

ones are counted and the sum is checked to see if it is odd

or even. An odd sum is an indication that an error occurred

in the data. This method of single parity checking can detect

the occurrence of an error in a block but it cannot be used

to determine the exact location of the error to correct the

bad data.

A natural extension of single parity checking is the Hamming

code. A Hamming code uses several parity checks, instead

of just one. This allows errors to be corrected as well as

detected. Using bits in blocks of 7, where 4 of the bits are

TL/D/9214–1

FIGURE 1. Computation Scheme for Parity Bits

Using Hamming Code

information and 3 are parity allows for error detection and

correction of any single bit within the block, including the

parity bits themselves.

The initial parity is calculated as shown in Figure 1. The

parity bits are in columns 4, 5 and 6, while the actual infor-

mation bits are in columns 0, 1, 2, and 3. The contents of

each parity bit comes from summing the contents of a

unique combination of three of the four information bits. The

parity bit is chosen so that this sum will be an even number

when added to the parity bit itself. Notice that each one of

the parity bits calculates its contents by using different com-

binations of the data bits. Every data bit in the block has its

information read at least twice. Using this overlapping

scheme is what allows the code to correct errors.

Since there are only 4 bits of information there can be only

24 e 16 possible combinations of 1s and 0s. These 16

possible correct combinations are listed on the code word

table in Table I. When the encoded block is read back from

memory, the same parity coding scheme is used again on

the information bits and compared to the original parity bits.

This forms what is called a syndrome. If any errors have

occurred in the 7-bit block their locations can be determined

and the errors corrected. Table II shows the decoding ma-

trix which is used on the syndromes to determine the loca-

tion of an error. If no errors occurred the syndrome will be

000. Table III shows all the combinations of the 7-bit block.

Note that there are only 128 possible variations of 1s and 0s

in the block: (7 mistake combinations per block a 1 correct

combination per block) c (16 possible block combinations).

All these combinations can be stored in a table and called

up quickly to check for possible data errors without the need

to even create a syndrome upon reading a word. For exam-

ple, suppose we want to store the data 1000. From Table I

we see that the 7-bit block would be 1111000 after the

Hamming code had been applied. If information bit 3 for

example goes bad, then the new block would read 1110000.

This is case number 112 in Table III, and we see that the

correct information is 1000. With Table III available in the

computer memory, the received codeword can be corrected

automatically. An array of 128 bytes can provide both the

corrected information and the syndrome information.

The 7-bit codeword works nicely with National Semiconduc-

tor’s serial EEPROMs because they are organized as arrays

of 16-bit registers. Each 16 bit register is modified or ac-

cessed with a simple-serial protocol. The 16-bit unit can be

partitioned two eight-bit bytes. Each byte can contain a sev-

en-bit codeword and one-bit flag that indicates whether an

error has been previously detected in the byte. This scheme

provides one byte of error corrected information per 16-bit

register. Slightly more elaborate systems can be used which

will detect and correct more errors if additional parity bits

are added to the data.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.



TABLE I. Encoding Table for Hamming Code

Sixteen Code Words

Parity Information

Bits Bits

P P P I I I I

2 1 0 3 2 1 0

0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 1

2 1 0 1 0 0 1 0

3 0 1 1 0 0 1 1

4 0 1 1 0 1 0 0

5 1 0 1 0 1 0 1

6 1 1 0 0 1 1 0

7 0 0 0 0 1 1 1

8 1 1 1 1 0 0 0

9 0 0 1 1 0 0 1

10 0 1 0 1 0 1 0

11 1 0 0 1 0 1 1

12 1 0 0 1 1 0 0

13 0 1 0 1 1 0 1

14 0 0 1 1 1 1 0

15 1 1 1 1 1 1 1

TABLE II. Syndrome Decoding Table for Hamming Code

Syndrome Meaning

0 0 0 No error detected

0 0 1 Check bit 0 in error

0 1 0 Check bit 1 in error

0 1 1 Information bit 2 corrected

1 0 0 Check bit 2 in error

1 0 1 Information bit 1 corrected

1 1 0 Information bit 0 corrected

1 1 1 Information bit 3 corrected

With this added data protection the reliability of EEPROMs

can be extended because the probability of two or more

cells failing on the same codeword is low. To illustrate the

Hamming code, an experiment on 16 devices with 1k bits

each was conducted. The experiment results are shown in

Table IV. While the first bit failure was detected somewhere

between 12,589 and 15,849 cycles, the Hamming code just

described would have protected against the loss of data

until somewhere between 79,433 and 100,000 erase/write

cycles. Notice that 55 bit failures were indicated when the

first Hamming code failure was detected. This is to be ex-

pected because a Hamming failure will not occur until two or

more bits within a particular group of seven bits have failed.

TABLE III. Information Retrieval Table for All Possible Combinations of Single-Bit-Correct Hamming Code

Received Syndrome Corrected

Codeword Bits Information

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 1 1 0 0 0 0 0

2 0 0 0 0 0 1 0 1 0 1 0 0 0 0

3 0 0 0 0 0 1 1 0 1 1 0 1 1 1

4 0 0 0 0 1 0 0 0 1 1 0 0 0 0

5 0 0 0 0 1 0 1 1 0 1 0 1 1 1

6 0 0 0 0 1 1 0 1 1 0 0 1 1 1

7 0 0 0 0 1 1 1 0 0 0 0 1 1 1

8 0 0 0 1 0 0 0 1 1 1 0 0 0 0

9 0 0 0 1 0 0 1 0 0 1 1 0 0 1

10 0 0 0 1 0 1 0 0 1 0 1 0 1 0

11 0 0 0 1 0 1 1 1 0 0 1 0 1 1

12 0 0 0 1 1 0 0 1 0 0 1 1 0 0

13 0 0 0 1 1 0 1 0 1 0 1 1 0 1

14 0 0 0 1 1 1 0 0 0 1 1 1 1 0

15 0 0 0 1 1 1 1 1 1 1 0 1 1 1

16 0 0 1 0 0 0 0 0 0 1 0 0 0 0

17 0 0 1 0 0 0 1 1 1 1 1 0 0 1

18 0 0 1 0 0 1 0 1 0 0 0 0 1 0

19 0 0 1 0 0 1 1 0 1 0 0 0 1 1

20 0 0 1 0 1 0 0 0 1 0 0 1 0 0

21 0 0 1 0 1 0 1 1 0 0 0 1 0 1

22 0 0 1 0 1 1 0 1 1 1 1 1 1 0

23 0 0 1 0 1 1 1 0 0 1 0 1 1 1

24 0 0 1 1 0 0 0 1 1 0 1 0 0 1

25 0 0 1 1 0 0 1 0 0 0 1 0 0 1

26 0 0 1 1 0 1 0 0 1 1 1 1 1 0

27 0 0 1 1 0 1 1 1 0 1 1 0 0 1

28 0 0 1 1 1 0 0 1 0 1 1 1 1 0

29 0 0 1 1 1 0 1 0 1 1 1 0 0 1

30 0 0 1 1 1 1 0 0 0 0 1 1 1 0

31 0 0 1 1 1 1 1 1 1 0 1 1 1 0

2



TABLE III. Information Retrieval Table for All Possible Combinations of Single-Bit-Correct Hamming Code (Continued)

Received Syndrome Corrected

Codeword Bits Information

32 0 1 0 0 0 0 0 0 1 0 0 0 0 0

33 0 1 0 0 0 0 1 1 0 0 0 0 0 1

34 0 1 0 0 0 1 0 1 1 1 1 0 1 0

35 0 1 0 0 0 1 1 0 0 1 0 0 1 1

36 0 1 0 0 1 0 0 0 0 1 0 1 0 0

37 0 1 0 0 1 0 1 1 1 1 1 1 0 1

38 0 1 0 0 1 1 0 1 0 0 0 1 1 0

39 0 1 0 0 1 1 1 0 1 0 0 1 1 1

40 0 1 0 1 0 0 0 1 0 1 1 0 1 0

41 0 1 0 1 0 0 1 0 1 1 1 1 0 1

42 0 1 0 1 0 1 0 0 0 0 1 0 1 0

43 0 1 0 1 0 1 1 1 1 0 1 0 1 0

44 0 1 0 1 1 0 0 1 1 0 1 1 0 1

45 0 1 0 1 1 0 1 0 0 0 1 1 0 1

46 0 1 0 1 1 1 0 0 1 1 1 0 1 0

47 0 1 0 1 1 1 1 1 0 1 1 1 0 1

48 0 1 1 0 0 0 0 0 1 1 0 1 0 0

49 0 1 1 0 0 0 1 1 0 1 0 0 1 1

50 0 1 1 0 0 1 0 1 1 0 0 0 1 1

51 0 1 1 0 0 1 1 0 0 0 0 0 1 1

52 0 1 1 0 1 0 0 0 0 0 0 1 0 0

53 0 1 1 0 1 0 1 1 1 0 0 1 0 0

54 0 1 1 0 1 1 0 1 0 1 0 1 0 0

55 0 1 1 0 1 1 1 0 1 1 0 0 1 1

56 0 1 1 1 0 0 0 1 0 0 1 0 0 0

57 0 1 1 1 0 0 1 0 1 0 1 0 0 1

58 0 1 1 1 0 1 0 0 0 1 1 0 1 0

59 0 1 1 1 0 1 1 1 1 1 0 0 1 1

60 0 1 1 1 1 0 0 1 1 1 0 1 0 0

61 0 1 1 1 1 0 1 0 0 1 1 1 0 1

62 0 1 1 1 1 1 0 0 1 0 1 1 1 0

63 0 1 1 1 1 1 1 1 0 0 1 1 1 1

64 1 0 0 0 0 0 0 1 0 0 0 0 0 0

65 1 0 0 0 0 0 1 0 1 0 0 0 0 1

66 1 0 0 0 0 1 0 0 0 1 0 0 1 0

67 1 0 0 0 0 1 1 1 1 1 1 0 1 1

68 1 0 0 0 1 0 0 1 1 1 1 1 0 0

69 1 0 0 0 1 0 1 0 0 1 0 1 0 1

70 1 0 0 0 1 1 0 0 1 0 0 1 1 0

71 1 0 0 0 1 1 1 1 0 0 0 1 1 1

72 1 0 0 1 0 0 0 0 1 1 1 1 0 0

73 1 0 0 1 0 0 1 1 0 1 1 0 1 1

74 1 0 0 1 0 1 0 1 1 0 1 0 1 1

75 1 0 0 1 0 1 1 0 0 0 1 0 1 1

76 1 0 0 1 1 0 0 0 0 0 1 1 0 0

77 1 0 0 1 1 0 1 1 1 0 1 1 0 0

78 1 0 0 1 1 1 0 1 0 1 1 1 0 0

79 1 0 0 1 1 1 1 0 1 1 1 0 1 1

3



TABLE III. Information Retrieval Table for All Possible Combinations of Single-Bit-Correct Hamming Code (Continued)

Received Syndrome Corrected

Codeword Bits Information

80 1 0 1 0 0 0 0 1 0 1 0 0 1 0

81 1 0 1 0 0 0 1 0 1 1 0 1 0 1

82 1 0 1 0 0 1 0 0 0 0 0 0 1 0

83 1 0 1 0 0 1 1 1 1 0 0 0 1 0

84 1 0 1 0 1 0 0 1 1 0 0 1 0 1

85 1 0 1 0 1 0 1 0 0 0 0 1 0 1

86 1 0 1 0 1 1 0 0 1 1 0 0 1 0

87 1 0 1 0 1 1 1 1 0 1 0 1 0 1

88 1 0 1 1 0 0 0 0 1 0 1 0 0 0

89 1 0 1 1 0 0 1 1 0 0 1 0 0 1

90 1 0 1 1 0 1 0 1 1 1 0 0 1 0

91 1 0 1 1 0 1 1 0 0 1 1 0 1 1

92 1 0 1 1 1 0 0 0 0 1 1 1 0 0

93 1 0 1 1 1 0 1 1 1 1 0 1 0 1

94 1 0 1 1 1 1 0 1 0 0 1 1 1 0

95 1 0 1 1 1 1 1 0 1 0 1 1 1 1

96 1 1 0 0 0 0 0 1 1 0 0 0 0 1

97 1 1 0 0 0 0 1 0 0 0 0 0 0 1

98 1 1 0 0 0 1 0 0 1 1 0 1 1 0

99 1 1 0 0 0 1 1 1 0 1 0 0 0 1

100 1 1 0 0 1 0 0 1 0 1 0 1 1 0

101 1 1 0 0 1 0 1 0 1 1 0 0 0 1

102 1 1 0 0 1 1 0 0 0 0 0 1 1 0

103 1 1 0 0 1 1 1 1 1 0 0 1 1 0

104 1 1 0 1 0 0 0 0 0 1 1 0 0 0

105 1 1 0 1 0 0 1 1 1 1 0 0 0 1

106 1 1 0 1 0 1 0 1 0 0 1 0 1 0

107 1 1 0 1 0 1 1 0 1 0 1 0 1 1

108 1 1 0 1 1 0 0 0 1 0 1 1 0 0

109 1 1 0 1 1 0 1 1 0 0 1 1 0 1

110 1 1 0 1 1 1 0 1 1 1 0 1 1 0

111 1 1 0 1 1 1 1 0 0 1 1 1 1 1

112 1 1 1 0 0 0 0 1 1 1 1 0 0 0

113 1 1 1 0 0 0 1 0 0 1 0 0 0 1

114 1 1 1 0 0 1 0 0 1 0 0 0 1 0

115 1 1 1 0 0 1 1 1 0 0 0 0 1 1

116 1 1 1 0 1 0 0 1 0 0 0 1 0 0

117 1 1 1 0 1 0 1 0 1 0 0 1 0 1

118 1 1 1 0 1 1 0 0 0 1 0 1 1 0

119 1 1 1 0 1 1 1 1 1 1 1 1 1 1

120 1 1 1 1 0 0 0 0 0 0 1 0 0 0

121 1 1 1 1 0 0 1 1 1 0 1 0 0 0

122 1 1 1 1 0 1 0 1 0 1 1 0 0 0

123 1 1 1 1 0 1 1 0 1 1 1 1 1 1

124 1 1 1 1 1 0 0 0 1 1 1 0 0 0

125 1 1 1 1 1 0 1 1 0 1 1 1 1 1

126 1 1 1 1 1 1 0 1 1 0 1 1 1 1

127 1 1 1 1 1 1 1 0 0 0 1 1 1 1

4



TABLE IV. Hamming Code Experimental Demonstration on 16 Devices of 1k Bits Each

Erase/Write Total Bit Total Codeword Percent Bit Percent Codeword

Cycles Failures Failures Failures Failures

1000 0 0 0.00% 0.00%

1259 0 0 0.00% 0.00%

1585 0 0 0.00% 0.00%

1995 0 0 0.00% 0.00%

2512 0 0 0.00% 0.00%

3162 0 0 0.00% 0.00%

3981 0 0 0.00% 0.00%

5012 0 0 0.00% 0.00%

6310 0 0 0.00% 0.00%

7943 0 0 0.00% 0.00%

10000 0 0 0.00% 0.00%

12589 1 0 0.01% 0.00%

15849 1 0 0.01% 0.00%

19953 1 0 0.01% 0.00%

25119 1 0 0.01% 0.00%

31623 3 0 0.02% 0.00%

39811 4 0 0.02% 0.00%

50119 10 0 0.06% 0.00%

63096 16 0 0.10% 0.00%

79433 55 1 0.34% 0.05%

100000 103 3 0.63% 0.15%

5



E
rr

o
r
D

e
te

c
ti
o
n

a
n
d

C
o
rr

e
c
ti
o
n

T
e
c
h
n
iq

u
e
s

fo
r

A
N

-4
8
2

N
a
ti
o
n
a
l
S
e
m

ic
o
n
d
u
c
to

r’
s

E
E
P
R

O
M

P
ro

d
u
c
ts

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


