A Driver for the NS16550
DUART Which Runs on an
NS32GX32 CPU

1.0 INTRODUCTION
This application note supplies a software program which
serves as a driver for the NS16550 DUART. The driver runs
on the NS32GX32 CPU, and should run with no modifica-
tions on all other Embedded System Processors.
The driver is useful for anyone who is writing a monitor or
system kernel which will run on a system with an
NS32GX32 and NS16550. It is well documented and can be
modified according to the user’s needs.
Drivers of this sort are hard to develop, since they are very
hard to debug. In order to debug such a driver there needs
to be some sort of a communication line to the developed
system. This line is used in order to load the driver into the
memory of the developed system. But, in this case the com-
munication line is controlled by the NS16550, which doesn’t
have a driver yet.

The NS16550 is a popular standard DUART which has 2

communication ports and is useful for serial I/0O operations.

It also contains a FIFO on each port allowing synchronous

communication without losing data.

The driver has the following features:

— It controls both ports of the DUART.

— It can be told to echo its input, and if CR should be ech-
oed as CRLF. Echoing is a required feature by many sys-
tems.

— It can be told to ignore echo of its output, and if CR is
echoed as CRLF.

— It can be told to treat ‘S (XOFF), ‘Q (XON) and "H (Back-
space). These control characters are the standard com-
munication signals to pause and restart communication
("S and "Q respectively), and to erase the last character
sent ("H).

— It can be told to wait until input arrives or only till a speci-
fied timeout has passed. These are the two popular
modes of operation in communication systems.

— It can read/write a single character or a whole line.

— It can be told to read a specified number of characters or
till a CR (and return the length).

The driver is designed for synchronous communication.

The driver is written in a very portable way so that it can be
transported to other Embedded System Processors with no
modifications.

It is compiled and linked by the GNX package supplied by

NSC.

2.0 USAGE

The driver consists of 3 files:

1. An assembler source file containing the initialization rou-
tine (int_16550).

2. A C source file containing the functions to read/write
from/to the DUART.

National Semiconductor
Application Note 660
Coby Hanoch
December 1989

3. A CPP include file used by both source files, defining
global constants. These constants define the addresses
of the DUART on the board and the requested baud rate.

In addition the driver’s makefile (for UNIX systems) is sup-
plied, and a demo program which runs it.

The user should perform the following steps in order to use
the driver:

1. Modify the include file to define the DUART address on
his board. These are the lines:
#define USART_0_ADDR <address of port 0>
#define USART_1_ADDR <address of port 1>

. Modify the include file to define the baud rate on his
board. The baud rate is defined according to the
NS16550 data sheet. For example: 12 signals 9600 baud
at 1.8432 MHz crystal. This is the line:

#define BAUD_RATE <baud rate>

. Modify the include file to define the timeout constant ac-
cording to his needs. The read operations can be instruct-
ed to wait for input. This constant defines the number of
times a read will be attempted before a failure is reported
in this mode. This is the line:

#define IO_TIMEOUT <number of attempts>

. In his program he should add a call for the init__16550
routine as one of the first things it does. This must, of
course, come before any attempt to read or write from
the NS16550.

. The driver uses 4 global variables which should be initial-
ized:

world__echo— Specifies if the world (the hardware on
the other side of the communication
line) echoes what it receives.

Specifies if the world echoes a CR as
CRLF.

board__echo— Specifies if the board (on which the

driver and the NS16550 reside) should

echo what it receives.

Specifies if the board should echo CR
as CRLF.

Each of these variables is a 2 element array, whose first
element refers to port 0 and the second to port 1. A value
of 0 specifies FALSE and a value of 1 specifies TRUE.
Example: world__echo[0] = 0;
This instruction informs the driver that the world
echoes any character it receives from port 0.

. The user can call the following functions from his pro-
gram: read__line, write__line, read__char, write__char.
They are defined in the next section.

7. Compile the driver (no special switches needed) and link

it to his program.

Note: If the user calls the init__16550 function from a reset function (when

there is still no confidence that the memory is operative), the function can be

jumped to, and passed the return address in a register. The ret instruction at
the end of the function should be replaced by a jump 0(r7) for example.

S

w

I

&)

world__crlf—

board__crlf—

o

©1995 National Semiconductor Corporation TL/EE10601

RRD-B30M75/Printed in U. S. A.

NdD 2EXHODCESN uUe Uo suny YaIym LHvYNA 05591 SN 33U} 10} JBALIQ V

099-NV

3.0 INTERFACE
The interface to the driver is done via calls to a set of func-
tions. Following is a description of each of these functions
and its parameters.
Note: The type ‘str’ is defined to be ‘char*’
1. void read__line (port, line, len, err);
int port;
str line, err;
unsigned *len;
Description: Reads a line from a port.
Parameters: port—The port number (0 or 1) to be read from.
line—A pointer to a character array in which
the line read will be returned.
len—The number of characters to be read. 0
specifies to read until a CR.
err—Contains an error message, if an error oc-
curred during the read. If it is null, no error

occurred.
2. void write__line (port, line);
int port;
str line;

Description: Writes a line to a port.
Parameters: port—The port number (0 or 1) to be written to.
line—A pointer to a character array in which
the line to be written is placed. The line
should end with a CR.

3. void read__char (port, ch, wait, err);

int port;
char *ch;
boolean wait;
str err;

Description: Reads a character from a port.
Parameters: port—The port number (0 or 1) to be read from.
ch—A pointer to a character in which the char-

acter read will be returned.
wait— If TRUE, will wait until a character ar-
rives (if one is not present in the FIFO
already). If FALSE, will attempt to read
IO_TIMEOUT times before giving up

and returning an error.

err—Contains an error message, if an error oc-
curred during the read. If it is null, no error

occurred.
4. void write__char (port, ch);
int port;
char ch;

Description: Writes a character to a port.
Parameters: port—The port number (0 or 1) to be read from.
ch—A pointer to a character in which the char-

acter to be written is at.

4.0 THE FILES
Attached are the source files.

4.1 16550.h—The CPP Include File

7% Kk Kk ok kR OR R kOK ok ok ok R ok ok ok kR K ok ok K ok ok sk Ok 3k K O K Ok ROk R % K ok ok % ok ok K ok ok Ok Kk R K K K R K K K K K KO R KOk Rk Kk R K R K ok ok ok
*

* 18550 definitions

*
* This module contains the CPP constants definitions for the 16550 driver.

*
***/

/*
* Useful characters
*/

#define CR ‘N’
#define LF ‘\n’
#define CTRL_Q ‘\021’
#define CTRL_S ‘\N023"
#define CTRL_H ‘\010’

/*
* Maximum line size
*/

#define LINE_SIZE 270

/*
* The USART addresses on the board.
* NOTE: These addresses should be modified by the user to the addresses on
* the tested board.
*/

#define USART_O_ADDR 0xF00000
#define USART_1_ADDR OxF00008

/*
* The maximum time to wait for character read (number of tries).
*/

#define IO_TIMEOUT ((int) 0x90000)

/*
* The baud rate as defined in the NS16550 data sheet.
* (12 signals 9600 baud at 1.8432 MHz crystal)
* NOTE: The baud rate should be modified by the user to fit his needs.
*/

#define BAUD_RATE 12
TL/EE/10601-1

4.2 16550_asm.s—The Assembly File

4% K KK KRR KK KOk K K KK R K K K K KK K K 3K K K XK K KK KK K KK K K KK K K R K R KK R K K K KOk K ok K K ok ok K KO R K K K K K R K

16550_asm.s
This file contains the init_16550 routine.

Note that comment lines must begin with a blank so cpp will disregard
them.

H K K K K K K Kk K 3k ok ok kR ok K K K K K K K % 5k o6 ok K ok K 3 3k ok ok K ok ok K o K ok ok Kk ok K K K K ok K K K K K 3k %k ok 0k KK K Ok X K % Kok X KOk koK K ok X

o o

#include "16550.h"

.set usrt0, USART_O_ADDR # usrtO start address
.set usrtl, USART_1_ADDR # usrtl start address
.set ier, 1 4+ interrupt enable register (IER)
.set ffe, 2 # fifo control register (FCR)
.set com, 3 # usrt line control register (LCR)
.set modem, 4 #+ modem control register (MCR)
.set ck, 0 # baud rate counter (DLL, DLM)
.set cke, 0x80 # clock enable(dlab=1)
.set modrl, O0x3 # async, 8bits, no parity, 1 stop bit
.set modr2, O0x3 # activate receive, transmit signals
.set baud, BAUD_RATE # the baud rate
F
#
Init_16560
#
This is the init routine for the NS16550 UART.
This routine must be written in assembly. It doesn’t use the RAM (or stack
4 since it is still RAM), since it is usually called by the diagnostics
4 routine. For this reason you would usually like to jump to it directly
4 and have it jump back. A register can be used to contain the return address.
The baud rate (in the format requested by the UART) can be passed as a
4+ parameter in R6 instead of being loaded directly.
4 The only register used by this routine is R6.
#*
e
_init_165850::
movb $cke,@usrtO+com # enable clock divisor accsess
movb $cke,@usrtl+com # same for usrtl
movw $baud, @usrt0+ck # set baud rate
movw $baud,@usrtl+ck
movw @usrtO+ck, r6
movb $modrl,@usrtO+com 4 init line mode register
movb $modrl,@usrtl+com
movgb 0,@usrtO+ier 4 disable interrupts
movgb 0,@usrtl+ier
movgb 3,@usrtO0+ffc # clear fifo
movgb 3,@usrtl+ffc
movqgb 1,@usrtO+ffc # enable fifo
movgb 1,@usrtl+ffc
movb $modr2, @usrtO+modem 4 activate receive transmit
movb $modr2,@usrtl+modem
ret 0
jump o(r?) # suggested return via register

TL/EE/10601-2

4.3 16550.c—The Driver Itself

R KRR R KRR KK KRR K K KO K K Ok K K XK K K R K K X K K OK EOK K KR K KR K KR KK R KK K K KX K KR XK K KKK KKK R K K K KOk Kk
*

16550_driver

*
*
* This module contains a serial I/O driver for the NS16550.

* Throughout this source, "world" refers to the outer world, "board" refers to
* the board running this program.

*

*

KAKKKFFRKIKKXRE KRR KK KRR ERRKI KRR AR KR kR Rk kokkkk ok kkkok kR ok kkkkkkk ko kkx kkkkkkkkkx k%% /

#include «<strings.h>
#include "16550.h"

/*
* Bit macroes
*/

+define BIT_ON(bit, reg) ((boolean) (((reg) & (unsigned) (1 <« (bit
#define BIT_OFF(bit, reg) ((boolean) (((reg) & (umsigned) (1 <« (bit

N
[N
N

/*
* Boolean operators
*/

#define NOT !
#define AND 5&
#define OR I

typedef unsigned char byte;
typedef char *str;
typedef char 1_str[LINE_SIZE];

typedef enum {
FALSE,
TRUE

} boolean;

TL/EE/10601-3

* Variables definition
*
K o e e */
/*
* Communications control boolean variables, per port.
*/
char world_echol2], /* The world echoes what it receives */
world_crlfl2], /* The world echoes a CR as CRLF ¥/
board_echol2], /* The board should echo what it receives */
board_crifl2]; /* The board should echo CR as CRLF */
/*

* The structure of the NS16550 register file. Note that in case of a collision
* between two registers, the first register is defined here and the second
* register is defined to be the same.

*/

typedef volatile struct {
byte iop; /* Receive/Transmit register (RBR, THR) */
byte ier; /* Interrupt enable register (IER) */
byte for; /* Fifo control register (FCR) */
byte ler; /* Line control register (LCR) */
byte mer; /* Modem control register (MCR) */
byte 1lsr; /* Line status register (LSR) */
byte msT; /* Modem status register (MSR) */
byte sCr; /* Scratch register (SCR) */

} uart_regs_type;

#define iir fer /* Interrupt ident register (IIR) */

#define dl1 iop /* Divisor latch LSB (dlab=1) (DLL) */

#define dlm ier /* Divisor latch MSB (dlab=1) (DLM) */

/*

* Frequently used bits of different registers.
x/

#define OUT_READY 5 /* Transmit ready bit of LSRx */
#define IN_READY 0 /* Receive ready bit of LSRx */
#define PORT_O_STATUS uart_O_regs->lsr

#define PORT_O_IO uart_O_regs->iop

#define PORT_1_STATUS vuart_l_regs->1sr

#define PORT_1_IO uart_l_regs->iop

/*

* The USART registers are memory mapped to structures.
*/

static uart_regs_type *uart_O_regs
static vart_regs_type *uart_l_regs

(vart_regs_type *) USART_O_ADDR;
(uart_regs_type *) USART_1_ADDR;

TL/EE/10601-4

P

void read_line (/* port, line, len, err */);

void write_line (/* port, line */);

void read_char (/* port, ch, wait, err */);

void write_char (/* port, ch */);
static boolean get_char(/* ch, status, io_port, wait, err */);
static void get_line (/* port, line, len, err */);

Read_char(port, ch, wait, err)

This function reads one character from the port specified.

“S and "Q will be treated appropriately.

If wait is FALSE an error will be signaled if a character doesn’t arrive
before timeout.

If the board should echo the input, this function does it.

XX K X K X X X K

void read_char(port, ch, wait, err)

int port;
char *ch;
boolean wait;
str err;

boolean c¢h_ok;
volatile byte *status, *io_port;

/lk
* Set pointers according to port
x/

if (port == 0) {
status = &PORT_O_STATUS;
io_port = PORT_O_IO;

else {
status = PORT_1_STATUS;
io_port = PORT_1_IO;
}
/*
* Loop until we have a good character
*/

ch_ok = FALSE;
while (NOT ch_ok) {
ch_ok = get_char(ch, status, io_port, wait, err);
if (errl[0] t= "\0') {
return;
}

TL/EE/10601-5

7%
/

* Echo the character 1f needed.
x/

if (board_echolportl) {
write_char(port, *ch);
if ((*ch == CR) AND (board_crlfiportl)) {
write_char(port, LF);
}

}

} /* read_char */

Get_char(ch, status, io_port, wait, err)

This function reads and processes a character. The ports stauts register
and io_port are used.
The function returns TRUE if the character is ok.

% X K K X X X

static boolean get_char(ch, status, io_port, wait, err)
volatile byte *status, *io_port;

char *ch;

boolean wait;

str err;

{

int i;

/*
* Wait until we are flagged that a character arrived.
*/

if (wait) {

while (BIT_OFF(IN_READY, *status)) {
}

else {
for (i = 0; 1 <« IO_TIMEOUT; i++) {
if (BIT_ON(IN_READY, *status)) {
break;
}
}

if (i == IO_TIMEOUT) {
strepy(err, "ERR TIMEOUT");

return(FALSE);
}
}
/*
* Read the character.
x/

*ch = *io_port;

TL/EE/10601-6

%
* If it is a Q. ignore it.
*/

if (*ch == CTRL_Q) {
return(FALSE);

/*
* If the character is a "S, keep reading until a "Q arrives.
* Ignore timeout.
* If the character is not a "S, signal that it is ok.
*/
if (*ch == CTRL_S) {
while (*ch != CTRL_Q) {
while (BIT_OFF(IN_READY, *status)) {
}
*ch = *io_port;

}
return(FALSE) ;

return(TRUE);

} /* get_char */

/* __
*
* Write_char(port, ch)
*
* This function writes one character to the port specified.
* If the world echoes the characters, this function rereads the character.
*

void write_char(port, ch)
int port;
char c¢h;

volatile byte *status, *io_port;
char temp;
1_str temp_message;

/¥
* Set pointers according to port
*/
if (port == 0) {
status = PORT_O_STATUS;
io_port = ®PORT_O_IO;
}
else {
status = &PORT_1_STATUS;
io_port = PORT_1_10;

TL/EE/10601-7

}

PR I

Check if there is a character waiting on the input port.

* If there is, and it is a ~S, keep reading until a "Q is read.
* Otherwise, ignore it.

*/

if (BIT_ON(IN_READY, *status)) {
temp = *io_port;
if (temp == CTRL_S) {
while (temp != CTRL_Q) {
while (BIT_OFF(IN_READY, *status)) {
}

temp = *io_port;

}
}
/*
* Write the character.
*/

while (BIT_OFF(OUT_READY, *status)) {

}

*io_port = ch;

/1
* If the world echoes the character, reread it.
x/

if (world_echolportl]) {
read_char(port, &temp, FALSE, temp_message);
if ((ch == CR) AND (world_crlf)) {
read_char(port, &temp, FALSE, temp_message);
}
}

/* write_char */

Read_line(port, line, len, err)
This function controls the reading of a line from the requested port.
len = O specifies that the reading should continue till a CR is reached.
It returns the line and the port from which the command was read.
void read_line(port, line, len, err)
int port;
str line, err;

unsigned *len;

err[0] = '\O’;

TL/EE/10601-8

10

/ x
* Keep trying to read a line, until success.
*/

get_line(port, line, lemn, err);
while (err{0] != '\O’') {

write_line(port, err);
get_line(port, line, len, err);

} /* read_line */

Get_line(port, line, len, err)

This function reads a line from the port specified.

Length = O specifies that read should continue to a CR.

In any case, no more characters than the size of line are read.
Upon return, length will contain the number of characters read.

L R N)

static void get_line(port, line, lemn, err)
int port;
str line, err;
unsigned *len;

boolean stop_on_cr, wait;

char ch;

int i;

/*
* Check the length specified.
*/

stop_on_cr = FALSE;
if (*len == 0) {
stop_on_cr = TRUE;

*len = LINE_SIZE;
}
/*
* Read the line. Treat backspace ("H) on the way.
*/

TL/EE/10601-9

11

linel0] = '\QO’;
for (i = 0; i « *len

if (i == 0)
walt = TRUE;

;i) o

else {
wait = FALSE;
}

read_char(port, &ch, wait, err);
if (err{0] t= '\0")
*len = 1i;
return;
}
if (c¢h == CTRL_H) {
if (4 > 0) {
i-=2;
if (board_echolportl) {
write_char(port, ch);
write_char(port, ' ');
write_char(port, ch);

continue;
continue;

}

if ((ch == CR) AND (stop_on_cr)) {
linelil = '\0‘;
*len = i;
return;

}

line[i] = ch;

}

} /% get_line */
g

Write_line(port, line)

P]

This function writes a line to the requested communication port.

void write_line(port, lime)

int port;
str line;

int i;
for (i = 0; i <« strlen(line); i++) {
write_char(port, linelil);
write_char(port, CR);
} /* write_line */

TL/EE/10601-10

12

4.4 demo.c—The Demo Program

JEEXREREEARKFRRXRRKK KRR KR KKK KK KA RRKRKF AR KX R KRR KR KRR AR KRR KRR KX R KKK AR KRRk R K K X X KX KX KK KK

*

16550_demo

This module contains an example of how to use the driver for the NS16550.

the board running this program.

*
*
*
* Throughout this source, "world" refers to the outer world, "board" refers to
*
*
*

KKK KKK KR KKK KKK R KKK KKK K KRRK KK R KRR KKK KRR KA KK KRR KRR KRR KRR AR KRR KK KKK KKK KRR R ARk XK Kk kX /

/*
* Include the 16550 include file.
*x/

#include "16550.h"

/*
* Declare the used functions and global variables in the driver.
*/

void read_line (/* port, line, len, response */);
void write_line(/* port, line */);

char board_echol2], /* The board should echo what it receives
board_crlfl2]; /* The board should echo CR as CRLF
main () {
static char 1n[LINE_SIZE], /* The line read/written
resp[LINE_SIZE]; /* The response (error message)

static unsigned len=0; /* The length of the line to be read
/*

* Call the drivers init routine and initialize.

*/

init_16550();
board_echol0]
board_crlf[0]
board_echol1]
board_crlf(1]

[eXeoNeXe]

o

/*
* Write messages to port O.
*/

write_line(0, "hello world\n");
write_line(0, "This is the 16550 driver test\n");

x/
*x/

*/
*/
*/

TL/EE/10601-11

13

/*
* Read a line from port O, until a CR.
*/

read_line(O, 1ln, &len, resp);

if (respl0] != ‘\0') exit(1l);
write_line(O, "line received\n");
write_line(0O, 1n);

/)k
* Ask the driver to echo all its input from port O, and echo CR as CRLF.
*/

board_echol0]
board_crlfl(0]

]
o

* Read a line from port O. Note that len contains the number of characters
* read previously (and not 0), so the read will read the same number of
* characters without reguarding CR.

*/
read_line(O, ln, &len, resp);
if (respl0] != '\0’') exit(l);
/)k

* Ask the driver to stop echoing CR as CRLF in port O, and read a line
* until a CR.

*/
board_crlf[0] = 0;
len = 0;
read_line(0O, ln, &len, resp);
if (respl0] != '\0’') exit(1l);
/*
* Write a line to port 1, and read an answer.
*/
write_line(1l, “"hello port 1l\n");
len = 0;
read_line(0, 1ln, &len, resp);
if (respl0] != '\0') exit(1l);

}

TL/EE/10601-12

14

4.5 makefile—The Makefile
#

4+ This makefile compiles the 16550 driver with the demo program.
+ Type "make" to produce the executable called "16550".
#

OBJS = demo.o 16550.0

SOURCES = demo.c 16550.c

H_DIR =

CcC = nmee

AS = nasm -C
CFLAGS = -KCGX32 -g

16550: 16550_asm.o $(0BJS) 16550.h
$(CC) $(CFLAGS) -0 16550 16550_asm.o $(OBJS)

democ.o: demo.c
16550.0: 16550.¢c

16550_asm.0: 16550_asm.s 16550.h
$(AS) -0 16550_asm.o $(AS_FLAGS) 16550_asm.s

TL/EE/10601-13

15

A Driver for the NS16550 DUART Which Runs on an NS32GX32 CPU

AN-660

LIFE SUPPORT POLICY

Lit. # 100660

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury
to the user.

2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.

National i National i National National i National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 Furstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999

Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998

Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

