DP83950 Twisted Pair Parametric Evaluation

TWISTED PAIR PARAMETRIC EVALUATION

The following information lists the results of the Twisted Pair Parametric tests performed on the DP83950 Repeater Interface Controller (RICTM). The DP83950EB-AT Repeater Kit was used to perform the measurements. Four parts were evaluated at room temperature and 5V power supply, except where indicated.

The test results are divided into three areas; transmit, receive and miscellaneous. The tabular format used shows the parameter tested, the reference section and *Figures* of the "IEEE 802.3 10Base-T CSMA/CD Access Method and National Semiconductor Application Note 783 Imad Ayoub, Howard Vo Prasun Paul June 1991

DP83950 Twisted Pair Parametric Evaluation

Physical Layer Specifications" document, and the values measured on the RIC. No details for the tests/setups are provided as they follow the IEEE document specifications for each test. Additional notes and tables are included for clarification where necessary.

National Semiconductor Corporation (NSC) does not guarantee any of the values indicated in this document. The parameters indicated in the AC/DC parameters section in the RIC data sheet are the ONLY parameters that are guaranteed by NSC.

Test #	Parameter	IEEE Ref. Spec.	RIC Value/Comment
1	Peak differential output voltage: at TD \pm circuits terminated with a 100 Ω load directly \pm 2.2V to \pm 2.8V	14.3.1.2.1	2.5V Peak (Note 1)
2	Harmonic contents with 10 MHz signal through the transmitter All harmonics should be \geq 27 dB below the fundamental 10 MHz	14.3.1.2.1	Tested with a random signal, all harmonics were >30 dB below the fundamental signal
3	Output waveform with scaling Within <i>Figure 14-9</i> template	14.3.1.2.1	Waveforms are within template Measured values are shown in Tables Ia, Ib, Ic
4	Start of TP_IDL waveform with specified load in <i>Figure 14-11</i> and with or without cable model. The readings include idle high time and idle setting time Within <i>Figure 4-10</i> template	14.3.1.2.1	Waveforms are within template Measured values are shown in Table II
5	Link test pulse waveform, with specified load in <i>Figure 14-11</i> and with or without cable model. Readings include amplitude and pulse width Within <i>Figure 4-12</i> template	14.3.1.2.1	Waveforms are within template Measured values are shown in Table III
6	TD circuit differential output impedance or Return Loss spec. Reflection \geq 15 dB below incident for all power on states and for impedances of 85 Ω to 111 Ω	14.3.1.2.2	Within spec. Measured values are shown in Table IV
7	TD output jitter: random signal through a 100m cable model terminated with a 100 Ω load Equalized for max ± 3.5 ns jitter at the end of cable model and with this equalization max ± 8 ns while TD circuit is directly terminated with a 100 Ω load	14.3.1.2.3	Within spec. Measured values are shown in Table V
8	Common mode to differential mode conversion. Test circuit as in <i>Figure 14-13</i> \geq 29 - 17 log 10 (f/10) dB 1 < f < 20 MHz	14.3.1.2.4	Within spec. Measured values are shown in Table VI
9	TD circuit common mode output voltage. Test circuit is shown in <i>Figure 14-14</i> <50 mV peak	14.3.1.2.5	Within spec. (Note 2)

RIC™ is a trademark of National Semiconductor Corporation.

© 1995 National Semiconductor Corporation TL/F/11232

RRD-B30M115/Printed in U. S. A.

AN-783

	Transmitter Specifications	(Continued)	
Test #	Parameter	IEEE Ref. Spec.	RIC Value/Comment
10	TD short circuit current 300 mA max	14.3.1.2.7	Within spec. Approximately 0 mA
11	TD circuit common mode impulse withstand. Test circuit as in <i>Figure 14-15</i> Impulse E _{cm} applied 1000V min	14.3.1.2.7	Filter test—Guaranteed by filter manufacturer
12	TD silence voltage $\leq \pm 50 \text{ mV}$	14.2.1.1	Within spec. 6 mV
13	Period of link pulses 16 ms ±8 ms	14.2.1.1	16 ms
14	Transmit settling time	14.2.1.1	Within spec. Meets amplitude and jitter specifications (2nd bit on)
15	Power cycle behavior No extraneous signal on TD circuit	14.3.2.3	No extraneous signal on TD circuit where noticed

Note 1: The circuit used is shown in Figure 1. Three filters/transformer packages from three vendors were evaluated, and all of them met the amplitude required by this spec. The packages evaluated were: 1) Valor FL1012, 2) Pulse Engineering PE65431, 3) Bel Fuse 0556-3392-00

Note 2: The measurements were done on Valor FL1012, Valor PT3877, and Pulse Engineering PE65431. For all of these packages a 0.01 μ F capacitor is required from the center tap to ground, as shown in *Figure 2*, to reduce common mode to within 50 mV.

	Receiver Specifications	IEEE	
Test #	Parameter	Ref. Spec.	RIC Value/Comment
1	Signals accepted by RD circuits <i>Figures 14-16</i> and <i>14-17</i> templates	14.3.1.3.1	Test signals used did not include jitte Signals accepted met 14-17 and 14-16 templates
2	Jitter accepted by receiver $\geq \pm 13.5 \text{ ns}$	14.3.1.3.1	Guaranteed by 1 above
3	Jitter added by the receiver $\leq \pm 1.5$ ns	14.3.1.3.1	Within spec. Approximatley 1.44 ns
4	RD circuit link test pulse acceptance Figure 14-12 template	14.3.1.3.2	Within spec. Rejects <480 mV amplitude Accepts down to 35 ns width
5	 Signals REJECTED by the receiver: a) Signals that will produce 300 mV peak signal at the output of a 3 pole test filter described in A.4.2 b) All sinusoidal signals of amplitude less than 6.2 V_{p-p} and frequency less than 2 MHz c) All sinusoidal single cycles of amplitude 6.2 V_{p-p} with 0° or 180° phase where the frequency is between 2 MHz to 15 MHz 	14.3.1.3.2	Within the spec. Measured values are shown in Table VII
6	Idle detection by RD circuits Within 2.3 BT	14.3.1.3.3	Within spec. Within 2.05 BT
7	REC circuits differential input impedance or return loss Reflection \geq 15 dB below incident for an impedance of 85 Ω to 111 Ω	14.3.1.3.4	Within spec. Measured values are shown in Table IV
8	RD short circuit fault tolerance Indefinite short shall be tolerable	14.3.1.3.6	RD short caused no faults
9	Receive delay	None*	40 ns
10	Bit loss and receive delay	None*	2.3 BT (270 ns - 40 ns)

	Miscellaneous		
Test #	Parameter	IEEE Ref. Spec.	RIC Value/Comment
1	Jabber timer	14.2.1.6	5 ms
2	Unjab time	14.2.1.6	Approx. 100 BT
3	Link loss timer 50 ms-150 ms (RIC set at 60 ms)	14.2.1.7	56 ms
4	Polarity correction: a) Inverted link pulses, b) Packets with inverted TP_IDL For both cases check if link pass state	None*	Functional
5	TX output at link fail No output data but link pulses	14.2.1.7	Functional
6	Receiver squelch level 300 mV-585 mV	Data Sheet	Within spec. (Note 1)
7	Receiver frequency acceptance: Input signal on RX \pm of 1.2V to 6.2V and sweep the frequency from 0 MHz to 30 MHz or higher	None*	Within spec. Accepts > 3.61 MHz and up to 20 MH (generator limit)
8	Power consumption	Data Sheet	I_{CC} max = 350 mA (Approx.)
9	Receive link_test_max timer 25 ms-150 ms (RIC: 32 ms)	14.2.1.7	Within spec. 32 ms
10	Receive link_test_ min timer 2 ms-7 ms	14.2.1.7	Within spec. 5.75 ms
11	Link count: Ic_max (RIC: 7 consecutive link counts	14.2.1.7	Functional

Normal mode: Guaranteed on at 520 mV, guaranteed off at 460 mV. Low squelch mode: Guaranteed on at 360 mV, guaranteed off at 260 mV. (For use with shielded TP and extended distances.)

* These are extra tests not specified in the standard.

	S	pec.	Por	t #2	Por	t #6	Port	# 13
RIC #	Point	Value (V)	+ ve TMPLT	-ve TMPLT	+ ve TMPLT	-ve TMPLT	+ ve TMPLT	– ve TMPL1
20	A	0	0	0	0	0	0	0
	В	1.0						
	С	0.4	0.75	0.6	0.58	0.66	0.75	0.78
	D	0.55	0.88	0.85	0.72	0.8	0.9	0.9
	E	0.45	0.74	0.83	0.58	0.86	0.83	0.78
	F	0	0.3	0.5	0.13	0.16	0.43	0.35
	G	-1.0	-0.45	-0.37	-0.7	-0.62	-0.46	-0.54
	н	0.7						
	I	0.6						
	J	0						
	к	-0.55	-0.96	-0.9	-1.024	-0.9	-0.97	-0.94
	L	-0.55	-0.96	-0.9	-1.024	-0.9	-0.97	-0.94
	М	0						
	N	1.0	0.8	0.9	1.0	0.9	0.78	0.78
	0	0.4						
	Р	0.75						
	Q	0.15						
	R	0						
	S	-0.15						
	Т	-1.0						
	U	-0.3	0	-0.13	0.26	-0.3	0.032	-0.06
	V	-0.7						
	W	-0.7	-0.6	-0.64	0.5	-0.43	-0.97	-0.58

		Spec.			Port	#2		Port #	⊭6
RIC#	Point	:	Value (V)	+ ve TMPL		-ve TMPLT	+ ve TMPL		– ve TMPL1
22	A		0	0		0	0		0
	В		1.0						
	С		0.4	0.62		0.6	0.62		0.62
	D		0.55	0.74		0.85	0.62		0.62
	E		0.45	0.64		0.62	0.5		0.5
	F		0	0.26	i	0.18	0.04		0.04
	G		-1.0	-0.6	6	-0.7	-0.78	В	-0.78
	Н		0.7						
	1		0.6						
	J		0						
	К		-0.55	-1.1	1	-1.024	-1.0)	-1.0
	L		-0.55	-1.1	1	-1.024	-1.0)	-1.0
	М		0						
	N		1.0	0.8		0.75	0.9		0.9
	0		0.4						
	Р		0.75						
	Q		0.15						
	R		0						
	S		-0.15						
	Т		-1.0						
	U		-0.3	0		0	0.14		0.14
	V		-0.7						
	w		-0.7	-0.6	2	-0.59	-0.38	в	-0.38
			ТАВ	LE II. Start of		Vaveform			
				Amplitude	Width	Undershoot	@4.5 BT		
		Test Lo	bad	(V _P)	(ns)	mV	(mV)		
		155 Ω // 180 with Cable M		1.28	425	-220	-44		
		l15Ω // 180 vithout Cabl		1.5	431	-500	-36		
		76.8 Ω // 229 with Cable N		1.05	428	-120	-40		

438

-336

1.27

-32

76.8Ω // 229 μH

without Cable Model

Test Load	Amplitude (V)	Width at 0 to 0 Crossing (ns)	Width at 0/300 mV to 300 mV (ns)	Under- shoot (mV)	Amplitude at 4 BT (mV)	Amplitude at 42 BT (mV)
115Ω // 180 μ H with Cable Model	1.6	333	176 ns at 300 mV to 300 mV	-80	-48	-12
115 Ω // 180 μ H without Cable Model	2.79	142.5	140 ns at 0 mV to 300 mV	-320	-100	-20
76.8 Ω // 220 μ H with Cable Model	1.32	340	164 ns at 300 mV to 300 mV	-56	-40	-14
7608 Ω // 220 μH without Cable Model	2.26	158	152.5 ns at 0 mV to 300 mV	-240	-60	-16

TABLE IV. Return Loss on the Network

Port #	Red	ceive	Transmit (Powered Up)							
Port #	@ 5 MHz (dB)	@ 10 MHz (dB)	@ 5 MHz (dB)	@ 10 MHz (dB)						
2	-31.9	-26.3	-34.3	-23.5						
3	-39.5	-26.3	-32.5	-24.8						
4	-31.3	-22.2	-33.3	-23.0						
5	-35.4	-24.6	-38.9	-26.6						
6	-35.2	-24.3	-34.0	-22.6						
7	-30.1	-20.5	-36.0	-23.4						
8	-29.7	-20.0	-26.8	-22.5						
9	-30.7	-20.8	-31.5	-21.4						
10	-30.6	-20.9	-31.7	-21.6						
11	-32.0	-22.7	-36.1	-23.9						
12	-34.5	-24.0	-31.7	-22.0						
13	-30.5	-21.1	-34.0	-22.1						

TABLE V. Transmit Signal Jitter at the End of a Cable Model

Filter	Jitter
Valor FL1012	±1.65 ns
Pulse Engineering PE65431	\pm 1.60 ns
Bel Fuse 0556-3392-00	±2.05 ns

requency MHz	29–17 log ₁₀ (f/10) dB	E _{cm} V _{p-p}	E _{diff} V _{p-p}	20 log ₁₀ (E _{cm} /E _{diff}) dB
1.0	46.0	10.2	28.8m	50.98
2.0	40.88	10.2	32.0m	50.0
3.0	37.88	10.2	35.0m	49.29
4.0	35.76	10.2	38.4m	48.48
5.0	34.18	10.0	41.6m	47.6
6.0	32.77	9.6	44.0m	46.7
7.0	31.63	9.4	46.4m	46.13
8.0	30.64	9.0	48.0m	45.46
9.0	29.72	8.4	48.0m	44.86
10.0	29.0	8.2	47.2m	44.79
11.0	28.29	8.8	84.8m	40.32
12.0	27.65	9.0	66.0m	42.69
13.0	27.06	8.6	38.0m	47.09
14.0	26.51	8.4	32.8	48.16
15.0	26.00	8.2	28.8m	49.0
16.0	25.52	8.0	26.8m	49.49
17.0	25.08	7.8	30.8m	48.07
18.0	24.66	7.6	29.6m	48.19
19.0	24.26	7.6	26.4m	49.18
20.0	23.88	7.4	21.6m	50.69

TABLE VII. Receiver Rejection Test Data

Test#	RIC	# 20	RIC	#21	RIC #22	
Test#	Port #5	Port #6	Port #5	Port #6	Port #5	Port #6
5 (a) @ 5 MHz	456 mVp	450 mVp	470 mVp	480 mVp	490 mVp	500 mVp
5 (a) @ 10 MHz	504 mVp	505 mVp	590 mVp	540 mVp	590 mVp	540 mVp
5 (b)	3.6 MHz	3.59 MHz	3.62 MHz	3.60 MHz	3.60 MHz	3.59 MHz

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.