
TL/EE10495

S
e
rie

s
3
2
0
0
0

A
s
s
e
m

b
ly

L
a
n
g
u
a
g
e

O
p
tim

iz
a
tio

n
s

A
N

-6
3
6

National Semiconductor
Application Note 636
October 1989

Series 32000É Assembly
Language Optimizations

1.0 INTRODUCTION

In this applications note, we discuss various optimization strategies that apply to the NS32008, NS32016, NS32CG16 and

NS32032 when writing assembly language programs. Most optimizations will also apply to the NS32332, NS32GX32 and

NS32532. The emphasis will be on the NS32016 and NS32CG16.

2.0 DESCRIPTION

All Series 32000 processors have a common, rich instruction set. Chooosing the optimal instructions is often difficult. As a

general rule when writing Series 32000 assembly language, try to minimize the number of instructions to accomplish a given

task. In general, minimizing the size of code (or number of instructions) will also minimize the execution time, and maximize

execution speed. For example:

addr scr1,r0 # point to source

movb 0(r0),r1 # get the byte at (src1)

addr dest1,r0 # point to destination

movb r1,0(r0) # store the byte at (dest1)

This code simply moves a byte from one address to another. A better way is to use the Series 32000 memory to memory

architecture.

movb src1,dest1 # get the byte at (src1), place in (dest1)

While this may appear obvious, note that since this code does not use registers, it may be used in an interrupt service

routine without saving or restoring registers. This technique can also be used when a routine is ‘‘out’’ of registers for storing

temporary values. Series 32000 can use any legal addressing mode for either the source or destination of most instructions.

Another technique to optimize programs is to make the fall through case of a branch instruction the most common case.

This is an optimization because Series 32000 is pipelined, and a branch instruction breaks the pipeline (flushes the instruc-

tion execution queue). An example of this would be:

cmpd $100,r0 # is the argument out of range?

bgt ok # no, it is ok

addr err,tos # place error message on tos

br err hand # handle the error

. . . # code continuesok:

Here, we are checking for an error condition (r0 t 100). A better way to write this code is to branch TO the error condition:

cmpd $100,r0 # is the argument out of range?

ble bad # yes, branch out

. . . # code continues

bad: addr err,tos # place error message on tos

br err hand # handle the error

This technique can be further expanded as well, by common tail end expansion. If you have a section of code that reads as

follows:

if (cond) À

process;

process;
Ó else À

process1;

process1;
Ó

com proc;

com proc;

com proc; . . .

This can be optimized by unrolling the common code (comÐproc) into each of the if cases. This eliminates at least one

branch instruction. When code like this appears within loops, the savings in execution time can be considerable, at the

expense of code space.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

A simple optimization that can show significant benefits is the aligning of the target of branch instructions. For the NS32008, no

alignment is required. For the NS32016, NS32GX32 and NS32CG16, .align 2 should be used. For the NS32032, .align 4 should

be used. For the NS32332 and NS32532, .align 16 is best, but .align 4 can also be used. The .align 16 allows the NS32332,

NS32GX32 and NS32532 to use the burst option, if the hardware supports this mode. The most important time to align

instructions is the ‘‘top’’ of loops, as shown:

addr 20,r0 # iterate 20 times

movqd 0,r1 # zero accumulator

.align 4 # align loop

lp: addd r0,r1 # add to accumulator

addd r1,r1 # again

subd r0,r1 # subtract

acbd $-1,r0,lp # and loop

The .align 4 in the above example will fill the space between the movqd and the addd with a single, fast instruction (4 clocks or

less) of length 1, 2, or 3 bytes, depending on alignment. The instruction inserted will, effectively, be a NOP in that it will affect no

registers, memory or flags.

When loading 32-bit constants, the obvious technique is to use the MOVD instruction. On the NS32008, 016, CG16, 032 and

332, a better way may be to use the ADDR instruction. The reason this may be faster is that the ADDR instruction is shorter due

to the encoding of the immediate value. If the MOVD instruction is not fully in the instruction queue, the ADDR will be faster.

Below is a table suggesting the range that each instruction is best suited for. On the NS32532 and NS32GX32 the MOVD

instruction should be used on all but the quick immediate range (b8 to a7).

Range Instruction

b8 to a7 MOVQD $imm,dest

a8 to a8191 ADDR imm,dest

a8192 to 2!32 MOVD $imm,dest

Another useful technique is to make use of the pipeline overlap possible after instructions which reference memory in a Read-

Modify-Write fashion. For example, on the NS32016 and NS32CG16, two register/register instructions (8 clock cycles) may be

executed following a RMW instruction that affects 32 bits of memory, as shown:

ord r2,0(r0) # place pattern in memory (RMW)

addd r6,r0 # add source warp

addd r7,r1 # add destination warp

If an instruction which references memory is executed following a RMW-type instruction, the new instruction will not be started

until the write completes. If only register/register instructions are used, they will be executed DURING the write cycle of the

RMW. In the above example, on the NS32016 and NS32CG16, both the addd instructions will be executed in parallel with the

write cycle. This can only occur if the instructions are in the instruction execution queue. This is one more reason to minimize the

use of the branch instruction, which flushes the queue.

Another technique is to make full use of the Complex Instruction Set nature of Series 32000. For example, take the following

code fragment:

cmpd $1000,r7 # Is r7 l 1000?

ble yes # yes, it is

movqd $0,r1 # set r1 to 0

br cont # continue the code

yes: movqd $1,r1 # set r1 to 1

cont: . . .

A better way to write this code is to use the Scond instruction, as follows:

cmpd $1000,r7 # Is r7 l 1000?

sled r1 # r1 4 (r7 l 1000) ? 1 : 0

cont: . . .

To do a three-operand add, of the form:

c e b a a a constant

the Series 32000 addr instruction can be used. For example:

addr 326(r0)[r1:b], C # c e a 0 b 0 326

An extension of this form can be used for adds that involve multiplies, when the multiplier is 1, 2, 4 or 8. By replacing the ‘‘:b’’ in

the above example with a ‘‘:w’’, the r1 register can be multiplied by two before being added with r0 and 326. ‘‘:d’’ will effect a

multiply by 4, and ‘‘:q’’ will multiply by eight. Note that the destination of the addr instruction need not be a register.

Another variation of this form may be used when it is required to add a large constant to a register, producing a result to a

different variable, as follows:

addr 320*4(r0), start # start 4 r0 0 1280

2

The scaled index addressing mode may also be used for generation or checking of parity on characters. A 128-byte table

containing the correct (even or odd) parity information in the most significant bit of each byte is created, then a simple OR can

be used to set the parity:

orb partab[r0:b],r0 # set parity on byte in r0

An extension of this technique can be used on strings of characters, with the MOVST instruction. This can be used with variable

length, null terminated strings, or fixed length strings. A 256-byte table containing the complete character set, with parity

information (even, odd or none) is created. The MOVST instruction then copies the source string to a new destination buffer

(optionally, it may replace the source string). During the copy, each source character is indexed into the table, and the corre-

sponding character placed in the output buffer.

movqd 11,r0 # unlimited (very large) number of chars

addr source,r1 # source pointer

addr dest,r2 # destination pointer

addr cpartab,r3 # point to character parity table

movqd 0,r4 # copy until a zero source character

MOVST U # move string, with translation, until 0

movqb 0,0(r2) # place a null terminator as the last char

This technique should be used for variable length, null terminated strings.

A common optimization when multiplying by powers of two is to use a shift instruction. On the NS32008, NS32016, NS32CG16,

NS32032 multiple add instructions should be used instead of a single shift, up to a shift of 6 (multiply by 64). On the NS32332,

NS32GX32 and NS32532, use add instructions only for a multiply by two. When the quantity to be multiplied is in memory,

however, a shift instruction should always be used, as it only does a single RMW access to memory.

On the NS320xx processors, the following code should be used instead

of MULD $16,r0 or LSHD $4,r0

addd r0,r0 multiply by 2

addd r0,r0 multiply by 4

addd r0,r0 multiply by 8

addd r0,r0 multiply by 16

A study of the Series 32000 Programmer’s Reference Manual will show many other opportunities for optimizations using the full

Series 32000 instruction set.

3

A
N

-6
3
6

S
e
ri
e
s

3
2
0
0
0

A
s
s
e
m

b
ly

L
a
n
g
u
a
g
e

O
p
ti
m

iz
a
ti
o
n
s

Lit. Ý 100636

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

