Interfacing the DP8432V and the 68040

National Semiconductor Application Note 865 Atilio Canessa May 1993

nterfacing the DP8432V and the 68040

INTRODUCTION

This application note shows how to interface the DP8432V-33 DRAM controller with Motorola's 68040 microprocessor. The reader should be familiar with the 68040 and the DP8432V modes of operation. This application note is also applicable to the DP8431V/30V. The nature of this application note is to provide an idea of a possible interface to the DP8432V. After reading this application note, the reader must analize his/her particular application and requirements.

This application note design operates at 33 MHz and supports "Cache Line Filling" during read cycles. It inserts 3 wait states during opening accesses, and 1 wait state during Burst Inhibit Cache Fill Accesses. The memory is interleaved every 4 double words (16 bytes) between two banks. The memory is organized in 2 Banks of 32 bits in width. Using 4M X 1 DRAMs, this arrangement gives a total memory of 32 Mb. This design uses DRAMs with output enable, thus transceivers in the data bus are not necessary. If 4 Banks were used, the total memory could be increased to 64 Mb, however, the timing calculations must then be revised due to the heavier capacitive load on the output drivers.

Four timing waveforms are presented.

- 1. Non Delayed Back to Back Accesses to Different Banks. It shows two opening accesses, one to each bank. (Memory Interleaving.)
- 2. Delayed Back to Back Access to the Same Bank. Access-Precharge-Access.
- Burst Inhibited Cache Line Fill. Four accesses to the same bank. Fastest way of access, it transfers 16 bytes in a 5-3-3-3 fashion.
- 4. Refresh Cycle Arbitration.

The glue logic is implemented using a 10 ns PAL to optimize timing in a 33 MHz application. Using a PAL also reduces component count.

DESCRIPTION

Resetting and Programming. Resetting the DP8432V is accomplished by asserting RESET for at least 16 positive edges of clock. The controller is programmed during the first memory write after a system reset. During this time RESET is low the ML input is also low. During the first memory write, the 68040 puts an address to a location equal to the programming selection. WR and AREQ will assert at the beginning of the access. When AREQ goes low, the programming bits affecting the wait logic become valid, allowing DTACK to assert and the 68040 to finish the access. WR negates at the end of the access and then drives ML high. At this time the rest of the programming bits take effect and the 60 ms initialization period begins.

Non-Delayed Opening Accesses. An access begins when the 68040 places a valid address onto the address bus and asserts \overline{TS} . Due to the delay from BCLK high to \overline{TS} asserted (19 ns max for parameter 13 in the 68040 data sheet), \overline{TS} must be latch from the 68040 and asserted early enough in T2 to meet \overline{ADS} asserted to CLK high (parameter 400 in the DP8432V data sheet). The DRAM controller will assert RAS from AREQ and ADS asserted to latch the row address into the DRAM. The controller guarantees the programmed Row Address Hold Time, t_{RAH}, before switching the internal multiplexor to place the column address onto the Q outputs. The controller guarantees the programmed Column Address Set Up Time, t_{ASC}, before asserting CAS to latch the column address into the DRAM. DTACK is programmed to assert from the rising edge of T4 for normal access (1T R2=1, R3=0 plus 1T by WAITIN). TA will assert from the rising edge of T5 through a registered output from the PAL. It takes 5 clock periods (~151 ns) to complete a non-delayed or opening access.

If the 68040 is to perform a single access, SIZ0 and SIZ1 will drive or keep LineTx (internal signal in the PAL16R6) low. LineTx and TA low will negate $\overline{\text{AREQ}}$ and $\overline{\text{ADS}}$ finishing the access.

Delayed Accesses. If the CPU requests an access in the middle of a refresh cycle, or if there are back to back accesses to the same bank, then the DRAM controller will delay the requested access to guarantee the required precharge time. In this application note, the DP8432V is programmed to guarantee 3 positive edges of CLK for precharge.

During most accesses, RAS negates just before the positive edge of T2 (second access). In this case, the T2 positive edge of CLK will count as the first positive clock of precharge. If worst case timing occurs (PAL delay and AREQ negated to RAS negated), RAS may negate just after the positive edge of T2 (second access). In this case precharge will take longer.

Most of the time, delayed back to back accesses take 7 clocks instead of 8 clocks (worst case time analysis). Programming 3Ts of precharge guarantees that precharge will be met in all cases. If 2Ts were to be programmed, it is possible to violate the minimum of RAS precharge when RAS negates just before the beginning of T2.

To guarantee the precharge time, the DRAM controller will keep $\overline{\text{DTACK}}$ high for the 3 edges of precharge. RAS will assert from the 3rd positive edge of CLK, in either T4 or T5. To finish the delayed access, the DP8432V asserts $\overline{\text{DTACK}}$ after 2 clocks (one due to R2, R3 and one due to R6) on the positive edge of either T6 or T7. The 68040 will finish the access when it samples $\overline{\text{TA}}$ asserted at the end of either T7 or T8.

Burst Inhibited Cache Line Fill. Every time the 68040 addresses the DRAM array, SIZ0 and SIZ1 are decoded by the PAL. If these inputs are both 1s, the 68040 will do a line transfer (MOVE 16). In this case, the LineTx feedback will be driven high and $\overline{\text{AREQ}}$ and $\overline{\text{ADS}}$ will be held asserted. The input $\overline{\text{TBI}}$ to the 68040 is always asserted to indicate that there will be no burst access.

To continue cache filling, the 68040 finishes the opening access when it samples \overline{TA} asserted at the end of T5 (rising edge of T1 second read). At this time, the 68040 increments the address bits A2 and A3 and asserts \overline{TS} to continue with the second read. \overline{HCAS} negates from the rising edge of

AN-865

read ca read). i cesses of T2 c asserte data. T line. D driving three a after. Refres memor progres waits for	T1 2nd read) after TA asserts. TS low for the second auses HCAS to assert from the rising edge of T2 (2nd DTACK is programmed to stay low during burst ac- (R4 = 0 R5 = 0). HCAS asserted from the rising edge causes TA to assert from the rising edge of T3. TA ad allows the 68040 to latch the second piece of his logic allows 4 long word accesses to fill the cache uring the 4th transfer TLN0 and TLN1 are both 1, LineTx high and AREQ&ADS high. During the last accesses of the cache fill, TA follows HCAS one CLK sh Cycles. The DP8432V will automatically refresh a ry row every 15 μ s. In the case where an access is in as at the time of a refresh request, the DP8432V or the access to finish and precharge to take place doing the refresh. In the same manner, if a refresh	cycle is in progress and the 68040 request a memory access, the DP8432V will insert wait states into the CPU cycle to allow the refresh and precharge to finish. The DP8432V can insert a refresh cycle in between two back to back accesses. Timing Analysis. Timing parameters starting with a "\$" refer to the DP8430/31/32V-33 data sheet. Timing parameters starting with a "#" refer to the 68040 33 MHz data sheet. A 10 ns PAL with 8 ns delays on the registered outputs is used. The user can calculate new timings based on the equations given. This application note uses DRAMs with $t_{RAC} = 80$ ns, $t_{CAC} = 20$ ns and $t_{AA} = 40$ ns. The AC timing parameters for the DRAM controller may have changed since this application note was written. The reader should refer to the latest data sheet.	
\$400b	TS Asserted Set Up to CLK High (8 ns min) = Tcp33 – Max PAL Delay to $\overline{\text{ADS}}$ and $\overline{\text{AREQ}}$ Asserted	d	
	= 30.3 - 8		
	= 22.3 ns		
\$401	CS Asserted to ADS Asserted (2 ns min) = (Tcp + Min PAL Delay to ADS Asserted) - (#11 BCLK to Address Valid + Max Decoder Delay) = (30.3 + 5.5) - (19 + 14) = 35.8 - 33 = 2.8 ns		
\$404	\$407 Row/Bank Address Set Up to ADS Asserted (3	and 6 ns)	
φτυτ	= (Tcp + Min PAL Delay to $\overline{\text{ADS}}$ Asserted) - (#11 BCLK to Address Valid)		
	= (100 + 10000 + 10000 + 10000 + 1000 + 10000 + 1000 + 1000 + 1000 + 1000 + 1		
	= 35.8 - 19		
	= 16.8 ns		
# t6	TA Set Up to BCLK High (8 ns min)		
<i>"</i> 10	Normal Access		
	= 1 Tcp33 – (Max PAL Delay to \overline{TA} Asserted)		
	= 30.3 - 8		
	= 22.3 ns		
	Cache Filling Access (6 ns min)		
	= 1.0 Tcp33 – (Max PAL Delay to \overline{TA} Asserted)		
	= 30.30 - 8		
	= 22.3 ns		
tava	Access Time from RAS		
tRAC	= $4Tcp33$ – (Max PAL Delay to \overline{ADS} Asserted + \$402	PADS to BAS Asserted + #t15 Data Set Up Time)	
	= 121.2 - (8 + 20 + 5)		
	= 121.2 - 33		
	= 88.2 ns		
tCAC	Access Time from CAS		
-CAU	Normal Access (20 ns min)		
	= $4Tcp33$ – (Max PAL Delay to \overline{ADS} Asserted + \$403	B ADS to CAS Asserted + #t15 Data Set Up Time)	
	= 121.2 - (8 + 70 + 5)		
	= 121.2 - 83		
	= 38.2 ns		
	Cache Filling Access (20 ns min)		
	,	COR Gate Delay + \$14 Max ECAS Asserted to CAS Asserted	
	= 60.60 - (8 + 6 + 13 + 5)		
	= 60.60 - (32)		
	=28.60 ns		

t _{AA}	Access Time from Row Address Valid			
	Normal Access (40 ns min)			
	= 4Tcp33 - (Max PAL Delay to ADS Asserted + \$417 ADS to Row Address Valid + #t15 Data Set Up Time)			
	= 121.2 - (8 + 63 + 5)			
	= 121.2 - 76			
	= 45.2 ns			
	Cache Filling Access (40 ns min)		alid 1 #11E Data Sat Lip Tima)	
	 = 3Tcp33 - (#11 BCLK High to Address Valid + \$26 Address Valid to Q Valid + #t15 Data Set Up Time) = 90.90 - (19 + 20 + 5) 			
	= 90.90 - (19 + 20 + 3) = 90.90 - 44			
	= 46.90 ns			
t _{RP}	RAS Precharge (60 ns min)			
чнр	RAS Precharge (do its min) RAS Negates before the Positive Edge of T2. Typical Case.			
	= 3Tcp – (PAL Delay to ADS and AREQ negated + \$13 AREQ to RAS negated)			
	= 90.90 - (6 ns + 20 ns)			
	= 64.90 ns			
	RAS Negates after the Positive Edge of T2.			
	= 4Tcp – Max (PAL Delay to ADS and AREQ Negated + \$13			
	AREQ to RAS Negated)			
	= 121.20 - (8 + 25)			
	= 88.20 ns			
3Ts of T2.	precharge must be programmed. 2T	s do not provide enough precharge time in t	the case where RAS negates just before	
t _{RAS}	RAS Refresh			
	Refresh is programmed for 4Ts. O	nly choice with 3Ts of precharge.		
	QUATIONS			
		have a maximum propagation delay of 10	no registered outputs have a maximum	
Inputs:	gation delay of 8 ns. The following P/ BCLK, RESET, TS, TLN0, TLN1, SI	•		
	ts: AREQ, TA, HCAS, LineTx, ML.			
AREQ	$\sim := \overline{\text{TS}}$ * RESET_			
	+ AREQ * TA * RESET_	_		
	+ AREQ_ * LineTx * RESET	—		
HCAS	$\sim := \overline{TS} $ * RESET			
	+ HCAS * TA * RESET_	-		
TA~	$= \overline{\text{HCAS}} * \overline{\text{DTACK}}$			
LineTx				
	+ LineTx * TLN0 * TLN1			
	+LineTx * TLN0 * TLN1			
	+LineTx * TLN0 * TLN1			
ML~	:= RESET			
	+ ML_ * RESET_ * WE_			
	+ ML_ * RESET_ * TS_			
	I CONTROLLER PROGRAMMING B	TS:		
DUTAN			DA A	
DIAN	$\overline{\text{ECAS}} = 0$	C4 = 0	R6 = 0	
DIAM	ECAS = 0 B1 = 1	C4 = 0 $C3 = 0$	R6 = 0 R5 = 0	
	B1 = 1	C3 = 0	R5 = 0	
	B1 = 1 B2 = 1	C3 = 0 $C2 = 0$	R5 = 0 R4 = 0	
	B1 = 1 B2 = 1 C9 = 0	C3 = 0 C2 = 0 C1 = 1	R5 = 0 R4 = 0 R3 = 0	
	B1 = 1 B2 = 1 C9 = 0 C8 = 1	C3 = 0 $C2 = 0$ $C1 = 1$ $C0 = 0$ $R9 = 0$	R5 = 0 R4 = 0 R3 = 0 R2 = 1	
	B1 = 1 $B2 = 1$ $C9 = 0$ $C8 = 1$ $C7 = 1$	C3 = 0 C2 = 0 C1 = 1 C0 = 0	R5 = 0 R4 = 0 R3 = 0 R2 = 1 R1 = 1	

AN-865

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.