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What is Futurebusa?

ABSTRACT

Futurebusa is a specification for a scalable (32/64/128 or

256-bit wide) bus architecture. Arbitration is provided by a

fully distributed, one or two pass, parallel contention arbiter

with allocation rules to suit the needs of both real-time (pri-

ority based), and fairness (equal opportunity access based)

configurations. Two transmission methods are provided: (1)

a technology-independent, compelled protocol, supporting

broadcast, broadcall and transfer intervention (the minimum

requirement for all Futurebusa Systems), and (2) a configu-

rable transfer-rate source-synchronized protocol supporting

only block transfers and broadcast for the maximum per-

formance systems. Futurebusa takes its name from its goal

of being capable of the highest possible transfer rate con-

sistent with the technology available at the time modules

are designed, while ensuring compatibility with all other

modules designed to this standard before and after. The

plus sign (a) refers to the extensible nature of the specifi-

cation, and the hooks provided to allow further evolution to

meet unanticipated needs of specific application architec-

tures. This paper describes the history, structure and appli-

cations of the Futurebusa architecture.

HISTORICAL PERSPECTIVE

Futurebusa is a revised and substantially extended version

of the original IEEE 896.1Ð1987 Futurebus standard,

where the basic protocols and facilities of the new Future-

busa were developed.

From 1983 to 1987 the IEEE P896 Futurebus Working

Group, provided a forum for leading experts to develop

innovative technology and protocols for a scalable per-

formance multiprocessor system bus. The most recent

Futurebusa efforts, from 1988 onwards, represented a

commercial consolidation of all the basic Futurebus philoso-

phies into a realizable and practical standard as an industry

consensus developed between the major organizations who

became interested in developing products based on

Futurebusa.

During early 1988, the VME International Trade Association

(VITA) saw the need to develop a strategy which would lead

to the definition of a Next Generation Architecture Bus Stan-

dard, to follow the widely successful IEEE 1014: VMEBus

standard. They developed a set of requirements which in-

cluded openness, performance goals, and system facilities

and flexibility which would not hinder systems using this bus

for many generations of computer systems. In December

1988, VITA formally announced its intention to base its

‘‘VME Futurebusa Extended Architecture’’ (VFEA), on a re-

vised and extended IEEE 896.1Ð1987 Standard, in con-

junction with the IEEE Futurebusa Working Group.

Around the same time, the US Navy’s Next Generation

Computer Resources Program (NGCR) chartered a Back-

plane Working Group to develop a set of requirements for

use in future Mission Critical Computers. A principal require-

ment was that the chosen standard be likely to become a

major commercial success also, in order that the US Navy

could capitalize upon the systems expertise developed from

R & D Funding provided by the commercial and industrial

sectors. All known existing and proposed bus architectures

were evaluated against a set of criteria.

Futurebus scored substantially higher than the other con-

tenders in almost all categories. After significant internal dis-

cussion at the highest levels of the DOD, the Pentagon an-

nounced in December 1988, their selection of the IEEE

896.1Ð1987 Futurebus as the basis for all future US Navy

mission critical computers.

A third major influence on the specification came from the

IEEE P1496 Rugged Bus Working Group, who had, in 1986,

decided to develop a ruggedized specification for a back-

plane bus. Rather than develop an entirely new bus from

scratch, the Rugged Bus Working Group chose to use the

IEEE P896.1Ð1987 Standard as a base from which to de-

velop their application needs. In November 1988, at a Joint

Rugged Bus/Futurebus Working Group meeting, the two

groups agreed to merge their efforts for a single bus stan-

dard, to be called Futurebusa. The Rugged Bus Working

Group brought significant additional skills to the joint activi-

ty: real-time, fault-tolerance, maintainability and environ-

mental conditions, in addition to the dedication and hard

work of their members who became an integrated part of

the team which defined and reviewed the latest Futurebusa

specification.

An additional strong influence on the specification came

from the Multibus Manufacturer’s group who, in February

1989, announced their intention to pair IEEE 1296 (Multibus

II) with the developing Futurebusa Specifications, into a

common ‘‘Futurebusa Extended Architecture’’ (FBX). From

that point onwards, member companies of the Multibus

Manufacturers Group provided technical support for the

Working Group activities, and contributed greatly to the co-

operative spirit among what were previously competing fac-

tions in the bus industry, to develop asingle cache coherent

bus architecture for the industry, which would now compete

as a truly open standard against the myriad of proprietary

and semi-proprietary architectures which had plagued the

industry in previous generations of computers.

MAJOR FEATURES

Futurebusa represents a major paradigm shift for the bus

industry. It is the first comprehensive bus architecture de-

signeda-priori to be anOPEN standard (An interface speci-
fication for which there are no restrictions for who may use
it), and which was explicitly designed to support multiple

generations of computer technology.
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Futurebusa will benefit end users immeasurably, by allow-

ing vendors to build systems which not only have a much

greater degree of compatibility, but which are ‘‘gracefully

upgradable’’, preserving investments already made in the

boards, enclosures, power systems, peripherals and other

hardware (and software) as new improvements in processor

architecture, levels of integration, and clock speed, are im-

plemented.

Futurebusa derives its name from its lack of built-in obso-

lescence parameters, and its upwardly compatible architec-

ture and protocol extensions. Futurebusa represents a sig-

nificant departure from the philosophy of other standard or

proprietary buses. The most important objectives of the Fu-

turebusa project were: (1) to create a bus standard that

would provide a significant step forward in the facilities and

performance available to the designers of future multipro-

cessor systems, and (2) to provide a stable platform upon

which manufacturers can base several generations of com-

puter systems.

In order to meet this objective, the following requirements

were set:

# Architecture, processor and technology independent (at-

tributes of a truely OPEN Standard).

# A basic asynchronous (compelled) transfer protocol for

simple, higher reliability operation with a handshake flow

control over each word of data transferred.

# An optional source-synchronized (packet) protocol for

the highest possible performance, with flow control over

each block of data transferred.

# No technology-based upper limit to the performance of

the bus in both modes (i.e., limited only by the laws of

physicsÐnot by the technology).

# Fully distributed parallel and arbitration protocols to pro-

vide the minimum possible number of single point failure

mechanisms.

# Parity protection on all lines, and feedback checking

where possible (e.g., modules may write to themselves to

facilitate self-testing).

# Multi-level mechanisms for locking of modules, and the

avoidance of deadlock or livelock.

# Circuit switched and split transaction protocols. Plus sup-

port for memory controller commands to implement re-

mote lock and other SIMD-like operations.

# Support of real-time mission critical computations. (Multi-

ple priority levels with which to arbitrate, and the consist-

ent treatment of priorities throughout the arbitration,

message and DMA protocols. Plus support for the distrib-

uted clock synchronization protocol defined in IEEE

P896.3.)

# Support for fault-tolerant and high availability systems

(Dual bus operation, fault detection and isolation mecha-

nisms and live insertion and withdrawal of modules).

# Direct support for snoopy-cache based shared-memory

systems, with recursive protocols to support single or un-

limited size systems consisting of arbitrarily connected

buses.

# Recognition and support of strong and weak sequential

consistency (time order assumptions).

# Compatible message transport definition supporting a

number of message passing protocols.

TECHNOLOGY INDEPENDENCE

A unique attribute of the design of the Futurebusa proto-

cols is their technology independence: achieved through

basing the protocols on fundamental protocol and physics

principles and optimizing them for maximum communication

efficiency (and hence throughput) rather than for a particular

generation or type of processor. Timing and handshake pro-

tocols are thereby governed by ‘‘law of nature’’ types of

constraints rather than limitations of current and projected

technology such as device propagation delays, and capture

windows.

The benefits of technology independence are reflected in

the principle of no technology-based upper limit to the per-

formance of the bus. The configuration or transaction capa-

bility modes guarantee interoperability when two boards of a

different speed, or different generation, communicate on the

same bus segment; thus providing the Futurebusa with an

unprecidented ability to support multiple generations of

computers, well into the 21st century.

This principle of design longevity also provides a self-adapt-

ing performance span which allows graceful upgrades in

computer equipment. This leads to less customer annoy-

ance, greater confidence in their supplier and the equipment

they sell. Manufacturers are also likely to find significant

advantages in their manufacturing capability, the learning

curve of their design engineers, and a strong strategic ad-

vantage in credibility to their customers.

Fundamental to the compatibility of slow, fast, old or new

modules attached to the same Futurebusa segment, is the

notion ofbroadcast . Each connection phase (address cycle)

is broadcast in a way which guarantees that each module

on the same bus segment is able to decide whether or not

to participate in the forthcoming data transfer phase. This

turns out to be a basic requirement of a snooping cache

coherence scheme, which allows multiple caches to search

their directories to see whether or not they ought to be inter-

ested in the transaction. Even then, the protocols provide

for the performance enhancements possible when a master

knows that other modules will not be interested, by indicat-

ing whether other caches should even bother to search their

directories or not (for example, when a cache block is re-

placed and ownership is transferred back to the main mem-

ory, or when the transactions are using the message pass-

ing mode).

The P896.1 specification may be implemented using any
logic family (e.g., TTL, BTL, CMOS, ECL, GaAs) providing

the physical implementation is constrained such that it

meets the Futurebusa signaling requirements (incident

wave switching, and relative skews between information

and synchronization lines).

Futurebusa protocols may be used at any level in the sys-

tem hierarchy. Device to device, board to board, or system

to system. These protocols are particularly powerful when

used at two or more levels in a hierarchical bus system.

ARCHITECTURE INDEPENDENCE

Futurebusa is architecture independent, providing a flexible

and elegant general purpose solution to cache consistency,

within which other cache protocols will operate compatibly,

while at the same time providing an elegant unification with

a message passing transport protocol.

http://www.national.com 2



There are many exceptionally powerful features implicit

within the Futurebusa specifications which may not be ob-

vious on a first reading of the specification. The Working

Group chose to provide a flexible set of tools within which

an implementation can be crafted to suit a wide spectrum of

applications. Many of the protocol features may be used not

only for the immediately obvious purpose, but are capable

of being utilized for other purposes, many of which were

recognized by the Working Group, but which were omitted

from the descriptions in order not to over-complicate them.

Implicit in the philosophy of the Futurebusa specification, is

the concept that large systems may be built from smaller

subsystems, and those small subsystems may in turn be

built from yet smaller subsystems. Examples of which in-

clude the choice of split or interlocked transactions and a

fully recursive, truly hierarchical cacheing paradigm. This is

in anticipation of future generations of systems, which will

inevitably utilize many levels of caches and internal/external

buses. The Futurebusa protocols will work well at any or

all levels in this hierarchy; since for each generation of com-

puter systems, each bus is absorbed into the packaging

technology one level lower than the previous generation:

traffic flowing on backplane buses today will flow on the on-

board buses of tomorrow; and on chip-level buses soon af-

ter that!

Futurebusa has been designed with large scale integration

of the bus interface in mind. A severe restriction on the

number of signals has allowed the bus to steer clear of

being intrinsically expensive. Hence, while initial implemen-

tations of the Futurebusa may require multiple interface

devices, the learning curve, and volume, will allow these to

be further integrated and for the market forces to rapidly

bring down the cost of the interface to become consistent

with even the lowest cost workstations, industrial and per-

sonal computers.

PARALLEL PROTOCOL

The principal objective behind the design of the parallel pro-

tocol, was to achieve the highest possible transfer rate con-

sistent with the implementation technology and manufactur-

ing constraints at the time the modules were designed, al-

lowing both backwards and forwards compatibility. This

‘‘technology-independence’’ aspect of the Futurebusa pro-

tocols provides the following advantages:

# A long design longevity for the bus, consistent with the

attributes of a widely implemented standard for commer-

cial, industrial and military requirements. Futurebusa

has been designed in anticipation of its continued use

well into the 21st century.

# Graceful upgrade of system components, rather than the

more usual ‘‘throw it all away and start again’’ scenario

that occurs with traditional computers when higher clock-

rate processors become available.

# Flexible tradeoff between cost and performance at any

one point in time. Boards may be designed with exotic

technologies to achieve the highest possible perform-

ance, or with more cost-effective technologies to achieve

excellent cost/performance tradeoffs, and both can op-

erate within the same system (providing they conform to

the same profile).

The Futurebusa parallel protocols support both connected

and split transactions. Simplistically speaking, connected

transactions are cheaper, easier to implement, but are

slowed by the access time of the memory. Split transactions

are more complex, expensive, but provide higher multi-

stream system bandwidth since the bus need not be idle

during the memory access time. Connected transfers pro-

vide lower latency for access to memory (hence single-

stream performance is optimized), split transactions provide

more concurrency in the protocols, hence they optimize

multi-stream performance. Both are needed in a system ar-

chitecture. Connected transfers provide a cost-effective

performance for I/O operations, while split transactions pro-

vide the maximum performance required by MPU/Cache-

memory operation.

Current RISC or CISC Microprocessors do not easily sup-

port a command structure for memory controllers to perform

remote lock operations. Futurebusa provides a simple

workaround for this: use the split transactions for everything

with the exception of lockvariables, and automatically revert

to using connected transactions to perform RMW type oper-

ations. This allows the performance enhancements of split

transactions to be obtained without having to redesign the

processor, or utilize ugly software workarounds which re-

quire existing code to be modified and adversely affect the

performance of the system.

SYNCHRONIZATION DOMAINS

The most frequently misunderstood aspect of bus design

and the one which invokes the most religious fervor among

protagonists, is the synchronization protocol.

One of the basic arguments for the asynchronous (source

synchronized) protocols in Futurebusa is that it allows the

synchronization domain of the sender to extend along the

bus segment, presenting only one synchronization interface

between the bus and the receiver. This contrasts with cen-

trally synchronized buses which require three separate syn-

chronization domains (sender, bus, receiver). Synchroniza-

tion interfaces mean performance is lost due to resynchroni-

zation delays and MTBF is reduced due to metastability.

Since Futurebusa has only one synchronization interface, it

will naturally yield a higher performance than any centrally

synchronized bus.

SCALABILITY AND PERFORMANCE

Scalability of cost and performance were early requirements

in the design of the Futurebusa protocols. Although Future-

busa is basically a 64-bit address architecture, employing a

standard 64-bit multiplexed address/data highway, a 32-bit

Address/Data subset , and 128-bit or 256-bit data superset
is also provided. Perhaps more importantly, the perform-

ance scales over time with a fixed width highway, allowing

for example, systems to be built with 20 ns transfers in 1991

and 10 ns transfers by 1995.

Note: While 10 ns per transfer is often regarded as an upper limit due to the

physics of the bussed transmission line environment, this is a conser-

vative estimate based on measurements with a full-length ‘‘back-

plane’’ implementation of Futurebusa protocols and an electrical en-

vironment, supporting upwards of 20 boards. Systems with fewer

modules, shorter stubs, and shorter backplanes or no backplanes at

all (i.e., on-board implementations of the Futurebusa protocols), will

be able to significantly exceed this limit.

Multiplying these numbers by the data highway width op-

tions (32, 64, 128, and 256 bits), provides a protocol

throughput (with an appropriate electrical environment), of

approximately 100 Mbytes/second at the low-end for sys-

tems using the 32-bit subset in 1990, while systems using

the 256-bit superset in 1995 will peak at 3.2 GBytes/sec-

ondÐa dramatic demonstration of the benefits of a scalable

design.

http://www.national.com3



There are two principal reasons why Futurebusa is able to

attain this level of performance, while other buses cannot:

(1) All Futurebusa protocols are source synchronized,
meaning that the synchronization signal is always emitted

by the same module which emits the information signals,

thereby eliminating spatial skews, and (2) substantial effort

has been put into the understanding the signaling environ-

ment to guarantee that receivers are triggered by the inci-
dent wave from the driver as it passes by along the bus

lines.

Note: Spatial Skews result when there is a space (and hence time) differ-

ence between the transmitting and receiving modules, and the pas-

sage of data between them is synchronized by a signal transmitted by

a 3rd party. For example, a bus with a central clock source must

account for an additional uncertainty in the arrival of data at a receiver

equal to the space (time) difference between the sender and receiver

of the data, independently of the mechanism used to distribute the

central clock.

Another dimension of scalability for the Futurebus, which

lends itself also to fault-tolerant applications, is the use of

dual or multiple parallel Futurebus’s. The locking mecha-

nisms, cache coherence mechanisms, and the general ar-

chitectural facilities are designed such that they can be

readily applied to such applications. Moreover, it may well

be possible that implementations of dual 64-bit or 128-bit

buses (as opposed to single 128-bit or 256-bit buses) are

likely to lead to better multi-stream system throughput (with

a fixed number of bytes per block), due to the smaller frac-

tion of the overall transaction time used as overhead in the

narrower width implementations of the bus.

A NOTE ON PERFORMANCE

Since Futurebusa is a technology-independent specifica-

tion, there is very little in the protocol specification which

would indicate what their actual performance would be in a

specific implementation, without building and testing such a

system.

Although there is, in principle, no upper limit to the perform-

ance of the Futurebus, there are some basic issues regard-

ing the achievable performance which are not widely under-

stood. The actual performance of any bus in any particular

system will be a function of the following three critical ele-

ments:

# The theoretical cleanliness of the protocols. e.g., do the

protocols carry any unnecessary overhead; do they carry

any unnecessary constraints of synchronism to a central

clock, or too many round-trip delays in the handshakes;

do they incorporate fixed technology constraints such as

arbitrary set-up and hold times?

# The architecture of the system in which the bus is used.
The most theoretically perfect bus protocol will grind to a

snail’s pace in a poorly architected system. Very often, it

is the memory system bandwidth which is being mea-

sured rather than the intrinsic protocol bandwidth of the

bus. Systems which perform random transfers can never

sustain as high a transfer rate over the main highway as

systems specifically designed to take advantage of the

intrinsic efficiencies of the memories and bus protocols,

such as block transfers.

# The implementation. Only if full advantage is taken of

available semiconductor technologies, will the protocols

perform at their full potential. Since the Futurebusa is a

truly open standard, its benefits are available to any and

all who choose to adopt the bus. Competitiveness, and

added-value, will now focus on the quality and thorough-

ness of the implementations. Since Futurebusa proto-

cols provide significant room for learning-curve effects in

the industry, one can expect a rapid evolution in the per-

formance of systems which use Futurebusa, through a

steady but definite improvement in the implementation.

Data from various simulation results and reports on

anticipated semiconductor performance have been used to

predict the expected peak performance figures for the

Futurebusa over time as shown in Figure 1. The packet

protocols are shown from a 1991 baseline because of the

anticipated wide availability of devices which can implement

this mode during that time-frame. Conservative assumptions

were used in the development of this model; it is quite possi-

ble for some commercial organizations to be well ahead of

these performance curves when they introduce their prod-

ucts.
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FIGURE 1. Futurebusa Protocol Bandwidth (Peak)
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ARBITRATION

Futurebusa uses a highly evolved version of the Parallel

Contention Arbiter. This mechanism arbitrates among active

contenders through a combinatorial logic network distribut-

ed among all possible contenders using a set of simple

bussed lines connecting them. By applying a unique arbitra-

tion vector to this logic, one contender only (with the highest

arbitration vector) will be uniquely selected as the winner.

The Futurebusa implementation additionally distributes the

responsibility for synchronization of this mechanism among

all the contenders, such that no central logic whatsoever is

required on the bus segment.

Although not as familiar as a central request/grant scheme,

the parallel contention arbiter used in Futurebusa has a

number of significant advantages:

# The current master can observe any requests (and their

priority). This allows the current master to make a rea-

sonable decision as to whether it should give up the bus

immediately (high priority request), at the next ‘‘conve-

nient’’ breakpoint (low priority request), or to continue

until the end of a potentially long block transfer or series

of transactions (no requests pending).

# Multiple priority levels. Allows real-time systems to deter-

ministically allocate bus bandwidth to those processors

running the most critical tasks in situations of high sys-

tem load, i.e., it allows one to determine if a process is

schedulable (guaranteed to meet its deadlines even un-

der conditions of high system load), and improves the

probability that a process is schedulable within a system

with fixed available bandwidth.

# A master-elect can be pre-empted by a higher priority

contender which arrives after the arbitration has taken

place, but before the current master has relinquished the

bus. This allows the higher priority contender a signifi-

cantly shorter average latency to access the bus.

# Arbitration Messages (or events) can be broadcast on

the arbitration bus without the need to disturb the traffic

currently underway on the parallel bus. This mechanism

can be used to implement, for example, interrupts, tar-

geted events and parallel processing rendezvous at syn-

chronization points before proceeding; all without the

need for dedicated lines on the bus for those miscellane-

ous system control functions.

Implemented in a purely text-book fashion, and with all the

parameters of the arbitration network set to their maxi-

mums, this arbitration mechanism will perform approximate-

ly similar to a daisy chained mechanism, but without the

inherent disadvantages of such a scheme. Significantly fast-

er implementations may be designed, which still fully con-

form, by noting that the arbitration parameters (arbitration

vector, arbitration contest settling time, Wired-OR Glitch fil-

ters, etc.) can be traded off against the number of active

masters in the system, the total number of modules at-

tached to any one bus segment, and the length of that bus

segment: all parameters which can be ascertained during

the system initialization phase. Also, in order to take advan-

tage of the performance of higher speed modules (i.e., mod-

ules with faster logic), two arbitration ‘‘speeds’’ are dynami-

cally selectable. This ensures that the compatibility is main-

tained among old and new boards attached to any bus seg-

ment.

A unique aspect about the Futurebusa arbitration scheme,

is the optional ‘‘idle-bus’’ arbitration method, used when

there is only one requesting master. This method, using the

Address/Data lines to signal a request when the bus is idle,

provides the fastest possible latency for a module to access

a memory subsystem. In the event that two or more masters

are detected during this request phase, the scheme auto-

matically reverts to using the parallel contention arbiter

method, already started concurrently with the fast idle bus

method. The result is a significantly faster average latency

for a module to access the memory subsystem. Used in

combination with the connected bus protocols. This can re-

sult in a significant reduction in the miss penalty of modern

RISC processors, as compared to all other bus designs.

SYSTEM ARCHITECTURE SUPPORT

The Futurebusa specification has been written to provide

support for a wide variety of system architectures. Within a

single bus segment, both functionally distributed (message

passing) and shared memory (cache coherent) systems

may coexist. For multi-crate systems, Futurebusa has a

number of companion standards offering a bridging service

to other bus standards. This wide range of options will allow

a smooth transition from existing buses to Futurebusa and

beyond to other advanced interconnection architectures

such as the Scalable Coherent Interface (SCI): a ring-based

interconnection for large scale parallel processing system

implementations. It also allows the needs of secure data

and tightly-coupled parallel processing regimes to be bal-

anced.

A message passing architecture is, in its purest form, a

write-only system. In such a system, a module requiring ac-

cess to data sends a request message to the module own-

ing the data; the responding module will reply at some time

later by writing the data to the requestor. It is easy to see

that access restrictions may be readily implemented in such

a system without cutting down on the available bus band-

width; the responder simply checks the authorization of the

requestor before replying. What is not immediately obvious

is that such a system can make very efficient use of the bus.

First, only write transactions are being used, and write trans-

actions are inherently more efficient: requiring only the pre-

sentation of the data and a response, rather than a request,

an access time for the data and a response, as is required

for read transactions. Second, messages use fixed size

blocks, allowing burst transactions to amortize the cost of

transaction setup over the block. Message passing systems

also have the advantage of being simple to design and ana-

lyze since nothing is shared and all transactions are inher-

ently split.

Futurebusa describes an optional message passing archi-

tecture in Chapter 9. The P896.1 model uses a default mes-

sage frame of 64 bytes (note the compatibility with the buff-

er sizes needed by the cache coherence protocols), a

broadcast mailbox with a message filter and point to point

request and response mailboxes. Messages are transmitted

without the use of any special bus level protocols. Only two

of the Futurebusa transaction types are used: Write-un-

locked and write-no-acknowledge. This makes Futurebusa

message passing easy to implement and easy to add to an

existing interface design.

http://www.national.com 6



Shared memory architectures represent a different ap-

proach to system data flow. In this model, all data needed

for use by more than one resource within the system is held

in a global, shared memory subsystem, accessible to all bus

masters within the system. This method of sharing data

would be costly in terms of bus bandwidth and access laten-

cy if all modules had to compete for access to the same

physical memory module(s), so caching and split transac-

tions are provided to enable much higher performances to

be obtained by eliminating unnecessary contention. A

shared memory model is extremely useful when multiple

processors are operating on the same data and is the pre-

ferred architecture for use in tightly-coupled multiprocess-

ing. The use of constructs such as caches and split transac-

tions requires that the hardware implement a well-thought

out series of protocols to ensure that all processors always

operate on valid data only.

The shared memory and message passing models are not

mutually exclusive within the Futurebusa environment: they

can readily co-exist, allowing the system integrator to meet

seemingly orthogonal requirements.

TL/F/11150–2

FIGURE 2. Typical Futurebusa Application
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SEQUENTIAL CONSISTENCY

Computer Architecture has been evolving for many years,

and many problems which now seem familiar, were far from

obvious when they were initially recognized. Several years

ago, the Working Group solved some fundamental physical

and conceptual problems concerning the physics of the

backplane environment, and the design of the bus protocols

to provide general mechanisms to support cache coheren-

cy. Recognizing that there are likely to be many more prob-

lems which have not yet been either widely recognized, or

well articulated, the Futurebusa Working Group has incor-

porated many (mostly hidden) hooks into the specifications

to allow its evolution, in a compatible way, to meet both

anticipated and unforeseen future requirements.

For example, the Futurebusa protocols have been carefully

designed to be fully consistent with the physical model of

the universe implied by special relativity. The model dispels

the myth of the concept of simultaneity, because all laws of

physics, including electrodynamics, optics, mechanics, and
data location and movement are invariant with respect to all

coordinate systems, and that spatial distribution is equiva-

lent to time (in this case, latency). It is the lack of recognition

of this principle in computer science which gave rise to the

conceptual difficulties called sequential consistency.

Sequential consistency was first recognized in early 1988 by

the Futurebusa Working Group when trying to reconcile the

view of the universe from the different perspectives of the

programmer and hardware engineer. It is the assumption,

often made without explict reference by programmers, that

the order of events observed by any one device is the same

as any other device. Unfortunately, when the transmission

time of an event or protocol packet (due to the finite speed

of light) is significant relative to the period between events

occurring in the system, this assumption is no longer valid,

since it violates the principle of relatively (that there is no

absolute frame of reference, and the order of events de-

pends on both the space and time coordinates of the ob-

server relative to the rest of the system).

Futurebusa provides support for dynamically choosing be-

tween strong and weak sequential consistency. One way

this is supported is through the split transaction protocol, by

either posting the writes and continuing without waiting for a

response (weak consistency), or by requiring the processor/

cache to wait for all responses from other blocks before

continuing (strong consistency).

The effect of strong sequential consistency is to sequential-

ize several variable updates through one place in space-

time (the current owner). Since in the MOESI model there is

by definition only one current owner (although there may be

several surrogate owners in the bridges), the effect is to

create a single point in space through which the synchroni-

zation can take place.

It was important to provide support for strong consistency

since many experts believe that sequential ordering of

events must be guaranteed in order to ensure the correct

operation of certain programs (this is currently an outstand-

ing research question in the academic world). However,

strong sequential consistency significantly reduces the

amount of concurrency allowed in the system, and can

therefore have a highly detrimental effect on multiprocessor

system performance. Weak sequential consistency is pro-

vided for those new programs wishing to take maximum ad-

vantage of the concurrency available in a system, but which

are cognizant of the programming constraints needed to en-

sure correct operation when strong sequential consistency

is not guaranteed.

Mechanisms to support synchronization barriers for the ren-

dezvous of multiple threads in a task executed in parallel

are also provided by the broadcast and broadcall facilities in

the parallel protocol, and by the arbitration messages pro-

vided by the bus allocation scheme.

BRIDGES

The Futurebusa Working Group has been firmly committed

to the concept of bridges for many years, and believe that

bridges are a requirement for any new bus architecture to

succeed. There is presently an enormous investment made

in existing bus products. This investment is two dimensional,

representing a great depth in quantity of systems sold and

breadth in terms of available functionality within a given bus

architecture. Since a new bus will not be able to achieve this

penetration for some time, and furthermore does not wish to

require previous investment to be written-off, bridges pro-

vide a pragmatic solution to this problem.

A bridge represents a concept more than a physical imple-

mentation. The idea is to allow transactions begun on one

bus to be completed on another with minimal impact on the

software and hardware of the standard modules on either

bus. This means more than simply converting protocols. A

bridge must provide a nearly seamless means of communi-

cation between what are basically incompatible architec-

tures. This includes methodologies for defining how inter-

rupts are handled on a bus which does not recognize the

single-processor concept of interrupts, for example.

For Futurebusa, this has been addressed for a number of

existing and future bus standards. Futurebusa provides its

own specifications within the basic protocols to bridge to

itself. Bridges have also been defined between Futurebusa

and VMEBus (IEEE P1014.2), Multibus II (IEEE P1296.2),

and the Scalable Coherent Interface (IEEE P1596). Those

will allow Futurebusa to be used with existing or future

hardware and software from any of those bus architectures.

A smooth upgrade path from lower performance buses to

higher performance buses is assured, as is the usefulness

of the newer bus standard even without a broad product line

in its early days.

TESTABILITY AND MAINTAINABILITY

Futurebusa has been designed from the outset to make it

straightforward to build testable implementations. Facilities

to support error detection go hand in hand with hooks to

stimulate those mechanisms to deliberately cause an error,

so that the mechanism may be tested.

Much discussion took place on the need for a boundary

scan standard (such as IEEE P1149) to be included within

the Futurebusa signal set. Since the bandwidth require-

ments for such a bus are so low, the relative cost of bus

signal lines is not negligible, it was decided to support these

facilities through the use of a boundary scan controller on

the modules themselves (logic is cheap inside LSI devices),

and to stimulate and control this controller through com-

mands and telemetry transmitted through the IEEE P1394

High-Serial Bus mechanism provided on two of the pins of

the Futurebusa signal set.

In addition, IEEE P896.3 may specify a test access port as a

requirement on the access panel of modules built to a pro-

file which includes requirements for Maintainability and

Testability. See IEEE P896.3 for further details.
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REAL-TIME APPLICATIONS

Futurebusa is also designed to support real-time applica-

tions where the correctness of computation depends upon

not only the results of the computation but also the time at

which outputs are generated. Examples of real-time applica-

tions include air-traffic control, avionics, process control and

mission critical computations. The measures of merit in a

real-time system include:

# Fast response to urgent events and accurate timing in-

formation.

# High degree of schedulability. Schedulability is the de-

gree of resource utilization at or below which the dead-

lines of tasks can be ensured. It can be thought of as

‘‘real-time throughput’’, i.e., the number of timely transac-

tions per second.

# Stability under transient overload. When the system is

overloaded by events and it is impossible to meet all the

deadlines, we must still guarantee the deadlines of se-

lected critical tasks.

The distributed clock synchronization protocol defined in

P896.3 provides users with accurate and reliable timing in-

formation. The prioritized arbitration message mechanism

provides the basis of fast response to urgent events. The

multiple priority levels in the arbitration protocol and the

consistent handling of priority among arbitration, message

and DMA protocols provides the user with a consistent and

powerful scheduling tool. As a result, users can employ ana-

lytical scheduling algorithms, for example, the rate mono-

tonic algorithm, to ensure a high degree of schedulability

and stability. In short, Futurebusa architecture facilitates

the development of real-time systems, whose timing behav-

ior can be analyzed and predicated a-priori .

FAULT-TOLERANT APPLICATIONS

Futurebusa is also designed to be suitable for use in high

integrity systems: the address/data, command and arbitra-

tion lines are all protected by a parity bit per byte, there are

no central elements to adversely affect the survivability of

the system, and modules can be inserted or removed while

the system is operating to facilitate high availability applica-

tions.

Included in the arbitration protocols and initialization facili-

ties are the mechanisms to support the live insertion and

removal of modules. Although Futurebusa includes the

necessary hooks. Full specification of how they are used in

an application system can be found in P896.3.

PROFILES AND INTEROPERABILITY

Older bus standards often suffered from interoperability pro-

lems. Boards from different manufacturers would often not

communicate with one another. Since this defeats the pur-

pose of open standard architectures, the Futurebusa spec-

ifications have been laid out to maximize interoperability.

This has been done in three ways: First, the specifications

have been written in a form which is unambiguous (using

formal equations where possible rather than purely English

statements). Second, an adequate amount of background

description has been provided, to encourage the implemen-

tor to understand and share in the instinctive elegance of

the protocols with the original designers of the specifica-

tions. Third, by providing a hierarchical system of con-

straints to allow a tradeoff between application specific

(e.g., low cost versus high performance), and application

generality without compromising interoperability. This latter

point has been implemented through the concept of pro-

files.

The Futurebusa family contains a number of specifications

which do not individually constitute a bus specification, but

provide a rich set of tools with which to build optimal imple-

mentations for a wide spectrum of applications. When

called up within profiles, however, these specifications, and

the options within them, are much more tightly constrained.

This is to provide the implementor with clear guidelines,

which if followed, will maximize interoperability with any oth-

er implementation which follows the same guidelines.

As an example, the specifications which may be treated as

a family for use within a typical Futurebusa profile are:

P896.1 Futurebusa Logical Layer Specifications, P896.2

Futurebusa Physical Layer and Profiles, P1194.1 Back-

plane Transceiver Logic, P1212 CSR Architecture, P1394

(High speed serial bus), and P896.3: Futurebusa Systems

Configuration Guide.

A profile consists of a mapping of which sections of which

specifications and which options within those sections are

appropriate for use together within an implementation. Pro-

files sanctioned by the Working Group will be contained

within the P896.2 document, and higher level profiles suit-

able for specialized system application environments will be

included within P896.3. This explicit discussion of what is

required and what is not within a given profile addresses the

interoperability issues brought about by arbitrary assignment

of optionality by manufacturers. Profiles also allow the buyer

of Futurebusa based products to know exactly what fea-

tures come with each product. If a manufacturer follows the

requirements laid out within a profile, that product is much

more likely to be interoperable with the products of any oth-

er manufacturer meeting that profile.

ACKNOWLEDGEMENTS

Futurebusa would never have been possible without the

visionary outlook of several key individuals: Lyman Hevle,

Executive Director of VITA, Shlomo PriTal of Motorola,

LCDR Harrison Beasley, of the US Navy, Paul Cook, Chair

of the P1496 Rugged Bus Working Group, and Vice Chair of

the Futurebusa Working Group. John Hyde, Chair of the

P1296.2 Committee and representative of the Multibus

Manufacturers Group, and Wayne Fischer of Force, and

Chair of the P1014.2 Working Group.

REFERENCES

1. IEEE P896.1: Futurebusa Draft 8.2, Published by the

IEEE Computer Society, 1730 Massachusetts Avenue,

N.W., Washington, D.C. 20036-1903.

http://www.national.com9



A
N

-1
0
3
6

W
h
a
t
is

F
u
tu

re
b
u
s
a

?

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: a49 (0) 180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2308
Arlington, TX 76017 Email: europe.support@nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: a49 (0) 180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: a49 (0) 180-532 78 32 Hong Kong

Fran3ais Tel: a49 (0) 180-532 93 58 Tel: (852) 2737-1600
http://www.national.com Italiano Tel: a49 (0) 180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


