
TL/EE10396

L
o
c
k
in

g
C

o
d
e

in
th

e
N

S
3
2
G

X
3
2

In
s
tru

c
tio

n
C

a
c
h
e

A
N

-6
0
8

National Semiconductor
Application Note 608
Alon Shacham
April 1989

Locking Code in the
NS32GX32
Instruction Cache

INTRODUCTION

The NS32GX32 provides two on-chip caches: A 512-byte

Instruction Cache (IC), and a 1024-byte Data Cache. These

caches are blocks of very fast, local memory that hold cop-

ies of instructions and data most frequently used by the

CPU. For most general purpose applications, spatial and

temporal locality ensure that more than 85% of the access-

es are made from on-chip memory instead of main memory.

Having information on-chip speeds the execution of pro-

grams while reducing external bus traffic. Since this makes

the processor less sensitive to memory speed, slower and

less expensive main memories can be used.

On-chip caches are also important for embedded-control

applications. For example, real-time applications that per-

form high-speed context switching typically contain code

and data critical to performance. This information must be

immediately available to the CPU and, therefore, should re-

side in the on-chip caches at all times.

To support this requirement, the NS32GX32 provides a

cache-locking feature. This allows for the contents of the

Instruction Cache and Data Cache to be locked to specific

memory locations.

For the Data Cache, data is locked by reading the required

locations and then setting the Lock Data Cache (LDC) bit in

the configuration (CFG) register.

For the Instruction Cache, code can be locked by im-

plementing the Cache Lock program presented in this appli-

cation note. This program locks the code without actually

executing it.

ABOUT THE CACHE LOCK PROGRAM

The Cache Lock program presented here takes advantage

of the pipelined execution and branch prediction features of

the NS32GX32 in an unconventional manner:

1. While the execution unit is busy with a long instruction,

the branch predictor begins fetching from the area that is

to be locked. This prefetch will cause some of the code to

be loaded into the Instruction Cache. The code is not

actually executed because this prediction is always incor-

rect.

2. Next, the code doing the loading modifies itself so that

the next prediction will be to the next section to be load-

ed.

The Cache Lock program consists of the two main sections:

loadlock and codÐmod.

loadlock

This section initializes the Instruction Cache by unlocking it

and invalidating its contents. It then sets up the displace-

ment for the ‘‘bne’’ instruction at the address of ‘‘icbr’’. This

instruction will later be the one that sends the branch pre-

dictor off to fetch the code to be locked.

The main loop within ‘‘loadÐlock’’ is labeled ‘‘iÐcÐnext’’.

It calls ‘‘codÐmod’’ once for each double word to be load-

ed. After the entire Instruction Cache is loaded, it is locked,

and the program terminates.

codÐmod

This section modifies the displacement of the ‘‘bne’’ instruc-

tion at ‘‘icbr’’. The displacement points to the next double

word to be loaded. This is done one byte at a time for the

four byte displacement.

Next, the execution is serialized. This is necessary to allow

for the code modification to take place in memory before

attempting to execute it.

Finally, a long (‘‘remd’’) instruction is executed. While this

instruction is being executed in the Execution unit, the

branch predictor (within the Loader unit) begins prefetching

from the new target, i.e., the next double word to be loaded.

Since this prediction is false (‘‘branch not equal’’ after

‘‘compare r3 to r3’’), the actual execution path is not altered.

‘‘codÐmod’’ then returns to the calling procedure, ‘‘load-

lock’’.

IMPLEMENTING THE CACHE LOCK PROGRAM

The following sections describe the general requirements,

interface requirements, and assembly code for the Cache

Lock program.

General Requirements

The following requirements must be met for the Cache Lock

program to operate correctly:

The locking program (‘‘loadlock’’ and ‘‘codÐmod’’) must

reside in a non-cacheable area (indicated by activating

the CII input).

The locking program must be executed from RAM.

The code which is loaded must reside in a cacheable

area.

The code which is loaded must not exceed 512 bytes.

The code which is loaded must be aligned as double-

words on double word boundaries.

The length of the code to be loaded must be a multiple of

four.

Interrupts must be disabled for the duration of the pro-

gram.

HOLD must not be asserted.

No more than 10 wait states are allowed.

Interface Requirements

The following interface parameters must be supplied before

calling ‘‘loadlock’’:

Address of code to be locked must be in r0.

Number of bytes to be locked must be in r1.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

Assembly Code

The assembly code for the Cache Lock program is presented below.

#

.set load length, 4 # load a double word at a time

.set LOC IC, 0x1000 # lock IC (13th bit in cfg) on

.text

loadlock::

sprd cfg,r4 # Store the current cfg in r4

andd $0xffffefff,r4 # unlock instruction cache

cinv a,i,$0 # Invalidate the entire IC

addr icbr,r4 # icbr is the location of the

BNE instruction. The displacement

in this instruction is modified

by this program as it executes.

addd r1,r0

addqd 14,r0

movd r0,r2

initialize r2 to the address of last

double word in code block.

subd r4,r2 # initialize displacement reg.

r2 contains the distance between

the icbr label and the last double word

in code block.

movd r2,r6 # save r2

movqd 0,r5

i c next: # main loop

movd r6,r2 # restore r2

jsr cod mod # load next dw/entry

addd $load length, r5 # by load length

cmpw r5,r1 # to code length

blt i c next

Terminate by locking the IC

sprd cfg,r2 # r2 w save cfg

ord $LOC IC,r2 # r2 w r2llLOC IC

lprd cfg,r2 # cfg w r2

ret $0 # Return to calling program

#

2

#
Cod mod modifies the displacement of the BNE instruction

#

cod mod:

subd r5,r2 # r2 contains displacement from icbr

to next double word to be loaded.

Note that the IC is loaded from higher

addresses to lower addresses

ord $0xc0000000,r2 # enter proper mode for 30 bits

displacement

movqd 3,r3

i nxt byte:

movb r2,1(r4)[r3:b] # move byte to proper place in

‘bne‘ instruction.

lshd $18,r2 # get next byte of the displacement

to lsbyte of r2

addqd 11,r3

cmpqb 11,r3

bne i nxt byte # If not done, modify next byte,

else-

bicpsrw $0 # serialize the execution to allow

for the write to update memory.

long instr:

remd r4,r7 # long instruction. While this is

being executed in the EXU, the

next instruction will be executed

in the Address Unit, and the next

one in the Loader.

This will allow enough time for the

next double word to enter the IC.

cmpb r3,r3

icbr:

bne cod mod1 # br ‘false‘ (always not taken)

nop # the 4 bytes of the displacement are

nop # replaced prior to execution.

nop # this branch is always predicted as

taken, so the destination is fetched

into the IC

cod mod1: # This is a dummy label for the

assembler.

ret $0 # return to main loop

3

A
N

-6
0
8

L
o
c
k
in

g
C

o
d
e

in
th

e
N

S
3
2
G

X
3
2

In
s
tr

u
c
ti
o
n

C
a
c
h
e

Lit. Ý 100608

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

