
TL/EE10493

B
IT

B
L
T

E
x
a
m

p
le

s
:
N

S
3
2
C

G
1
6

a
n
d

N
S
3
2
F
X

1
6

A
N

-6
3
4

National Semiconductor
Application Note 634
July 1990

BITBLT Examples:
NS32CG16 and NS32FX16

1.0 INTRODUCTION

The NS32CG16 has several instructions that automate the

process of performing a BIT aligned BLock Transfer

(BITBLT). In this application note, the parameter setup for

these instructions will be discussed. The NS32FX16 is pin

compatible with the NS32CG16 but can run at frequencies

up to 25 MHz.

For additional information on Series 32000É programming,

please see the Series 32000 Programmer’s Reference Man-

ual. For additional information on NS32CG16-specific in-

structions, please see the NS32CG16 Programmer’s Refer-

ence Manual Supplement.

2.0 DESCRIPTION

A BITBLT is a very common technique used in graphics

routines to copy a rectangular area of one image to another.

Various effects may be produced by different logical opera-

tions being performed between the source and destination

data, and the NS32CG16 implements many of these opera-

tions.

Conventions

This document assumes the displayed image is in a specific

format in memory. The information below explains the termi-

nology and directional assumptions, as well as byte and bit

ordering conventions in Series 32000.

Figure 1 presents one scan line of a standard 8(/2 inch by 11

inch page on a 300 Dot Per Inch (DPI) laser printer, in the

portrait orientation (8(/2 inches wide, 11 inches high). There

are 3300 such scan lines on each page. The start of the

second scan line on the page would be at byte offset 320

decimal, 140 hex. Since the first scan line is at the top of the

page, successive scan lines proceed down the page.

All Series 32000 processors have 32-bit internal data paths,

with a ‘‘natural’’ size of 32 bits, or 4 bytes. The least signifi-

cant byte is stored at the lowest address. Referring to the

previous example, writing a byte of hex A5 to address zero

would result in address zero containing hex A5. Writing a

word of hex A55A to address zero would result in address

zero containing hex 5A, and address 1 containing hex A5.

Writing a doubleword of hex FFA55A00 to address zero

would result in address zero containing hex 00, address 1

containing hex 5A, address 2 containing hex A5, and 3 con-

taining hex FF.

Series 32000 does not have an alignment restriction in that

data of byte, word or doubleword size need not reside at an

even memory address. The Bus Interface Unit, internal to all

Series 32000 processors, requests multiple bus transfers as

required, aligning the data automatically.

The bit offset is equally consistent. Bit ordering is always

least significant to most significant bit. InFigure 1, bit zero of

byte zero would be the first pixel imaged on the page. Bit

one would be the next pixel, bit two the next, and so on. Bit

2549 would be the last pixel imaged on the page in the

horizontal direction, since 8(/2 inches c 300 DPI yields a

width of 2,550 dots, or pixels. Bit 2549 is contained within

byte 318, at bit position 5. Bit Addressing and Byte Address-

ing with a byte address and a bit offset are available in

Series 32000. Figure 2 is an expansion of the first three

bytes of a scan line, showing the bit addressing, as it would

appear on the page printer or graphics screen.

TL/EE/10493–1

FIGURE 1

Byte 0 Byte 1 Byte 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

FIGURE 2

Series 32000É is a registered trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

To clarify these conventions further, the following example

illustrates how a line 1 dot high and 10 dots wide is drawn.

This line appears on scan line one, starting at the ninth pixel

or bit position 8. This will result in hex FF in address one,

and hex 03 in address two. This is referred to as the hori-

zontal direction.

The width of the memory for an image is referred to as the

image warp (sometimes referred to as raster, or pitch). The

warp of the page printer image in the previous example is

320 decimal (140 hex) bytes, or 2560 bits. Note that the

image width is actually 2550 on this sample page printer at

300 DPI, since 8(/2 inches c 300 DPI yields a width of 2,550

dots. The width is rounded up to 2560 bits (320 bytes) to

make memory addressing simpler in a typical hardware de-

sign.

When the warp is known, vertical lines can be drawn. A

vertical line 10 dots high and 1 dot wide starting at the first

line, ninth pixel, with a warp of 320 (140 hex) and a base

address of 0 would result in addresses 1 (1 hex), 321 (141

hex), 641 (281 hex) . . . 2881 (B41 hex) each containing 01

hex.

To summarize, for portrait applications, the ‘‘top left’’ pixel is

bit 0. The ‘‘top right’’ pixel is bit 2,549. The ‘‘bottom left’’

pixel is bit 8,445,440. The ‘‘bottom right’’ pixel is bit

8,447,989. To calculate x,y bit positions on the page, the

formula:

Bit offset e (y c 2560) a x

may be used, where y is the scan line number ranging from

0 to 3299, for the sample 8(/2 by 11 inch page, and x is the

pixel displacement across the page from the left hand edge.

More information on Series 32000 conventions can be

found in the Series 32000 Programmer’s Reference Manual.

See Section 3.5 in the Instruction Set Reference Manual for

a complete discussion of bit instructions and bit addressing.

All shifts in this document are in the increasing bit/byte di-

rection. This is a Series 32000 Left Shift. However, visually

on a page, this is a left-to-right shift. Zeros are inserted in

the least significant bits.

All rotates in this document are in the increasing bit/byte

direction. This is a Series 32000 Left Rotate. However, visu-

ally on a page, this is a left-to-right shift. Data from the most

significant bit position will be transferred to the least signifi-

cant bit position.

Numbers preceeded by 0x are in hexadecimal. 0x1AC

would be decimal 428.

Sample BITBLT

In this example, we will set up the parameters for a BITBLT

operation from (28, 36) to (123, 76) (see Figure 3), with an

area of 36 x 36.

The first problem is how to describe the area to be copied.

One of the best ways to do this is to supply an (x, y) coordi-

nate pair for the upper left corner of the source and destina-

tion, and a width and height for the copy operation (see

Figure 3). From this information, each of the parameters of

the BITBLT operation can be calculated. As an example,

take the 36 x 36 area starting at (28, 36), and move it to

(123, 76).

The first step is to translate the image coordinates into

physical addresses. This can be done by multiplying the y

coordinate by the image warp, or length of each scan line. In

our example, the warp is 2560 pixels. Since the source im-

age starts at ye36, so the actual source image begins at

bit offset 92188 (28 a 36 c 2560) from the beginning of

the image space. The destination starts at ye76, so the

actual destination image will begin at bit offset 194683 (123
a 76 c 2560) from the beginning of the image space. Add-

ing this to the physical starting address of the page gives

the actual starting address, as follows.

The base of the source address can be determined by

taking the source bit offset, and dividing by 8 to obtain

the offset in bytes. This value can then be added to the

physical memory image address, which in our example is

0x8000. The source base address is therefore 0x8000 a

(28 a 36 c 2560)/8, or 0xAD02.

The base address of the destination can be determined

much in the same way as the base address of the

source, substituting the destination bit offset computation.

The destination base address is therefore 0x8000 a

(28 a 36 c 2560)/8, or 0xDF0E. This value may be altered

by the shift computation, as will be seen.

The BITBLT functions in the NS32CG16 operate on 16 bits

of data (a word) at once, to optimize speed. Since the

source is not aligned on bit 0 of an address, we must mask

the unwanted data from the source in order to extract only

the bits we are interested in. Each left-hand edge of the

source is on bit 12. This can be determined by taking the x

value of the source (28), and logically ANDing it with 15.

Since we DO NOT want bits 0–11 of the source, our first

mask will be 1111 0000 0000 0000 (0xf000).

The second mask can be determined by taking the source x

value, adding the width, subtracting one, and logically AND-

ing with 15. The end of the source, therefore, is on bit 15.

We require all of this word, so the second (or ending) mask

will be 1111 1111 1111 1111 (0xffff).

The masks are only required on the first and last words of a

line. The reason for this is that all words in the middle would

have a mask of 1111 1111 1111 1111 (0xffff), since all bits

are required. Because of this fact, there is no need to com-

pute an ‘‘inner’’ mask value.

We know that the image is 36 bits wide, and 36 lines high.

From this information we can determine that the source is

three words wide (a word is 16 bits, and the source cannot

be contained in two words in this example).

The next item we need to determine is the shift amount.

This can be found by subtracting the source x value from

the destination x value. The best way to do this is to logically

AND the source and destination x values with 15, to deter-

mine the bit offset within the word. In this example, the

source bit offset is 12, and the destination bit offset is 11.

Since the destination bit offset is less than the source bit

offset, the resultant shift value will be b1. In the

NS32CG16, only positive shift values are permitted, so we

‘‘back up’’ one word on the destination, and add 16 to the

shift amount, giving a shift of 15 bits. This will make the

destination base address 0xDF0C.

The adjusted source warp, required by the BITBLT instruc-

tions, would be calculated as (Source warp in bytes b 2 c

(width in words b 1)). Our warp for both the source and

destination is the same, 2560 bits or 320 bytes. The source

warp would be (320 b 2 c (3b1)) e 316. Since the source

and destination images are in the same image space, the

source and destination warps are the same. The adjusted

source and destination warps are both 316 for this example.

Once all the calculations are complete, we can convert to

physical parameters to the BITBLT instruction, and perform

the BITBLT.

2

If we assume that the memory image starts at address

0x8000, we can now pass all the parameters, as follows:

Base address of source e 0xAD02

Base address of dest. e 0xDF0C

Shift value in bits e 15

Height in lines e 36

First mask e 0xF000

Second mask e 0xFFFF

Adjusted source warp e 316

Adjusted dest. warp e 316

Width in words e 3

TL/EE/10493–2

FIGURE 3

3

3.0 IMPLEMENTATION

This example may be turned into a general-case program. A sample of this follows, written in the C language.

#define IMAGEADDR 0x8000 /* Image starting address */

#define SOURCEWARP 2560 /* Source warp, in bits */

#define DESTWARP 2560 /* Destination warp, in bits */

unsigned int MASK1[] 4 À /* First mask table */

0xffff,0xfffe,0xfffc,0xfff8,

0xfff0,0xffe0,0xffc0,0xff80,

0xff00,0xfe00,0xfc00,0xf800,

0xf000,0xe000,0xc000,0x8000,

0x0000 Ó;

unsigned int MASK2[] 4 À /* Second mask table */

0x0001,0x0003,0x0007,0x000f,

0x001f,0x003f,0x007f,0x00ff,

0x01ff,0x03ff,0x07ff,0x0fff,

0x1fff,0x3fff,0x7fff,0xffff,

0x0000 Ó;

/*

Preprocessor for BITBLT function

Inputs:

sx - source x value (column)

sy - source y value (row)

dx - destination x value

dy - destination y value

wx - width of image to transfer (in bits)

wy - height of image to transfer (in lines)

Outputs:

Calculates all required values for NS32CG16

internal BITBLT functions

*/

preproc(sx,sy,dx,dy,wx,wy)

int sx,sy,dx,dy,wx,wy;
À

int srcadd,dstadd,width,height;

unsigned int mask1,mask2;

int shift,adswarp,addwarp;

/* calculate the word-aligned source address */

srcadd e (((sy * SOURCEWARP) 0 sx)/16) * 2 0 IMAGEADDR;

/* calculate the word-aligned destination address */

dstadd e (((dy * DESTWARP) 0 dx)/16) * 2 0 IMAGEADDR;

/* Calculate the first and last masks */

mask1 4 MASK1[sx & 15];

mask2 4 MASK2[(sx 0 wx 1 1) & 15];

/* Calculate the width in words. It is not permissible

for the width in bits or words to be zero.

*/

width 4 ((wx015)/16) ;

if (width 44 1) /* If the width is 1, combine masks */

mask1 l4 mask2;

shift e (dx & 15) 1 (sx & 15); /* Calculate the shift */

if (shift k 0) À /* If the shift is negative */

shift 04 16; /* Add 16 to the shift amount */

dstadd 14 2; /* and decrement the dest. addr */
Ó

height e wy; /* Height computation is simply the passed height */

/* Calculate the adjusted source and destination warps */

adswarp 4 SOURCEWARP/8 1 2 * (width 1 1);

addwarp 4 DESTWARP/8 1 2 * (width 1 1);

BBfunc(srcadd,dstadd,shift,wy,mask1,mask2,adswarp,addwarp,width);
Ó

4

This example program will generate all required values for

the BBOR, BBXOR, BBAND, BBSTOD and BBFOR instruc-

tions. It assumes non-overlapping source and destination

images, and a top-to-bottom, left-to-right BITBLT operation.

The BBOR, BBXOR, BBAND and BBSTOD instructions are

capable of full 4-direction BITBLTs, required for overlapping

images, and the BBFOR is capable of a 2-direction BITBLT.

To implement a bottom-to-top BITBLT with any of the

BITBLT functions, simply adjust the source and destination

starting address to the last line of the BITBLT, and negate

the source and destination warps.

To implement a right-to-left BITBLT operation with the

BBOR, BBXOR, BBAND or BBSTOD instructions, use the

‘‘-d’’ option of the instruction, and adjust the source and

destination warps as follows:

/* Calculate the adjusted source and destination warps */

adswarp 4 SOURCEWARP/8 0 2 * (width 1 1);

addwarp 4 DESTWARP/8 0 2 * (width 1 1);

3.1 Implementation for Non-Impact Printers

Non-impact printers have a slightly different requirement for

BITBLT functions. Generally the function required is a left-

to-right, top-to-bottom, logical OR BITBLT. Source and des-

tination are not generally in the same memory space, and

the source and destination warps are not equal. Since

the source is usually a character bit-image, and the charac-

ter image is typically left margin aligned, no first mask is

required. This is why the BBFOR (BitBlt Fast OR) instruction

was created. Based on this information, we can create an

optimized version of the preprocessor for non-impact print-

ers.

#define IMAGEADDR 0x8000 /* Image starting address */

#define SOURCEWARP 2560 /* Source warp, in bits */

#define DESTWARP 2560 /* Destination warp, in bits */

unsigned int MASK2[] 4 À /* Second mask table */

0x0001,0x0003,0x0007,0x000f,

0x001f,0x003f,0x007f,0x00ff,

0x01ff,0x03ff,0x07ff,0x0fff,

0x1fff,0x3fff,0x7fff,0xffff,

0x0000 Ó;

/*

Preprocessor for Non-Impact Printer BITBLT function

Inputs:

saddr - source character byte address

swarp - warp of source character (in bytes)

swidth - width of character (in bits)

sheight - height of character (in lines)

dx - destination x value

dy - destination y value

Outputs:

Calculates all required values for NS32CG16

internal BITBLT functions

*/

nipproc(saddr,swarp,swidth,sheight,dx,dy)

unsigned char *saddr;

int swidth,sheight,dx,dy;
À

int srcadd,dstadd,width;

unsigned int mask1,mask2;

int shift,adswarp,addwarp;

srcadd 4 saddr;

dstadd 4 (((dy * DESTWARP) 0 dx)/16) * 2 0 IMAGEADDR;

/* Calculate the first and last masks */

mask1 4 0xffff; /* First mask is always 1’s */

mask2 4 MASK2[swidth & 15];

/* Calculate the width in words. It is not permissible

for the width in bits or words to be zero.

/*

width 4 ((swidth015)/16) ;

if (width 44 1) /* If the width is 1, combine masks */

mask1 &4 mask2;

shift 4 (dx & 15); /* Calculate the shift */

/* Calculate the adjusted source and destination warps */

adswarp 4 swarp 1 2 * (width 1 1);

addwarp 4 DESTWARP/8 1 2 * (width 1 1);

BBfunc(srcadd,dstadd,shift,sheight,mask1,mask2,adswarp,addwarp,width);
Ó

5

Converting this code to assembly language, we can show a very high performance preprocessor, as follows.

Preprocessor for non-impact BITBLT function

Inputs:

r0 - source character byte address

r1 - destination y value

r2 - destination x value

r3 - source height (in lines)

r4 - source width (in bits)

r5 - source warp in bytes

#
.set DESTWARP,2560

.set IMAGADDR,0x8000

nipproc:

indexd r1,$(DESTWARP11),r2 # obtain bit index

lshd $3,r1 # divide by 8 and

andd $0xfffffffe,r1 # mask to get word offset

addr IMAGADDR(r1),r1 # add image address

addr 0xf,r7 # get mask value in r7

andd r7,r2 # mask dest. x to get shift

movd r5,r6 # move source warp to r6

movd r4,r5 # move width to temp

andd r7,r5 # mask to low order bits

movzwd MASK2[r5:w],r5 # get second mask from table

addd r7,r4 # round width to word multiple

lshd $4,r4 # r4 is now width in words

addr 11(r4),r7 # get width11 in r7

subd r7,r6 # adjust source warp

subd r7,r6 # to swarp 1 2*(width11)

addd r7,r7 # double r7

negd r7,r7 # negate it (12*(width11))

addd $(DESTWARP/8),r7 # add destination warp

movw r4,tos # place width on stack

cmpqw $1,r4 # is width 1?

addr 0xffff,r4 # assume not, get 1st mask

beq width1 # it is a width of 1, branch

cmpb r2,$0 # set L flag for optimization

bbfor # do BBFOR

cmpqw 0,tos # unstack, and

ret $0 # return

width1: andd r5,r4 # combine masks

cmpb r2,$0 # set L flag for optimization

bbfor # do BBFOR

cmpqw 0,tos # unstack, and

ret $0 # return

6

This document shows average BITBLT performance of the

NS32CG16 instructions, on a no wait system.

BITBLT Performance

The performance of the BITBLT (Bit Aligned Block Transfer)

routines can be measured by imaging 3,500 characters with

each of the BITBLT functions. The time includes pre-proc-

essor overhead for each BITBLT operations, and assumes

a 32-bit wide by 54 line high character. The pre-processor

overhead is 287 clock cycles. Both source and destination

warp values are included, and a separate time for the

BITWT instruction is shown, assuming no source warp. The

average time is shown, including a shift of up to 8 bits.

The EXTBLT instructions shows a width of 3, since three

words of destination are required to store two words (32

bits) of shifted source data.

Time to Image 3,500 Characters

Function 10 MHz 15 MHz

BITWT (No src Warp) 1.15 sec 0.77 sec

BITWT (src Warp) 1.23 sec 0.82 sec

BBFOR 1.52 sec 1.01 sec

BBOR 2.14 sec 1.42 sec

BBXOR 2.14 sec 1.42 sec

BBAND 2.21 sec 1.48 sec

BBSTOD 3.34 sec 2.22 sec

EXTBLT (Preread) 1.21 sec 0.80 sec

EXTBLT (No Preread) 1.09 sec 0.73 sec

4.0 SUMMARY

While the BITBLT function parameters may seem complex,

a simple relationship exists between the desired operation

values and the BITBLT functions.

7

A
N

-6
3
4

B
IT

B
L
T

E
x
a
m

p
le

s
:
N

S
3
2
C

G
1
6

a
n
d

N
S
3
2
F
X

1
6

Lit. Ý 100634

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

