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Portability Issues
and the GNXTM Version 3
C Optimizing Compiler

INTRODUCTION

This application note describes compiler implementation as-

pects which may differ between those of the GNX-Version 3

C Optimizing compiler and other compilers and which may

affect code portability. Portability issues are recognized by

the C standard as issues that may differ from one compiler

implementation to another.

The GNX-Version 3 C Optimizing Compiler is one of a family

of compatible optimizing compilers targeted to the Series

32000É architecture. The compiler fully implements the C

Language as defined inThe C Programming Language by B.

Kernighan and D. Ritchie. The C Optimizing Compiler is also

compatible with the UNIXÉ System V Compiler(pcc).

This Application Note contains three sections:

1.0 Implementation Aspects

2.0 Standard Calling Conventions

3.0 Undefined Behavior

1.0 IMPLEMENTATION ASPECTS

This section describes aspects of the implementation of the

GNX-Version 3 C compiler of which one should be knowl-

edgeable in order to write portable programs or to port pro-

grams written for compilation using other C compilers.

The topics addressed are:

1.1 Memory Representation of Data Types

1.2 External Linkage Considerations

1.3 Data Types and Conversions

1.4 Variable and Structure Memory Alignment

1.5 Functions that Return a Structure

1.6 Mixed-Language Programming

1.7 Order of Evaluation of Parameters

1.8 Order of Allocation of Memory

1.9 Register Variables

1.10 Floating-Point Arithmetic

1.1 MEMORY REPRESENTATION OF DATA TYPES

The representation of the various C types in this compiler

are:

C Type
Series 32000

Data Type

int 32-Bit Double-Word

long 32-Bit Double-Word

short 16-Bit Word

char 8-Bit Byte

float 32-Bit Single-Precision Floating-Point

double 64-Bit Double-Precision Floating-Point

# The set of values stored in a char object is signed.

# The padding and alignment of members of structures as

described in Section 1.4.

# A field of a structure can generally straddle storage unit

boundaries.

# While signed bitfields are implemented, it is not recom-

mended to use them since their implementation is slow.

Bitfields are not allowed to straddle a double-word

boundary.

1.2 EXTERNAL LINKAGE CONSIDERATIONS

# There is no limit to the number of characters in external

names.

# Case distinctions are significant in an identifier with exter-

nal linkage.

1.3 DATA TYPES AND CONVERSIONS

# A right shift of a signed integral type is arithmetic, i.e., the

sign is maintained.

# When a negative floating-point number is converted to

an integer, it is truncated to the nearest integer that is

less than or equal to it in absolute value. The result is

returned as a signed integer.

# When a double-precision entity is converted to a single-

precision entity, it is converted to the nearest representa-

tion that will fit in a float with default rounding performed

to the nearest value.

# The presence of a float operand in an operation not con-

taining double-operands causes a conversion of the oth-

er operand to float and the use of single-precision arith-

metic. If double-operands are present, conversion to

double occurs.

1.4 VARIABLE AND STRUCTURE MEMORY ALIGNMENT

The alignment of entities in a program is a trade-off issue.

Most Series 32000 CPUs are more efficient when dealing

with entities aligned to a double-word boundary. This nor-

mally makes it necessary to have some amount of padding

added to a program. This padding represents an overhead

in storage space.

The GNX-Version 3 C compiler allows the user to tailor the

alignment of structures/unions and their members and, in-

dependently, the alignment of other variables. Function pa-

rameters are always double-word aligned. This allows the

calling of functions across modules without dealing with

alignment issues.

1.4.1 Alignment of Variables

Extern, static, and auto variables are aligned in memory

according to their size and the buswidth setting. Table I lists

variable size, buswidth, and the alignment determined by

these two parameters.
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TABLE I. Variable Alignment

Bus Width
Variable Size (Bytes)

1 2 t4

1 byte byte byte

2 byte word word

4 byte word double-word

Variables of size 1 are of the C type char, variables of size 2

are of the C type short, and variables of size 4 or greater

are of the C types int, long, float, and double (size 8).

A buswidth setting of 1 means ‘‘align to 1 byte’’. Variables

start on a byte boundary, in other words, there is no align-

ment and no padding. When allocating storage for variables,

bytes are allocated sequentially with no padding between

bytes.

A buswidth setting of 2 means ‘‘align to an even byte.’’ Vari-

ables that are larger than 1 byte start on a word boundary.

This means that there may be padding of single bytes.

A buswidth setting of 4 means ‘‘align to a double-word

boundary’’ (a byte whose address is divisible by four). Vari-

ables that are 2 bytes long start on a word boundary; vari-

ables that are 4 bytes or larger in size start on a double-

word boundary. This means that there may be padding of up

to three bytes.

Arrays are aligned as the alignment of their element type.

Structures are aligned according to the alignment of the

largest structure members. This is affected by the -J

(/ALIGN) option. See ‘‘Structure/Union Alignment’’ and

‘‘Allocation of Bit-Fields’’ for more details.

Example: The arrangement of

int i; short s1; char c; short s2;

with a buswidth of 2 or 4 is

TL/EE/10345–1

Note that to align s2 to a word boundary, padding space of

one byte is needed after c. This padding does not exist with

a buswidth of 1.

Example: The arrangement of

char c; int i;

with a buswidth of 4 is

TL/EE/10345–2

With a buswidth of 2, the arrangement is

TL/EE/10345–3

With a buswidth of 1, there is no padding.
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It is important to note that the order in memory is the same

as the declaration order only for extern and static vari-

ables. The optimizer may reorder auto variables in order to

minimize padding space.

Fastest code is achieved by setting the default alignment to

that of the data buswidth of the CPU (4 for all but the

NS32008, the NS32CG16, and the NS32016). This can be

accomplished by setting the BUS parameter in the target

specification file, or by overwriting that file on the command

line with the -KB (/TARGET) option.

1.4.2 Structure/Union Alignment

Structure members are aligned within the structure, relative

to the beginning of the structure, in the same way that vari-

ables are aligned in memory. In order to maintain the align-

ment of the members relative to memory, the structure itself

is aligned in memory according to the alignment of its larg-

est members. This alignment may be controlled by putting

-J (/ALIGN) on the command line.

In addition, the total size of a structure is such that it also

ends on an alignment boundary of its largest member. This

maintains the alignment of individual members in arrays of

structures. This is illustrated in the FILE struct example at

the end of this section.

For unions, there is no padding. The alignment of the un-

ion’s largest members determine the alignment of the union

itself.

1.4.3 Allocation of Bit-Fields

To understand the way bit-fields are handled, think of the

situation where a field is fetched from memory. The number

of bits fetched is determined by buswidth. For instance, if a

bus is 2-bytes wide, then 2 bytes are fetched, even if only

the first few bits are needed. For convenience, the number

of bits fetched is called the ‘‘fetching unit’’.

Note that for the purpose of structure member alignment,

the align switch value (1 byte, 2 bytes or 4 bytes) is taken as

a ‘‘virtual buswidth,’’ even if it is different from the actual

buswidth.

A complication exists when allocating bit-fields. The compli-

cation arises from the fact that different base types for bit-

fields (char short, and int) are supported. The maximum

length of a bit-field is the size of its base type; therefore,

there may be times when a bit-field is larger than the

buswidth. When the size of the base type is larger than the

buswidth, the size of the fetching unit is considered to be

the base-type size.

The precise rules for determining the start of the fetching

unit are quite complicated. In general, it is determined by the

current position in the allocation of structure members and

by the base-type of the first bit-field in a group of consecu-

tive bit-fields.

An attempt is made to pack consecutive bit-fields as much

as possible, as long as the bit-fields remain in the same

fetching unit. As soon as a field ‘‘spills over’’ into the next

fetching unit, the alignment is set to the next memory unit

(byte, word, or double-word, according to the align switch

value and the base type of the field). A hole of padding bits

remains, and the beginning of the spill-over field determines

the start of a new fetching unit for following bit-fields. Using

this method, bit-fields are packed as much as possible while

still maintaining the alignment.

If, because of the bit-fields, the structure as a whole does

not terminate on a byte boundary, padding bits are added to

it to fill up to the end of the last byte it occupies. Additional

padding bytes may be needed to fill to the alignment bound-

ary of the largest structure member. This is seen inFigure 1.

The bit-field does not quite reach the byte boundary; there-

fore, padding bits are added until the byte boundary is

reached. Additional padding bytes are added to fill to the

alignment boundary of the double-word structure member.

See Figure 1.

Example:

struct A À

int i;

unsigned bitfield: 4;
Ó a;

The arrangement of a’s fields in memory will be:

TL/EE/10345–4

FIGURE 1. Bitfield Padding
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Figure 2 is an example of the alignment on bit-fields given

the different align switch settings. To summarize, the –J

(/ALIGN) switch affects:

# the alignment and padding used for structure members

and the alignment of variables of the structure type.

# the total storage alocated to a structure by determining if,

and how many, padding bytes will be added after its last

field.

Example: struct X À

char c,d,e;

int i: 24;
Ó

ALIGN e 4

TL/EE/10345–5

ALIGN e 2/1

TL/EE/10345–6

FIGURE 2. Alignment on Bitfields
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CAUTION

The user must make sure that all parts of the program, in-

cluding library routines, use the same alignment for the

same structures; otherwise, problems result. The following

example illustrates this point.

Suppose the example program includes kstdio.hl. The

file kstdio.hl contains the following definitions.

extern FILE iob [ NFILE];
typedef struct À

int cnt;

unsigned char * ptr;

unsigned char * base;

char flag;

char file;
Ó FILE;

Note that FILE has two char members at its end. If align e

4, any variable declared to be of type FILE will have two

padding bytes added at its end in order to make it occupy an

integral number of double-words. When align e 1 or align
e 2, no padding is performed.

If a module using kstdio.hl is compiled with align e 4 and

later linked with a module compiled with align e 1 or align
e 2 that tries to use iob[n] when n l 0, the result will be

wrong. This is because the two modules disagree on the

size of the elements in the array. This situation actually does

arise if a user module, compiled with align e 1 or align e 2,

is linked with the default library libc, which is compiled with

align e 4.

The solution to this problem is to make sure all modules are

compiled using either the same alignment setting, including

all include files and libraries, or a revised header file that has

been made insensitive to the setting of the alignment

switch. This is performed by including the necessary pad-

ding to enforce equal sizes and offsets. If the latter solution

is chosen, FILE is revised to look like:

typedef struct À

int cnt;

unsigned char * ptr;

unsigned char * base;

char flag;

char file;

/*padding*/ int:16;

Ó FILE;

No padding is added by the compiler, and the size of the

structure is the same for all switch settings.

1.5 FUNCTIONS THAT RETURN A STRUCTURE

In the GNX-Version 3 C compiler, structure returning func-

tions have a hidden argument which is the address of an

area the size of the returned structure. This area is allocated

by the caller and its address is passed as a first argument to

the structure returning function. Structure returning func-

tions are, therefore, re-entrant and interruptible.

Note: At the optimizer’s discretion, small structures (less than 5 bytes) may

be passed and/or returned in a register.

1.6 MIXED-LANGUAGE PROGRAMMING

Mixed-language programs are frequently used for two rea-

sons. First, one language may be more convenient than

another for certain tasks. Second, code sections already

written in another language (e.g., an already existing library

function) can be reused simply by calling them.

A programmer who wishes to mix several programming lan-

guages needs to be aware of subtle differences between

the compilation of the various languages. An Application

Note is available that describes the issues one needs to be

aware of when writing mixed-language programs and com-

piling and linking such programs successfully.

1.7 ORDER OF EVALUATION OF PARAMETERS

The evaluation order of expressions and actual parameters

in theGNX-Version 3 C compiler may differ from those of

other compilers. Therefore, programs that rely on a specific

order of evaluation may not run correctly when compiled. In

particular, the following orders of evaluation are unspecified:

# The order in which expressions are evaluated.

# The order in which function arguments are evaluated.

# The order in which side effects take place. For instance,

a[iaa] e i may be evaluated as

a[i] 4 i;

i00

or as

t 4 i;

i00
a[t] 4 i;

1.8 ORDER OF ALLOCATION OF MEMORY

The order of allocation of local variables in memory is com-

piler-dependent. After the optimizer of the GNX-Version 3 C

compiler performs register allocation, it reorders the local

variables left in memory. This reordering reduces memory

space requirements and minimizes displacement length.

User programs that rely on any order of allocation of local

variables may not run correctly.

1.9 REGISTER VARIABLES

By default, register variables, as well as other local vari-

ables, are equal candidates for register allocation. When

given complete freedom, the programmer generally per-

forms a better job of register allocation than when forced to

follow the allocation. For programs which make assump-

tions about variables which reside in specific registers, an

optimization flag (–Ou or –O –Fu on UNIX and USERÐ
REGISTERS on VMSTM) is available to enforce the pcc al-

location scheme for register variables of scalar types and of

type double.

1.10 FLOATING-POINT ARITHMETIC

The floating-point arithmetic conversion rules of the GNX-

Version 3 C compiler differ from most other C compilers.

In an operation not containing double-operands, if one of

two operands is of type float, the other operand is convert-

ed to type float and single-precision arithmetic is used. The

result of the operation is of type float. This behavior differs

from previous compilers which perform such operations in

double precision.
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In old C compilers, the result of float-returning functions was

actually returned in double-format and placed in the F0–F1

register pair. When compiled by the GNX-Version 3 C com-

piler, such functions return the return value result in float

format and place the result in the F0 register. Note that

assembly programs that interface with float-returning func-

tions may now incorrectly expect a double precision result.

Float parameters, however, are passed as double because

the C language semantics do not require type identity be-

tween actual and formal parameters. Code is generated in

the called function to convert these actual double values

back to float if necessary.

Floating-point constants are of type double, unless they are

typecast to float or are suffixed by the letter f or F. By

preference, constants of type float should be used in float

expressions to avoid the unnecessary casting of other oper-

ands to double precision. For example,

fmax0 4 17.5f;

is more efficient than

fmax0 4 17.5;

The following examples are of double constants and float

constants.

Example: Double Constants Float Constants

14.5 e6 14.5e6f

14.5 (float) 14.5

2.0 SERIES 32000 STANDARD CALLING CONVENTIONS

The main goal of standard calling conventions is to enable

the routines of one program to communicate with different

modules, even when written in multiple-programming lan-

guages. The standard calling conventions support various

special language features (such as the ability to pass a vari-

able number of arguments, which is allowed in C), by using

the different calling mechanisms of the Series 32000 archi-

tecture. These conventions are employed only to call exter-

nally visible routines. Calls to internal routines may employ

even faster calling sequences by passing arguments in reg-

isters, for instance.

The standard Series 32000 calling conventions are used by

the C compiler for calls to external routines of all languages.

It is, therefore, unnecessary to use the fortran keyword in C

programs, (if present, the keyword is ignored). However, lo-

cal or internal routines (functions which in C are preceded

by the static keyword) are called by more efficient calling

sequences.

Basically, the calling sequence pushes arguments on top of

the stack, executes a call instruction, and then pops the

stack while using the fewest possible instructions to execute

at the maximum speed. The following sections discuss the

various aspects of the Series 32000 standard calling con-

ventions.

2.1 CALLING CONVENTION ELEMENTS

Elements of the standard calling sequence are as follows:

2.1.1 The Argument Stack

Arguments are pushed on the stack from right to left; there-

fore, the leftmost argument is pushed last. Consequently,

the leftmost arguments are always at the same offset from

the frame pointer, regardless of how many arguments are

actually passed. This allows functions with a variable num-

ber of arguments to be used.

Note: This does not imply that the actual parameters are always evaluated

from right to left. Programs cannot rely on the order of parameter

evaluation.

The run-time stack must be aligned to a full double-word

boundary. Argument lists always use a whole number of

double-words; pointer and integer values use a double-word

(by extension, if necessary), floating-point values use eight

bytes and are represented as long values; structures (rec-

ords) use a multiple of double-words.

Note: Stack alignment is maintained by all GNX-Version 3 compilers

through aligned allocation and de-allocation of local variables. Inter-

rupt routines and other assembly-written interface routines are ad-

vised to maintain this double-word alignment.

The caller routine must pop the arguments off the stack

upon return from the called routine.

Note: The compiler uses a more efficient organization of the stack frame if

the FIXEDÐFRAME (–OF) optimization is enabled. In that case, pro-

grams should not rely on the organization of the stack frame.

2.1.2 Saving Registers

General registers R0, R1, and R2 and floating registers F0,

F1, F2, and F3 are temporary or scratch registers whose

values may be changed by a called routine. Also included in

this list of scratch registers is the long register L1 of the

NS32381 FPU. It is not necessary to save these registers

on procedure entry or restore them before exit. If the other

registers (R3 through R7, F4 through F7, and L3 through L7

of the NS32381) are used, their values should be saved

(onto the stack or in temps) by the called routine immediate-

ly upon procedure entry and restored just before executing

the return instruction. This should be performed because

the caller routine may rely on the values in these registers

not changing.

Note: Interrupt and trap service routines are required to save/restore all

registers that they use.

2.1.3 Return Value

An integer or a pointer value that returns from a function,

returns in (part of) register R0.

A long floating-point value that returns from a function, re-

turns in register pair F0-F1. A float-returning function returns

the value in register F0.

If a function returns a structure, the calling function passes

an additional argument at the beginning of the argument list.

This argument points to where the called function returns

the structure. The called function copies the structure into

the specified location during execution of the return state-

ment. Note that functions that return structures must be cor-

rectly declared as such, even if the return value is ignored.
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Example:
int iglob;

m( )
À

int loc;

a 4 if unc(loc);
Ó

if unc(p1)

int p1;
Ó

int i, j, k;

j 4 0;

for (i 4 1; i s p1; i00)

j 4 j 0 f(i);

return(j);
Ó

The compiler may generate the following code:

m:

enter [ ],4 #Allocate local variable

movd 14(fp),tos #Push argument

bsr if unc

adjspb $(14) #Pop argument off stack

movd r0, iglob #Save return value

exit [ ]
ret $(0)

ifunc:

enter [r3,r4,r5],0 #Save safe registers

movd 8(fp),r5 #Load argument to temp register

movqd $(0),r4 #Initialize j

cmpqd $(1),r5

bgt .LL1

movqd $(1),r3 #Initialize i

.LL2:

movd r3,tos #Push argument

bsr f

adjspb $(14) #Pop argument off stack

addd r0,r4 #Add return value to j

addqd $(1),r3 #Increment i

cmpd r3,r5

ble .LL2

.LL1:

movd r4,r0 #Return value

exit [r3,r4,r5] #Restore safe registers

ret $(0)
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After the enter instruction is executed by ifunc( ), the stack

will look like this:

HIGH MEMORY

loc caller’s stack frame

value of loc callee’s stack frame

return address

saved fp w fp

saved R3

saved R4

saved R5 w sp

LOW MEMORY

3.0 UNDEFINED BEHAVIOR

In the following cases, the behavior of the GNX-Version 3 C

compiler is undefined:

# The value of a floating-point or integer constant is not

representable.

# An arithmetic conversion produces a result that cannot

be represented in the space provided.

# A volatile object is referred to by means of a pointer to a

type without the volatile attribute.

# An arithmetic operation is invalid, such as division by 0,

or produces a result that cannot be represented in the

space provided, such as overflow or underflow.

# A member of a union object is accessed using a member

of a different type.

# An object is assigned to an overlapping object.

# The value of a register variable has been changed be-

tween a setjmp call and a longjmp call.
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