
TL/EE10344

O
p
e
ra

tin
g

T
h
e
o
ry

o
f
th

e
S
e
rie

s
3
2
0
0
0

G
N

X
V

e
rs

io
n

3
C

o
m

p
ile

r
O

p
tim

iz
e
r

A
N

-5
8
3

National Semiconductor
Application Note 583
Series 32000 Applications
January 1989

Operating Theory of the
Series 32000É GNXTM

Version 3
Compiler Optimizer

1.0 INTRODUCTION

The main difference between the GNX-Version 3 compilers

and other compilers is the optimizer. Recompiling and opti-

mizing with a GNX-Version 3 compiler will result in a 10% to

200% speedup for most programs, with an average im-

provement of over 30%. This chapter describes some of the

advanced optimization techniques used by the compiler to

improve speed or save space. The most important tech-

niques are:

# Value propagation

# Constant folding

# Redundant-assignment elimination

# Partial-redundancy elimination

# Common-subexpression elimination

# Flow optimizations

# Dead-code removal

# Loop-invariant code motion

# Strength reduction

# Induction variable elimination

# Register-allocation by coloring

# Peephole optimizations

# Memory-layout optimizations

# Fixed frame

The following sections describe these techniques in more

detail.

2.0 THE OPTIMIZER

The optimizer, shared by all the GNX-Version 3 compilers, is

based on advanced optimization theory developed over the

past 15 years. Central to the optimizer is an innovative glob-

al-data-flow-analysis technique which simplifies the optimiz-

er’s implementation. It allows the optimizer to perform some

unique optimizations in addition to all the standard optimiza-

tions found in other compilers. Optimizations are performed

globally on the code of a whole procedure at a time and not

just in a local context.

The optimizer is implemented as a multi-step process. Each

step performs its particular optimizations and provides new

opportunities for the optimizations of the next step.

2.1 STEP ONE

The first step in the optimization process is to read in the

source program one procedure at a time and to partition this

procedure into basic blocks. A basic block is a straight line

sequence of code with a branch only at the entry or exit.

Some of the optimizations performed during this step are:

# Value Propagation

Value propagation (or copy propagation) is the attempt

to replace a variable with the most recent value that has

been assigned to it. This optimization is primarily useful

in the special case of constant propagation. It is impor-

tant because it creates opportunities for other optimiza-

tions. Value propagation can be turned off by the

/CODEÐMOTION optimization flag (–Om on UNIXÉ
systems).

# Constant Folding

If an expression or condition consists of constants only,

it is evaluated by the optimizer into one constant, there-

by avoiding this computation at run-time. The optimizer,

using algebraic properties such as the commutative, as-

sociative and distributive law, sometimes rearranges ex-

pressions to allow constant folding of part of an expres-

sion.

The GNX-Version 3 C compiler also folds floating-point

constant expressions. This feature can be turned off us-

ing the /NOFLOATÐFOLD option (–Oc on UNIX sys-

tems) of the optimizer.

# Redundant-Assignment Elimination

The optimizer detects and eliminates assignments to

variables which are not used later in the program or

which are assigned again before being used. This opti-

mization can often be applied as a result of value propa-

gation.

Value propagation, constant folding, and redundant as-

signment elimination are illustrated in Figure 1.

Series 32000É is a registered trademark of National Semiconductor Corporation.

GNXTM is a trademark of National Semiconductor Corporation.

UNIXÉ is a registered trademark of AT&T Bell Laboratories.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.



The program sequence

a 4 4;

if (a*8 k 0) b 4 15;

else b 4 20;

...code which uses b but not a...

is translated by the GNX-Version 3 C compiler front end into the following intermediate code

a w 4

if (a*8 t 0) goto L1

b w 15

goto L2

L1: B w 20

L2: ...

which is transformed by ‘‘value propagation’’ into

a w 4

if (4*8 t 0) goto L1

b w 5

goto L2

L1: b w 20

L2: ...

which after ‘‘constant folding’’ becomes

a w 4

if (true) goto L1

b w 15

goto L2

L1: b w 20

L2: ...

‘‘dead code removal’’ results in

a w 4

goto L1

L1: b w 20

L2: ...

which is transformed by another ‘‘flow optimization’’ into

a w 4

b w 20

Since there is no further use of a, a w 4 is a ‘‘redundant assignment:’’

b w 20

...

FIGURE 1. Relationship between Various Optimizations

2



2.2 STEP TWO

The second step in the optimization process is the construc-

tion of the program’s ‘‘flow graph.’’ This is a graph in which

each node represents a basic block. A basic block is a lin-

ear segment of code with only one entry point and one exit

point. If there is a path in the program that leads from one

basic block to another, then an ‘‘arrow’’ is drawn in the

graph to represent this path. Figure 2 illustrates a flow

graph, representing an ‘‘if-then-else’’ sequence.

TL/EE/10344–1

FIGURE 2. Flow Graph

During the construction of the flow graph, additional opti-

mizations can be performed:

# Flow Optimizations

Flow optimizations reduce the number of branches per-

formed in the program. One example is to replace a

branch whose target is another branch with a direct

branch to the ultimate target. This often makes the sec-

ond branch redundant. At other times, code is reordered

to eliminate unnecessary branches. Branches to ‘‘re-

turn’’ are replaced by the return-sequence itself.

# Dead Code Removal

Flow optimizations are also designed to help the opti-

mizer discover code which will never actually be execut-

ed. Removal of this code, called ‘‘dead code removal’’,

results in smaller object programs.

2.3 STEP THREE

Step three of the optimization process is called ‘‘global-

data-flow-analysis’’. It identifies desirable global code trans-

formations which speed program execution. Many of these

concentrate on speeding up loop execution, since most pro-

grams spend 90% or more of their time in loops. Global-

data-flow-analysis is the computation of a large number of

properties for each expression in the procedure.

Unlike most optimizers, which employ unrelated and sepa-

rate techniques, the optimizer centers around one innova-

tive technique which involves the recognition of a situation

called ‘‘partial redundancy’’. This technique is so powerful

that many other optimizations turn out to be special cases.

The central idea is that it is wasteful to compute an expres-

sion, say a * b, twice on the same path; it is often faster to

save the result of the first computation and then replace the

fully redundant second computation with the saved value.

More common, however, is the case in which an expression

is partially redundant; there is one path to an expression,

which already contains a computation of that expression,

but another path to that same expression does not.

The following optimizations are performed by a common

technique:

# Elimination of Fully Redundant Expressions

This optimization is often called ‘‘Common Subexpres-

sion Elimination’’. It is relatively simple to avoid the re-

computation of fully redundant expressions. The opti-

mizer saves the result of the first computation (usually in

a register variable) and uses the saved value in place of

the second computation. Performance-conscious pro-

grammers sometimes do this themselves, but many

cases, such as array index and record number calcula-

tions, are recognized only by the optimizer.

# Partial Redundancy Elimination

A partially redundant expression can be eliminated in

two steps. First, insert the expression on the paths in

which it previously did not occur; this makes the expres-

sion fully redundant. Second, save the first computa-

tions and use the saved value to replace the redundant

computation. An example of this optimization is shown

in Figure 3.

Partial redundancy elimination sometimes results in

slightly larger code, but execution is not harmed, since

all inserted expressions are in parallel and only one is

actually executed.

3



# Loop Invariant Code Motion

If an expression occurs within a loop and its value does

not change throughout that loop, it is called ‘‘loop invari-

ant’’. Loop invariant expressions are also partially re-

dundant. This can be understood by realizing that there

are two paths into the loop body: one is through the loop

entry (the first time the loop is executed), and the other

is from the end of the loop, while the exit condition is

false. Loop invariant computations are, therefore, re-

moved from the loop in the same way: the expression is

first inserted on the entry path to the loop, and then the

expression is saved on the entry path in a register, while

the redundant computation in the loop is replaced by

that register.

# Strength Reduction

This optimization globally replaces complex operations

by simpler ones. This is primarily useful for reducing

complex array-subscript computations (involving multi-

plication into simpler additions).

for (i 4 0; i k 15; i0 4 0)

a [i] 4 0;

is transformed into:

for (i 4 0, p 4 a; i k 15; i0 4 1, p0 4 4)

*p 4 0;

# Induction Variable Elimination

Induction variables are variables that maintain a fixed

relation to other variables. The use of such variables

can often be replaced by a simple transformation. For

instance, the example given for strength reduction can

be reduced to the following:

for (p 4 a; p k a 0 60; p04 4)

*p 4 0;

In the following code, a*b is ‘‘partially redundant’’ (computed twice only if C is true):

if (C)

x 4 a*b;

else

b 4 b 0 10

y 4 a*b;

It is first transformed into a ‘‘fully redundant’’ expression

if C 4 1

x w a*b

else

b w b 0 10

temp w a*b

y w a*b

Then, as in the simple case of ‘‘redundant expression elimination,’’ this is reduced to

if C 4 1

temp w a*b

x w temp

else

b w b 0 10

temp w a*b

y w temp

Now, the expression a*b is computed only once on any path.

FIGURE 3. Example of Partial Redundancy Elimination

4



2.4 STEP FOUR

The fourth optimization step performed by the optimizer,

and possibly the most profitable, is the ‘‘register allocation’’

phase. Register allocation places variables in machine reg-

isters instead of main memory. References to a register are

always much faster and use less code space than respec-

tive memory references.

The algorithm used by the optimizer is called the ‘‘coloring

algorithm’’. First, global-flow-analysis is performed to deter-

mine the different live ranges of variables within the proce-

dure. A live range is the program path along which a vari-

able has a particular value. Generally, an assignment to a

variable starts a new live range; this live range terminates

with the last use of that assigned value.

The optimizer subsequently constructs a graph as follows:

each node represents a live range; two nodes are connect-

ed if there exists a point in the program in which the two live

ranges intersect. The allocation of registers to live ranges is

now the same as coloring the nodes of the graph so that

two connected nodes have different colors. This is a classic

problem from graph theory, for which good solutions exist. If

there are not enough registers, more frequently used vari-

ables have higher priority than less frequently used ones.

Loop nesting is taken into account when calculating the fre-

quency of use, meaning that variables used inside of loops

have higher priority than those that are not.

Most optimizing compilers attempt register allocation only

for true local variables, for which there is no danger of ‘‘ali-

asing.’’ An alias occurs when there are two different ways to

access a variable. This can happen when a global variable

is passed as reference parameter; the variable can be ac-

cessed through its global name, or through the parameter

alias. A common case in C is when the address of a variable

is assigned to a pointer.

The optimizer takes a more general approach by consider-

ing all variables with appropriate data types as candidates

for register allocation, including global variables, variables

whose addresses have been taken, array elements, and

items pointed to by pointers. These special candidates can-

not reside in registers across procedure calls and pointer

references and, therefore, normally have lower priority than

local variables. However, instead of completely disqualifying

the special candidates in advance, the decision is made by

the coloring algorithm.

Additional important optimizations performed by the register

allocator are:

# Use of Safe and Scratch Registers

The Series 32000 machine registers are, by convention,

divided into two groups: registers R0 through R2 and F0

through F3, the so-called ‘‘scratch’’ registers which can

be used as temporaries but whose values may be

changed by a procedure call, and the ‘‘safe’’ registers

(R3 through R7 and F4 through F7) which are guaran-

teed to retain their value across procedure calls. The

register allocator spends a special effort to maximize

the use of scratch registers, since it is not necessary to

save these upon entry or restore them upon exit from

the current procedure. The use of scratch registers,

therefore, reduces the overhead of procedure calls.

# Register Parameter Allocation

The register allocator attempts to detect routines,

whose parameters can be passed in registers. This is

possible for static routines only, since by definition all

the calls to such routines are visible to the optimizer.

Calls to other (externally callable) routines are subject to

the standard Series 32000 calling sequence. Passing

parameters in registers in another way to reduce the

overhead of procedure calls.

2.5 STEP FIVE

The last optimization step consolidates the results of all pre-

vious steps by writing out the optimized procedure in inter-

mediate form for the separate code generator. Some reor-

ganizations take place during this step. Local variables

which have been allocated in registers are removed from

the procedure’s activation record (frame), which is reor-

dered to minimize overall frame size.

3.0 THE CODE GENERATOR

The back end (code generator) attempts to match expres-

sion trees with optimal code sequences. It applies standard

techniques to minimize the use of temporary registers,

which are necessary for the computation of the subexpres-

sions of a tree. The main strength of the code generator lies

in the number of ‘‘peephole optimizations’’ it performs.

Peephole optimizations are machine-dependent code trans-

formations that are performed by the code generator on

small sequences of machine code just before emitting the

code. Some of the most important peephole transforma-

tions are listed below:

# The code for maintaining the frame of routines which

have no local variables, or whose variables are all allo-

cated in registers, is removed.

# Switch statements are optimized into binary search, lin-

ear search or table-indexed code (using the Series

32000 CASE instruction), in order to obtain optimal code

in each situation.

# The stack and frame areas are always aligned for mini-

mal data fetches.

# Reduction of arithmetic identities, i.e., x*1 e x, xa0 e

x, etc.

# Use of the ADDR instruction instead of ADD of three

operands.

# Some optimizations performed in the optimizer, such as

the application of the distributive law of algebra, i.e.,

(10ai)*4 e 40a4*i, provide additional opportunities to

the code generator to fully exploit the Series 32000’s

addressing modes.

# Use of ADDR instead of MOVZBD of small constant.

# Strength Reduction Optimizations. Use of MOVD instead

of MOVF from memory to memory; use of index address-

ing mode instead of multiplication by 2, 4 or 8; use of

combinations of ADDR instructions or shift and ADD se-

quences instead of multiplication by other constants up

to 200.

5



A
N

-5
8
3

O
p
e
ra

ti
n
g

T
h
e
o
ry

o
f
th

e
S
e
ri
e
s

3
2
0
0
0

G
N

X
V

e
rs

io
n

3
C

o
m

p
il
e
r
O

p
ti
m

iz
e
r

# Fixed Frame Optimization. An important contribution of

the code generator is its ability to precompute the stack

requirements of a procedure in advance. This allows the

generation of code which does not use (nor update) the

FP (frame pointer), resulting in cheaper calling se-

quences.

This optimization is most useful when the procedure con-

tains many procedure calls because it is not necessary

to execute code to adjust the stack after every call. Pa-

rameters are moved to the pre-allocated space instead

of pushing them on to the stack using the top-of-stack

addressing mode. Note that when using this optimiza-

tion, the run-time stack pointer stays the same through-

out the procedure, and all references to local variables

are relative to it and not the FP. Also note that the evalu-

ation order of parameters is unpredictable because pa-

rameters that take more space to evaluate are treated

first to save space.

While most optimizations are beneficial for both speed and

space, some optimizations favor one over the other. The

default setting of the optimizer switch favors speed over

space in trade-off situations. The following optimiza-

tions are trade-off situations which are affected by an opti-

mization flag.

# Code is not aligned after branches.

# All returns within the code are replaced by a jump to a

common return sequence.

# Certain space-expensive peephole transformations are

not performed.

4.0 MEMORY LAYOUT OPTIMIZATIONS

The following memory layout optimizations are performed

by the GNX-Version 3 C compiler:

# Frame variables that are allocated in registers are re-

moved from the frame.

# Internal, static routines whose parameters are passed in

registers have smaller frames.

# The stack alignment is always maintained. Stack param-

eters are passed in aligned positions.

# Frame variables are allocated in aligned positions. The

compiler reorders these variables to save overall frame

space.

# Code is aligned after every unconditional jump.

Lit. Ý 100583

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


