
TL/EE11064

O
v
e
rflo

w
C

o
n
d
itio

n
s

in
C

M
A

C
D

In
s
tru

c
tio

n
E
x
e
c
u
tio

n
o
n

N
S
3
2
G

X
3
2
0

A
N

-7
2
0

National Semiconductor
Application Note 720
Yair Hadas
August 1990

Overflow Conditions in
CMACD Instruction
Execution on NS32GX320

1.0 INTRODUCTION

This application note describes how to handle overflow oc-

currence in the CMACD (Complex Multiply and Accumulate

Double) instruction in the NS32GX320. It includes a descrip-

tion of cases in which overflow occurs in the CMACD in-

struction, and provides examples of these cases.

2.0 DESCRIPTION

2.1 A General Description of Overflow

in Addition Operations

Overflows occur in addition operations when the carry bit

into the sign bit position disagrees with the carry bit out of

the sign bit position. When this happens, the correct result is

too large to be to represented as a signed integer number,

and is often represented by the wrong sign. Thus, the over-

flow of two positive numbers yields a negative number,

while the overflow of two negative numbers yields a positive

number.

2.2 Examples of Overflow in Addition Operations

This section provides two examples of overflows in addition

operations with two 8-bit numbers. The first example shows

what happens when two positive numbers are added. The

second example shows what happens when two negative

(2’s complement) numbers are added.

Example A: Adding Two Positive Numbers

Operand 1: 01000101

Operand 2: 01001010

Result: 10001111

l l
lxcarry bit 4 1

l
xcarry bit 4 0 x Overflow

This example shows how adding two positive operands

(01000101 e 69 decimal, 01001010 e 74 decimal) produc-

es a negative result (10001111 e b113 decimal).

Example B: Adding Two Negative Numbers

Operand 1: 10001101

Operand 2: 10000111

Result: 00010100

l l
lxcarry bit 4 0

l
xcarry bit 4 1 x Overflow

This example shows how adding two negative operands

(10001101 e b115 decimal, 10000111 e b121 decimal)

produces a positive result: (00010100 e 20 decimal).

3.0 STANDARD OVERFLOW IN CMACD

The Complex Multiply and Accumulate Double (CMACD) in-

struction reads two double-word source operands, repre-

senting complex numbers. Each operand consists of a

signed 16-bit real part in the low-order word and a signed

16-bit imaginary part in the high-order word. The result con-

sists of a signed 32-bit real part in R0, and a signed 32-bit

imaginary part in R1.

The instruction syntax is:

CMACD srcl, src2

gen gen

read.D read.D

Assuming:

srcl e A2 (imagin) A1 (real)

31 16 15 0

src2 e B2 (imagin) B1 (real)

31 16 15 0

The CMACD result is:

R0 :e R0 a A1 * B1 b A2 * B2 Ð Real result

R1 :e R1 a A1 * B2 a A2 * B1 Ð Imaginary result

The CMACD instruction consists of three ADD operations

and one SUB operation. The overflow can occur during

each of these operations.

Following is the order of additions and subtractions in the

execution of a CMACD instruction:

a. R1 a A2 * B1

b. R0 b A2 * B2

c. (R1 a A2 * B1) a A1 * B2

d. (R0 b A2 * B2) a A1 * B1

The following section gives 8 examples of this standard type

of overflow occurrence. Section 4.0 will give 4 examples of

a more complicated type of overflow occurrence.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

4.0 EXAMPLES OF STANDARD OVERFLOW

Example 1: Overflow on R1 a A2 * B1 when A2 * B1 is Positive

In this operation, an overflow occurs when the product of A2 and B1 is added to R1.

r1 4 60000000

a2 * b1 4 31000000

r1 0 a2 * b1 4 91000000 x overflow

ovf1: movd $hÊ 60000000, rl

movd $hÊ 70000001, r2

movd $hÊ 00017000, r3

cmacd r2, r3

Here is what happens when the operation reaches the CMACD. (Note that A2 and B1 appear in italics.):

src1 4 0111000000000000000000 0000000001

src2 4 00000000000000010111000000000000

A2 * B1 4 00110001000000000000000000000000

rl 4 01100000000000000000000000000000

rl 0 A2 * B1 4 10010001000000000000000000000000

l l
lxcarry bit 4 1

l
xcarry bit 4 0 x Overflow

Example 2: Overflow on R1 a A2 * B1 when A2 * B1 is Negative

In this operation, an overflow occurs when the product of A2 and B1 is added to R1.

r1 4 b0000000

a2 * b1 4 c000ffff

r1 0 a2 * b1 4 7000ffff x overflow

ovf2: movd $hÊ b0000000, rl

movd $hÊ 7fff0001, r2

movd $hÊ 00018001, r3

cmacd r2, r3

Here’s what happens when the operation reaches the CMACD. (Note that A2 and B1 appear in italics.):

src1 4 01111111111111110000000000000001

src2 4 00000000000000011000000000000001

a2 * b1 4 11000000000000001111111111111111

rl 4 10110000000000000000000000000000

rl 0 a2 * b1 4 01110000000000001111111111111111

l l
lxcarry bit 4 0

l
xcarry bit 4 1 x Overflow

Example 3: Overflow on (R1 a A2 * B1) aA1 * B2 when A1 * B2 is Positive

In this operation an overflow occurs when the product of A1 and B2 is added to R1 a A2 * B1.

r1 4 20000000

a2 * b1 4 31000000

r1 * a2 * b1 4 51000000

a1 * b2 4 40000000

r1 0 a2 * b1 0 a1 * b2 4 91000000 x overflow

ovf3: movd $hÊ 20000000, r1

movd $hÊ 70008000, r2

movd $hÊ 80007000, r3

cmacd r2, r3

2

Example 4: Overflow on (R1 aA2 * B1) aA1 * B2 when A1 * B2 is Negative

In this operation an overflow occurs when the product of A1 and B2 is added to R1 a A2 * B1.

r1 4 c0000000

a2 * b1 4 c000ffff

r1 * a2 * b1 4 8000ffff

a1 * b2 4 f0000000

r1 0 a2 * b1 0 a1 * b2 4 7000ffff x overflow

ovf4: movd $hÊ c0000000, r1

movd $hÊ 7fff4000, r2

movd $hÊ c0008001, r3

cmacd r2, r3

Example 5: Overflow on R0 b A2 * B2 when A2 * B2 is Positive

In this operation an overflow occurs when the product of A2 and B2 is subtracted from R0.

r0 4 60000000

a2 * b2 4 c000ffff

r0 1 a2 * b2 4 9fff0001 x overflow

ovf5: movd $hÊ 60000000, r0

movd $hÊ 7fff0001, r2

movd $hÊ 80010001, r3

cmacd r2, r3

Example 6: Overflow on R0 b A2 * B2 when A2 * B2 is positive.

In this operation an overflow occurs when the product of A2 and B2 is subtracted from R0.

r0 4 b0000000

a2 * b2 4 3fff0001

r0 1 a2 * b2 4 7000ffff x overflow

ovf6: movd $hÊ b0000000, r0

movd $hÊ 7fff0001, r2

movd $hÊ 7fff0001, r3

cmacd r2, r3

Example 7: Overflow on (R0 b A2 * B2) a A1 * B1 when A1 * B1 is positive.

In this operation an overflow occurs when the product of A1 and B1 is added to R0 b A2 * B2.

r1 4 70000000

a2 * b2 4 10000000

r0 1 a2 * b2 4 60000000

a1 * b1 4 31000000

r0 1 a2 * b2 0 a1 * b1 4 91000000 x overflow

ovf7: movd $hÊ 70000000, r0

movd $hÊ 40007000, r2

movd $hÊ 40007000, r3

cmacd r2, r3

Example 8: Overflow on (R0 b A2 * B2) a A1 * B1 when A1 * B1 is negative.

In this operation an overflow occurs when the product of A1 and B1 is added to R0 b A2 * B2.

r0 4 c0000000

a2 * b2 4 10000000

r0 1 a2 * b2 4 b0000000

a1 * b1 4 c000ffff

r0 1 a2 * b2 0 a1 * b1 4 7000ffff x overflow

ovf8: movd $hÊ c0000000, r0

movd $hÊ 40007fff, r2

movd $hÊ 40008001, r3

cmacd r2, r3

3

5.0 COMPLICATED OVERFLOW IN CMACD

There are two cases when the final result is correct although the overflow flag is set. These are the cases in which an

overflow occurs in one of the first two operations, but the third or fourth operation compensates for the overflow. In these

cases the overflow depends on the order of the operands. There will be no overflow if the source operands are exchanged.

These two cases of complicated overflow are:

R1 a A2 * B1 causes an overflow.

(R1 a A2 * B1) a A1 * B2 compensates for the overflow.

R0 b A2 * B2 causes an overflow.

(R0 b A2 * B2) a A1 * B1 compensates for the overflow.

The following section presents 4 examples of these cases:

6.0 EXAMPLES OF COMPLICATED OVERFLOW

Example 1: Intermediate overflow on R1 a A2 * B1 when R1 a A2 * B1 a A1 * B2 does not cause an overflow. This

assumes that A2 * B1 is positive and A1 * B2 is negative. If operands A and B were exchanged, there would not have been

an overflow.

r1 4 60000000

a2 * b1 4 31000000

r1 0 a2 * b1 4 91000000 x overflow

a1 * b2 4 c000ffff

r1 0 a2 * b1 0 a1 * b2 4 5100ffff x no overflow

ovf9: movd $hÊ 60000000, r1

movd $hÊ 70007fff, r2

movd $hÊ 80017000, r3

cmacd r2, r3

Here’s what happens when the operation reaches the CMACD. Note that A1 and B1 are in italics, while A2 and B2 are not.

src1 4 011100000000000000111111111111111

src2 4 10000000000000010111000000000000

a2 * b1 4 00110001000000000000000000000000

rl 4 01100000000000000000000000000000

rl 0 a2 * b1 4 10010001000000000000000000000000

l l
lxcarry bit 4 1

l
xcarry bit 4 0 x Overflow

a1 * b2 4 11000000000000001111111111111111

final result 4 r1 0 a2 * b1 0 a1 * b2

final result 4 01010001000000001111111111111111

The final result is correct although there was an intermediate overflow.

Now we check the same instruction when we exchange the order of the operands. Note that exchanging the operands

prevents overflow (A1 and B1 are still in italics).

src1 4 10000000000000010111000000000000

src2 4 01110000000000000111111111111111

a2 * b1 4 110000000000000011111111111111111

rl 4 01100000000000000000000000000000

rl 0 a2 * b1 4 00100000000000001111111111111111

l l
lxcarry bit 4 1

l
xcarry bit 4 1 x No Overflow

a1 * b2 4 00110001000000000000000000000000

final result 4 r1 0 a2 * b1 0 a1 * b2

final result 4 01010001000000001111111111111111

We can see that the result is similar to the previous and no overflow occurred during the instruction operation.

4

Example 2: Intermediate overflow on R1 a A2 * B1 when R1 a A2 * B1 a A1 * B2 do not cause an overflow. This

assumes that A2 * B1 is negative and A1 * B2 is positive. If operands A and B were exchanged there wouldn’t have been an

overflow.

r1 4 b0000000

a2 * b1 4 c000ffff

r1 0 a2 * b1 4 7000ffff x overflow

a1 * b2 4 10000000

r1 0 a2 * b1 0 a1 * b2 4 8000ffff x no overflow

ovf10: movd $hÊ b0000000, r1

movd $hÊ 7fff4000, r2

movd $hÊ 40008001, r3

cmacd r2, r3

Example 3: Intermediate overflow on R0 b A2 * B2 when R0 b A2 * B2 a A1 * B1 do not overflow. This assumes that

A2 * B2 is negative and A1 * B1 is negative. If operands A and B were exchanged there wouldn’t have been an overflow.

r0 4 60000000

a2 * b2 4 c000ffff

r0 1 a2 * b2 4 9fff0001 x overflow

a1 * b1 4 c000ffff

r0 1 a2 * b2 0 a1 * b1 4 60000000 x no overflow

ovf11: movd $hÊ 60000000, r0

movd $hÊ 7fff8001, r2

movd $hÊ 80017fff, r3

cmacd r2, r3

Example 4: Intermediate overflow on R0 b A2 * B2 when R0 b A2 * B2 a A1 * B1 do not overflow. This assumes that

A2 * B2 is positive and A1 * B1 is positive. If operands A and B were exchanged there wouldn’t have been an overflow.

r0 4 b0000000

a2 * b2 4 3fff0001

r0 1 a2 * b2 4 7000ffff x overflow

a1 * b1 4 10000000

r0 1 a2 * b2 0 a1 * b1 4 8000ffff x no overflow

ovf12: movd $hÊ b0000000, r0

movd $hÊ 7fffc000, r2

movd $hÊ 7fffc000, r3

cmacd r2, r3

5

A
N

-7
2
0

O
v
e
rf

lo
w

C
o
n
d
it
io

n
s

in
C

M
A

C
D

In
s
tr

u
c
ti
o
n

E
x
e
c
u
ti
o
n

o
n

N
S
3
2
G

X
3
2
0

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

