
TL/F/12044

Q
u
ic

k
R

in
g

C
lie

n
t
In

te
rfa

c
e
s

A
N

-9
4
2

National Semiconductor
Application Note 942
Webster (Rusty) Meier
Paul Sweazey
Shilpa Parikh
Stephen Kempainen
June 1994

QuickRingTM Client
Interfaces

1.0 INTRODUCTION

This application note contains a general discussion of

QuickRing Data Stream Controller (QRDSC) Client interface

techniques, Non-Bridge Mode (PIPE asserted). This applica-

tion note discusses a variety of Client Interface application

issues, including:

Ð QuickRing Control Protocol (QRCP)

Ð The Receive Client Header Routing Symbol Transforma-

tion (Received Stream ID x Transmit Stream ID

Transformation)

Ð Methods of Transmitting/Receiving Data

The following Hardware design options are considered for

the QuickRing Client interface:

Ð Dedicated/Remote CPU/Microcontroller

Ð Hardware DMA controller

Ð Local FIFOs

Ð Multiplexed/Separate QuickRing Transmit/Receive Cli-

ent Ports

Ð Programmable Logic to support the particular interface

configuration

It is assumed that the reader is familiar with the QuickRing

QR0001 Controller Data Sheet, the ‘‘QuickRing Control

Transactions’’ specification, and FPGA/PALÉ/GALÉ de-

sign.

2.0 QuickRing CLIENT PORT DESCRIPTION

The QuickRing Data Stream Controller (QRDSC) contains 4

ports, the Ring Up-Stream and Down-Stream Port and the

Transmit and Receive Client Interface. The System Inter-

face is through the Transmit and Receive Client interface.

To achieve the highest level of performance the QRDSC

Transmit and Receive Ports are separate 32-bit ports,

though these two ports can be multiplexed together if de-

sired (see Figure 1).

2.1 QuickRing Controller Transmit Port

The QRDSC Transmit Port interface consists of (see Figure
2):

Ð 32 Bits of Input Symbol Data

Ð 2 Bits to represent the QRDSC input type field

Ð TxOK, Transmit OK HandShake Output Signal

Ð TxCLK, Transmit Clock Input Signal

TL/F/12044–1

FIGURE 1. The QuickRing Controller Has Four Ports, 2 Ring Ports and the Transmit and Receive Client Ports

PALÉ is a registered trademark of and under license from Advanced Micro Devices, Inc.

GALÉ is a registered trademark of Lattice Semiconductor.

QuickRingTM is a trademark of Apple Computer, Inc.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

TL/F/12044–2

FIGURE 2. Transmit Port Client Interface

The Inputs and Outputs of the Client Transmit interface are

synchronous to the ‘‘TXCLK’’ input. This application note

discusses interfacing to the QRDSC in the Non-Bridge

mode (PIPE asserted). In the Non-Bridge Mode the Trans-

mit Port Type field lags the Transmit Port Symbol by one

clock. TxOK negating means that the Transmit FIFO can

hold a maximum of 20 more Non-Null symbols.

2.2 QuickRing Controller Receive Port

The QRDSC Receive Port Interface consists of (see Figure
3):

Ð 32 Bits of Output Symbol Data

Ð 2 Bits representing the QRDSC output Type field

Ð RxSTALL input, when asserted holds the first Non-Null

Symbol (RxS[31:0]). This symbol will be held until

RxSTALL is negated. This input is sampled on the Fall-

ing clock edge of RxCLK.

Ð RxOE input enables the Receive Symbol when asserted,

this input can be used in a system design where the

Receive and Transmit Ports are Multiplexed together.

Ð RxSEL[3:0] Receive Select inputs select the output (Di-

agnostics Register bits vs Current received Symbol bits)

on the RxNBL[3:0] pins.

Ð RxNBL[3:0] Receive Nibble outputs one of 16 select-

able fields of two readable internal areas (Diagnostics

Register or Current Output Received Symbol).

Ð RxET[1:0] Receive Early Type outputs the type informa-

tion that is entering the Receive Port block, this may be

between two to twenty symbols ahead of current output

type.

Ð RxCLK, Receive Clock Input signal.

TL/F/12044–3

FIGURE 3. Receive Port Client Interface

2

There are three primary signals that control the Receive

Port: RxCLK, RxOE and RxSTALL. RxCLK should be the

constant system clock of the client. RxOE may be perma-

nently asserted in systems where the Client Transmit and

Receive Ports are not multiplexed together. In Client sys-

tems where the Client Transmit and Receive Ports are Multi-

plexed together (RxS[31:0] and TxS[31:0] are tied togeth-

er), or where there is no buffering between the Receive Cli-

ent Port and the Client bus the RxOE pin must be con-

trolled.

In most all systems RxSTALL must be controlled. Figures 4
and 5 and Table I give the behavior of the Receive Client

Port under different conditions of the RxSTALL input.

There are three recommended methods of interfacing to the

QRDSC Receive Client Port (Client Interface Method Ý1, 2,

3):

1. Release RxSTALL for one clock cycle only when RxT[]
takes on a non-null value, leaving RxSTALL asserted at

all other times;

2. build a client system that is guaranteed not to require

that any symbol remain on RxS[] for more than two

clock cycles; or

3. provide an external latch to save symbols that might

have been lost due to entry to row 10, and stall the next

symbol in row 7 or 11 until the external latch can be read.

Client Interface Method Ý1: Leave RxSTALL normally as-

serted. This is the easiest method. It restricts the Receive

port to rows 1, 2, 5, 6, and 9. RxSTALL is released only to

enter rows 1 and 2. This is easily accomplished by releasing

RxSTALL in response to each non-null value, but only when

that value is no longer needed at RxS[]. RxT[] will remain

non-null for only one clock cycle, and this event will have to

be remembered by the client state machine. Unfortunately,

because the next state result of row 9 does not update

RxT[], the fastest that a client may receive data is once

every other clock cycle. If there is always another symbol

ready in the pipeline, then the Receive Port will toggle be-

tween rows 9 and 2, and RxS[] will be updated only on the

exit from row 9. (See Figure 4a and Table I)

Client Interface Method Ý2: Design a client system that

can always consume a received symbol within two clocks.

This may be impractical, but if the client system fits this

description, then there is no problem. This is because the

next state of row 10 is entered in order to stall a symbol that

just appeared upon the exit from row 3, and row 10 pre-

serves the symbol for exactly one more clock cycle. Every

next-case row out of row 10 will advance RxS[] to the next

symbol, so the unstallable symbol always appears at RxS[]
for exactly two clock cycles. (See Figure 4c and Table I)

Client Interface Method Ý3: Provide external storage for

the volatile symbol, and stall the next symbol at RxS[] until

the saved copy can be used. The only entrance to row 10 is

from row 3. External logic must monitor the interface for the

transition from row 3 to row 10 or 11, and must both save

the unstallable symbol and hold RxSTALL asserted until the

external copy can be used. This solution requires that exter-

nal logic emulate the QR0001 Receive Port state machine.

Although the TÊ [] input variable and the nullRxS and Stalled

state variables are not observable on output pins of the

chip, it is possible to compute them externally. An external

state machine can deterministically compute the previous

state and the value input TÊ [] that helped cause it. Although

this information is available one cycle late, there is time to

stall the next symbol until the no-stall symbol register is be-

ing freed up.

The advantage of alternative 1 is its simplicity, if it is not

necessary to receive symbols more often than once every

other clock cycle. The advantage of alternative 2 is that, if it

happens to describe your system (if it’s free), then you will

not encounter the no-stall bug. The advantage of alternative

3 is that the client can keep up with high-bandwidth received

streams that deliver symbols on every clock cycle.

3

TL/F/12044–19

FIGURE 4a. Client Interface Method Ý1, RxSTALL Normally Asserted,

RxSTALL Negated only after RxS has been Sampled

TL/F/12044–4

FIGURE 4b. Holding Head Symbols for 2 Clocks and Holding Data and Frame Symbols for 1 Clock Each

TL/F/12044–20

This figure shows how RxS can only be guaranteed to be held for two clocks maximum on QR0001.

FIGURE 4c. Client Interface Method Ý2, RxSTALL Normally Asserted

4

TABLE I

State

Ý

Input Present State Next State

Next States

Possible

RxSTALL T[] RxT[] nullRxS Stalled RxS[] RxT[] nullRxS Stalled Rxs[]

1 F Null Null Sx Null T F Sx 1, 2, 5, 6

2 F Ty Null Sx Ty T F Sx 3, 4, 9

3 F Null Ty Sx Null F F Sy 1, 2, 10, 11

4 F Tz Ty Sx Tz F F Sy 3, 4, 8

5 T Null Null T Sx Null T T Sx 1, 2, 5, 6

6 T Ty Null T Sx Ty T T Sx 3, 4, 9

7 T Ty Null F T Sx Null F T Sx 1, 2, 7, 11

8 T Ty F Sx Ty F T Sx 3, 4, 8

9 T Ty T Sx Null F T Sy 1, 2, 7, 11

10 T Ty Null F F Sy Ty T T Sx 3, 4, 9

11 T Null Null F Sx Null F T Sx 1, 2, 7, 11

RxSTALL: Chip input signal; which holds non-mull data at RxS[].

T[]: (Not externally observable.) The type of the symbol which should appear on RxT[] during the next clock cycle unless the symbol marked by RxT[] is waiting

behind another stalled symbol at RxS[].

RxT[]: The type code for the symbol that should appear at RxS[] during the next clock cycle, unless RxS[] is currently non-null and is being paused by RxSTALL.

nullRxS: (Not externally provided.) A state variable that is set to TRUE when RxS[] is nullÐits value is volatile (not stallable) and is subject to being overwritten by

an arriving symbol.

Stalled: (Not externally provided.) A one-clock-cycle-delayed version of RxSTALL.

newRxS: (Not externally provided.) The state machine output that loads the RxS[] output with the next non-null value in the pipeline.

RxS[]: The 32-bit symbol output bus of the Receive Port.

T: TRUE

F: FALSE

Null: The symbol type code representing the absence of a symbol.

Ty, Tz: Symbol type codes for a non-null symbol.

Sx: The value of RxS[] unchanged from the previous cycle.

Sy: The new value of RxS[] whose symbol type code appeared on RxT[] during the previous clock cycle.

TL/F/12044–5

FIGURE 5. Null Type is Inserted when RxSTALL is Asserted during the Same Clock Cycle as a

Null Symbol (ie. in above Figure Null is Inserted after Head Symbol, See also Table I, State Ý9)

5

3.0 QuickRing PROTOCOL

The QRDSC allows a node to Transmit (Write) data to an-

other node. The data will be transmitted in a Packet. Each

Packet will be one Head symbol followed by up to 20 data

symbols, each symbol being 32 bits of Data and a 2-bit Type

field.

Many applications will benefit from some protocol built on

top of the QRDSC basic Write capability. This section will

present examples/ideas of higher level protocols. The

Reader of this Application Note should also reference the

‘‘QuickRing Control Transactions’’, this specification details

a higher level protocol similar to the ‘‘QuickRing Control

Protocol’’ detailed in Section 3.2. Three levels of protocol

are presented here:

Ð No Protocol

Ð QuickRing Control Protocol (QRCP)

Ð QuickRing Extended Control Protocol (QRXP)

3.1 No Protocol (Only Write Transactions)

In some dedicated applications no higher level protocol may

be needed beyond the basic capabilities inherent in the QR

Hardware. For example, an application that was only receiv-

ing and buffering data from one other node. In this case just

one node might be sourcing data to a particular destination

node that is buffering the data being sent (i.e. a graphics

display card).

3.2 QuickRing Control Protocol, also Reference

‘‘QuickRing Control Transactions’’

Defining a higher level protocol is important to allow multiple

vendors to build QuickRing Compatible Nodes. The

QuickRing Control Protocol is an example of a higher level

protocol that is further described in ‘‘QuickRing Control

Transactions’’. In the Figures shown below ‘‘SID’’ stands for

‘‘Stream IDentification’’, ‘‘SID*’’ denotes the ‘‘Complement

Stream IDentification’’. The Complement Stream ID is com-

puted from the Head SID that was received at the Client

Receive Port. The Complement SID is used to route data of

Responses back to the Requesting Node (see Section 3.5).

A QuickRing Control Protocol (see Figures 6–8) may in-

clude such functions as:

CMDÝ Name Description

0 Read Request The Read Request Command must be packetized into one QuickRing Packet (1 Head followed by

2 Data Symbols). The Head should be followed by pertinent data (command, address, Byte

Enables). The Responder would then send back an Acknowledge/Retry/Illegal Operation

Response along with the Requested data. The Responder must be able to complete this

transaction even if it is currently handling some other DMA streaming transaction. (SeeFigure 6

below.)

1 Write Request The Write Request Command must be packetized into one QuickRing Packet (1 Head followed by

3 Symbols). This command stores zero to four bytes (within one Quadlet) at the indicated address

in the Target node. The Head must be followed by pertinent data (command, address, Byte

Enables, data to be written). The Responder would then send back an Acknowledge/Retry/Illegal

Operation Response (ACK/RETRY/ILL). The Responder must be able to complete this

transaction even if it is currently handling some other DMA streaming transaction. (Figure 7 .)

2 Event Request The Write Request Command must be packetized into one QuickRing Packet (1 Head followed by

3 Symbols). This command stores zero to four bytes (within one Quadlet) at the indicated address

and generates an interrupt in the Target node. The Head must be followed by pertinent data

(command, address, Byte Enables, data to be written). The Responder would then send back an

Acknowledge/Retry/Illegal Operation Response (ACK/RETRY/ILL). The Responder must be able

to complete this transaction even if it is currently handling some other DMA streaming transaction

(similar toFigure 7).

3 Atomic Request The Atomic Request must be packetized into one QuickRing Packet (1 Head followed by 4

Symbols). The Atomic Request can be a Compare and Swap, Mask and Swap, Fetch and Add,

and Read and Lock. The Head should be followed by pertinent data (ex. command, address, Byte

Enables, Compare data, Swap data). The Responder would then send back the original value of

the target location Swap data. For the case where the Swap Data was written to the Target

location the Atomic Acknowledge Response (ACKÐRSP) should be returned, else the RETRY/

FAIL/ILL Response should be returned. The Responder must be able to complete this transaction

even if it is currently handling some other DMA streaming transaction. (SeeFigure 8 below.)

6

CMDÝ Name Description

4 to A RESERVED

B Illegal Response This Response indicates that the requested operation is not supported.

(ILLÐRSP)

C Failed Response This Response should be sent to indicate that the Atomic Locked Command Request was

(FAILÐRSP) executed but the attempt Failed (bit not set, the compare did not match and the swap was

not performed, the add was not performed, etc).

D Acknowledge Response This Response should be sent to indicate that the Read, Write, Atomic Locked

(ACKÐRSP) Transaction Request completed successfully. If it was a Atomic Locked Transaction

Request, then it succeeded (bit set, swap performed, add performed, etc.).

E Retry Response This Response should be sent to indicate that the Read, Write, or Atomic Locked

(RETRYÐRSP) Transaction Request did not complete successfully and can be Re-Tried.

F Node Reset This command will place the node in a well defined state, appropriate for re-executing the

process of topology discovery, node identification, and system configuration.

TL/F/12044–6

FIGURE 6. Read Request Transaction

TL/F/12044–7

FIGURE 7. Write Request Transaction

TL/F/12044–8

FIGURE 8. Atomic (Compare and Swap) Request Transaction

7

3.3 QuickRing Extended Control Protocol (QRXP)

This Extended Protocol (QRXP) is an example of extending

the QuickRing Control Protocol (QRCP) presented in Sec-

tion 3.2. Note that this is an example only and not an inter-

operability standard. This QRXP could be useful in systems

that are based upon a Flat Addressing Model. In this model

the CPU may perform Memory (or I/O) transactions across

QuickRing Nodes. The QRXP (Figures 6–15) incorporates

QRCP while adding the following features to the Protocol:

Adds ‘‘Number of Symbols’’ (bits 17:14) to the Command

Frame Symbol bits. Read/Write/Acknowledge transac-

tions must drive these bits. (Table II and Figure 9 .)

The ‘‘ÝSymbols’’ field adds two types of transfers to the

protocol: Burst Transfers and Streaming Data Transfers

Burst Data Transfers are data transfers where more than

1 and 16 or less Data Symbols are transferred. This

whole transaction must be incorporated within one QR

packet (1 Head followed by up to 20 symbols). The last

piece of data must be marked as Frame Type (Figures 10
and 11).

Streaming Data Transfers are data transfers where more

than 16 data symbols are to be transferred, thus requir-

ing multiple QR packets sent across the ring. The last

piece of data must be marked as a Frame Type (Figures
12 and 13).

Streaming Data Transfers must first make a Request for

the transfer and receive an Acknowledge back before

any data is transferred (see Figures 12 and 13).

‘‘Transaction Management’’ Command (CMD ÝA) : This

command allows Single/Burst/Streaming Read/Write/

Atomic transactions to be ‘‘Terminated’’ or ‘‘Inquired’’

about (Figure 14 and 15).

This Protocol expands the QRCP by adding a four-bit field

that indicates the number of symbols to be transferred dur-

ing the transaction.

TABLE II. Number of Symbols

Field Decode Table

Decode ÝSymbols

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 256

8 1k

9 4k

A 16k

B 64k

C 256k

D 1M

E 4M

F 16M

This four-bit field can be added to the following QRXP com-

mands:

CMDÝ Name

0 Read Transactions,

1 Write Transactions, and

D Acknowledge Transactions

The format of the Frame Type Symbol can be seen in the

‘‘QuickRing Control Protocol Specification’’. In Figure 9
‘‘Ý Symbols’’ (Bits 17:14) have been added to the QROP in

the Command Frame Symbol Bit Descriptions.

Command Frame Symbol Bit Descriptions

1 0 31:28 27:24 23:20 19:18 17:14 13:8 7:4 3:0

Type Control CMD BE’s AS ÝSymbols Reserved Tag HTOT

CMD: Specifies Command (Read, Write,...)

BE’s: Specifies Byte Enables for the 32-bit data symbols

AS: Address Space (Memory/IO/Configuration Space)

ÝSymbols: The number of Data Symbols to be transferred (Read/Write/ACK)

Tag: Data Stream Identification Ý

HTOT: Hop Count Total (number of Bridges between Source and Destination)

FIGURE 9. QRXP Command Frame Symbol Bit Specification

8

The Added ‘‘Transaction Management’’ Command

(CMD ÝA) allows Single/Burst/Streaming Data Read/

Write/Atomic transactions to be ‘‘Terminated’’ or ‘‘Inquired’’

about (Figures 14 and 15) . A Requester may Inquire (Ter-

minate) a Single/Burst/Streaming Data Read/Atomic

Transaction.

A Responder may Inquire (Terminate) a Single/Burst/

Streaming Data Write Transaction. The ÝSymbols field (bits

17:14) of the Command Frame Symbol (Figure 9) are used

to encode the 4 Transaction Management commands as

follows:

Ý Symbols
Name Transaction Management Command Description

Decode

0 Terminate Request Terminate Data Transaction of specified Stream IDÝ (Tag)

1 Inquire Request Inquire about Data Transaction of specified Stream IDÝ (Tag)

2 Terminate Response Response to Terminate Request about Data Transaction of specified Stream IDÝ. The

Address and Status of the terminated Transaction will be returned. The Least Significant

bit (Ý0) of the Status field will indicate whether the specified Transaction was In-

Progress (‘‘1’’ returned) or is Un-Known (Not-In-Progress, ‘‘0’’ returned)

3 Inquire Response Response to Inquire Request about Data Transaction of specified Stream IDÝ. The

Address and Status of the Inquired about Data Transaction will be returned. The Least

Significant bit (Ý0) of the Status field will indicate whether the specified Data

Transaction was In-Progress (‘‘1’’ returned) or is Un-Known (Not-In-Progress, ‘‘0’’

returned).

4:F Reserved

The Burst Read and Write Transactions are first described below:

CMDÝ Name Description

0 Burst Read Request The Burst Read Command is the same as the QRDR Read Command except that the Number

of Symbols field is equal to or less then 16 but greater than one. This allows the returned data

to be in one QR Packet (required). The requester transmits a Burst Read Request to the

Destination node along with the number of transfers desired (and BE’s, AS, Tag) and the

address. The destination (Responder) replies with an Acknowledge and the number of data

symbols it can provide. Note, this may be less than requested, if this is the case the Requester

must make another request to get all the required data. Also note that the last data symbol is

marked by a Frame type (Figure 10).

1 Burst Write Request The Burst Write Command is the same as the QRCP Write Command except that the Number

of Symbols field is equal to or less than 16 but greater than one. This allows the transferred

data to be in one QR Packet (required) . The requester transmits a Burst Write Request to the

Destination node along with the number of transfers desired (and BE’s, AS, Tag), the address

and the data. Note that the last data symbol is marked by a Frame type. The destination

(Responder) replies with an Acknowledge and the number of data symbols it received. Note,

this may be less then requested, if this is the case the Requester must make another Write

request to transfer the remaining data. SeeFigure 11.

9

TL/F/12044–9

FIGURE 10. Burst Read Request Transaction

TL/F/12044–10

FIGURE 11. Burst Write Request Transaction

This Protocol has the advantage that Streaming Data Trans-

actions must make a general Request for a Nodes Re-

source (DMA Channel) across QuickRing before the trans-

action can take place. In other words Streaming Data trans-

actions are preceded by a Request/Acknowledge Re-

sponse Handshake. If the Responder does not support

Streaming Data Transactions it can return an ACK Com-

mand with the specified Number of Symbols (ÝSymbols) it

is capable of handling. The QRXP uses the commands of

QRCP with additional features (Figures 10 to 13).

CMDÝ Name Description

0 Streaming Data Read Request The Streaming Data Read Command is the same as the QRCP Read Command

except that the Number of Symbols field is greater than 16 symbols (i.e. more than

one QR Packet). The requester transmits a Streaming Data Read Request to the

Destination node along with the number of transfers desired (and BE’s, AS) and the

address. The Responder replies with an Acknowledge, the number of data symbols

it can provide, an Address (updated each packet), and up to 16 data symbols. Note,

the total number of Symbols (ÝSymbols) may be less than requested, if this is the

case the Requester must make another request (after this Streaming Data

Transaction is over) to Read the remaining data. Also note that the last data symbol

is marked by a Frame type (Figure 12).

1 Streaming Data Write Request The Streaming Data Write Command is the same as the QRCP Write Command

except that the Number of Symbols field is greater than 16 symbols (i.e. more then

one QR Packet). The requester transmits a Streaming Data Write Request to the

Destination node along with the number of transfers desired (and BE’s, AS) and the

address. Note, No Data is transferred during the initial Streaming Data Request

Packet. The destination (Responder) replies with an Acknowledge, and the number

of data symbols it can accept. Note, this may be less then requested, if this is the

case the Requester must make another request (after this Streaming Data

Transaction is over) to transfer the remaining data. Once an ‘‘ACK RSP’’ is received

the Requesting Node may Stream Data Packets to the Responder along with the

address (updated each packet), Byte Enables, Number of Data Symbol Transfers

and the data to be written. Also note that the last data symbol is marked by a Frame

type. SeeFigure 13.

10

TL/F/12044–11

FIGURE 12. Streaming Data Read Request Transaction

TL/F/12044–12

FIGURE 13. Streaming Data Write Request Transaction

11

The Added ‘‘Transaction Management’’ Command (CMD
ÝA) allows Single/Burst/Streaming Data Read/Write/

Atomic transactions to be ‘‘Terminated’’ or ‘‘Inquired’’ about

(Figures14 and15). This commandallowsaQuickRingNode:

to inquire about a transaction that it has not received an

Acknowledgement from

to inquire about a large Streaming Data Transaction to

receive an Address and Status. The inquiring node can

compare the address received to its current DMA ad-

dress to guarantee no data symbols have been lost or

added (DMA count position check)

to terminate a transaction that has errored

Decode Name Transaction Management Commands

0, 2 Terminate Request Terminate Data Transaction of specified Stream IDÝ (Tag) and the Response. The Address

and Response and Status of the terminated Transaction will be returned. Note that the address returned will

be the address of the current data (previous data a1). The Least Significant bit (Ý0) of the

Status field will indicate whether the specified Transaction was In-Progress (‘‘1’’ returned) or

is Un-Known (Not-In-Progress, ‘‘0’’ returned).

1, 3 Inquire Request Inquire about Data Transaction of specified Stream IDÝ (Tag). The Address and Status of the

and Response Inquired about Data Transaction will be returned. Note that the address returned will be the

address of the current data (previous data a1). The Least Significant bit (Ý0) of the Status

field will indicate whether the specified Data Transaction was In-Progress (‘‘1’’ returned) or is

Un-Known (Not-In-Progress, ‘‘0’’ returned)

TL/F/12044–13

FIGURE 14. Terminate Request and Response

TL/F/12044–14

FIGURE 15. Inquire Request and Response

12

3.4 QuickRing Extended Control Protocol Emulation Us-

ing the QuickRing Control Protocol Atomic Lock Com-

mand (ex. Compare and Swap)

The QR Extended Control Protocol could be emulated using

the QuickRing Control Protocol Atomic Request, such as

Compare and Swap. For example, suppose that the Client

Receive hardware of a particular node has only a single

DMA channel. A bit in a control register in the Destination

could be asserted if the DMA channel was in use, if negated

then the DMA channel would be known to be available. The

Requesting node could perform an Atomic Request Com-

pare and Swap on that bit instead of performing a separate

Channel Request/Acknowledge subaction of Section 3.3.

Only if an Acknowledge Response (ACKÐRSP) was re-

ceived would the Requesting Channel perform the Stream-

ing Transaction to write data to the Destination Node.

3.5 The Receive Client Header Routing Symbol Return

Path Transformation (Received Stream ID x Transmit

Stream ID Return Path Transformation)

If a QuickRing Destination Node receives a Packet from a

Source Node and wants to return a response to that Source

Node the Head symbol of the Received Packet can be com-

plemented to provide the return path back to the Source

Node. This process is called the Receive Client Header

Routing Symbol Return Path Transformation, or Header

Routing Symbol Complement (See Figure 16 below).

3.6 The QRDSC Client Transmit Port and Packet Size

Issues

As data is enqueued into the QRDSC Client Transmit Port, it

is Packetized and sent around the ring in Packets. These

Packets as large as 1 Head Symbol followed by up to 20

Data/Frame Symbols.

The first Data or Frame symbol enqueued after a Head sym-

bol causes the QRDSC to transmit a Voucher to the Desti-

nation Node. The Destination Node returns a Ticket to the

Source Node if it has space in its Receive FIFO for 21 sym-

bols (1 Head and up to 20 Data/Frames).

When the Source Node receives the Ticket it sends a Pack-

et to the Destination Node. The Packet will contain the

Head Symbol (enqueued in TxFIFO) as well as any data that

has been enqueued in the TxFIFO since the initial piece of

data.

Table III on next page is based upon simulations and gives

an estimate of Packet size based upon how often data is

enqueued into the QRDSC Transmit FIFO. The top horizon-

tal line in the chart gives the Number of Nodes in the Ring

(2–12), the column on the left side of the table gives

how often data is enqueued into the QRDSC Transmit FIFO

(i.e. 3 means that one piece of data is enqueued every 3 Tx

Clocks).

Fixing the Packet size can allow a performance enhance-

ment in some system designs, particularly those where a

CPU or Microcontroller (CPU/M) handles all the Receiving

of Data. When the Packet size is fixed the CPU knows that

once it sees a Head Symbol it will be followed by ‘‘X’’ pieces

of data. Therefore the CPU does not need to check the type

field for each subsequent symbol (as it would have to other-

wise).

Note that fixing the Packet size means that the Transmitter

can guarantee enqueueing data at a certain rate into the

QRDSC Client Transmit FIFO, thus guaranteeing a Packet

size.

If the system designer wishes to guarantee transmitting

Fixed Packets on the Ring there are several considerations

to follow:

Ð Once a full Packet (1 Head followed by up to twenty

32-bit symbols) is enqueued into the QRDSC Transmit

FIFO the Client Transmit interface should enqueue an-

other Head Symbol that is different than the original

Head symbol (ex. least significant HOP field increment-

ed by a 2-bit counter). This will guarantee that the next

packet enqueued does not get concatenated with the

previous packet.

Ð The conditions of Table III must be adhered to. Table III

shows the guaranteed Fixed Packet size based upon

how often symbols are enqueued into the Client Trans-

mit Interface. Each node, beyond a two node Ring, adds

4 clock cycles to the Voucher/Ticket Latency or 4

clocks of time to accumulate more symbols into the

QRDSC Client Transmit FIFO. Also each symbol added

to the QRDSC Transmit FIFO adds an additional clock

of time to accumulate more symbols.

As a final note it still could be possible to experience a Null

between contiguous symbols of a received Fixed Size Pack-

et if RxStall is held negated. This can happen because of

Vouchers or Tickets inserted within the Fixed Packet on the

Ring. If RxSTALL is asserted and then symbols are received

from the ring, Nulls within a packet will be deleted because

the Receive FIFO of the QRDSC does not store Nulls. In the

case of a CPU/M the condition of Nulls within a Packet

should not be encountered because the CPU/M will require

multiple clocks to store each received Symbol, thus assert-

ing RxSTALL causing Nulls within the packet to be deleted.

TL/F/12044–15

FIGURE 16. The Header Return Path Transformation (Complement)

13

TABLE III. QuickRing Packet Size Based upon How

Often Data Is Enqueued into the QRDSC Transmit FIFO

CLKs/

Data

Nodes in the Ring

2 3 4 5 6 7 8 9 10 11 12

1 20 20 20 20 20 20 20 20 20 20 20

QRDSC

Packet

Size

2 16 18 20 20 20 20 20 20 20 20 20

3 8 9 10 11 14 15 16 18 19 20 20

4 6 7 8 9 10 12 13 14 15 17 18

5 4 4 5 6 7 8 8 9 11 12 13 *
4.0 SOME QuickRing CLIENT INTERFACES

There are many methods of Transmitting and Receiving

Data at the QuickRing Client Interface. The following list

gives several Hardware design options to be considered

when designing the QRDSC Client Interface:

Ð Dedicated/Remote CPU/Microcontroller

Ð Hardware DMA controller

Ð Local FIFOs

Ð Multiplexed/Separate QuickRing Transmit/Receive Cli-

ent Ports

Ð Programmable Logic to support the particular interface

configuration

The following Client Interface Topics must also be consid-

ered when designing a QRDSC Client Interface:

A. How/Where the Transmit Packet is constructed

B. How the Transmit Packet is enqueued into the QRDSC

Transmit FIFO

C. How the Receive Packet is dequeued from the QRDSC

Receive FIFO

D. Receive Packet Protocol Issues

These Methods and Topics are considered in the following

QRDSC Applications.

4.1 CPU Handles All Housekeeping Chores, No Protocol

In this system design the CPU/Microcontroller (CPU/M)

takes responsibility for the transmission and reception of

data. This method is inexpensive but very low performance

since each symbol to be transmitted or received requires

multiple CPU/M instruction execution cycles. The efficiency

of this method can be enhanced through the use of some of

the Protocol options mentioned in Sections 3.2, 3.3, 3.4 and

Hardware Options mentioned in Section 4.0 above.

Client Interface Topics

A. The How and Where of Transmit Jacket Construc-

tion: The CPU/M could construct each packet (No-Pro-

tocol) to be transmitted in its internal RAM (Head, Data/

Frame) symbol by symbol. This could be slow since each

symbol could take multiple CPU/M instruction cycles to

construct/access.

B. Enqueuing the Packet to be Transmitted (Two Meth-

ods):

Ð Method 1 involves the CPU/M transmitting each sym-

bol immediately as it is constructed/accessed in Step

A. This method could lead to decreased performance

depending upon how many CPU/M instruction (clock)

cycles it takes to construct or access the particular

symbol. If it takes many clock cycles to construct or

access each symbol it would be very hard to guaran-

tee any packet size over several symbols (see Table

III).

Ð Method 2 involves the CPU/M building the packet in

its internal Registers. Once the Packet was complet-

ed it could be transmitted very rapidly by the CPU,

Burst Write to QRDSC Transmit Port. The speed with

which the Packet is enqueued into the Transmit FIFO

determines the packet size (see Table III). A CPU/M

running at 33 MHz or greater will probably take 3–4

clocks for each piece of data transferred.

C. Dequeueing the Received Packet (Two Methods):

The Client Interface Method Ý1 of Section 2.2 would be

a good choice for this Client Interface. The ‘‘Client Port

Interface Logic’’ can watch the Receive type field for a

Non-Null Type Field. When a Non-Null type is observed

the Interface Logic Block should latch it and hold it avail-

able to be accessed by the CPU/M. Once the Symbol

(RxS[31:0]) has been captured RxSTALL is negated for

one clock cycle to allow the next Non-Null Type and

symbol to be output.

Note that Client Interface Method Ý3 could be used but

would require a 32-bit symbol latch to hold received sym-

bols more then two clocks.

Ð Method 1 involves the CPU/M accessing the ‘‘Stored

Type Field’’ (stored in Interface Logic) for each sym-

bol accessed. This method allows the received pack-

ets to be multiplexed together (packet size NOT

fixed). Since each symbol takes several accesses

(type field access, symbol access) this method is very

low performance but is probably needed if Method 1

(Section B above) is used to Enqueue the Tx Data.

Ð Method 2 involves taking advantage of a fixed packet

size. A specific pattern of bits in the Head Symbol

could denote a Fixed Packet Transfer. As long as the

Stored Type is Null the CPU/M interface logic contin-

ually dequeues symbols from the QRDSC Receive

Port, (Interrupt Logic could be built to Interrupt on

Non-Null Types). When the CPU/M reads a Head

Type Field and Symbol indicating a Fixed Packet it

could then read ‘‘n’’ Symbols (‘‘n’’ being the fixed

Packet size) without looking at the Stored Type

Fields. This would have performance advantages and

could be used if Method 2 of Section B (above) was

used to enqueue the Tx Data.

D. Receive Packet Protocol Issues: The CPU/M can

keep track of any number of Received Streams by stor-

ing the Received Heads, along with other pertinent

Stream information (current RAM address, count, etc.) in

RAM. The CPU/M can store the Received Packet in

RAM or at an I/O address port depending upon the ap-

plication.

In this type of Client Interfaces the CPU/M acts as an

‘‘N’’ Channel DMA controller sorting and storing the data

based upon the Stream ID of the Received Head. Since

this Method is not supporting a higher level Protocol it

will not be concerned with responding back to the

Source node that initiated the transaction.

14

TL/F/12044–16

FIGURE 17. CPU/Microcontroller QuickRing Interface

4.2. CPU Handles All Housekeeping Chores, QuickRing

Control/Extended Protocol (QRCP/QRXP), Fixed Pack-

et Length

This system design is basically the same design as in Sec-

tion 4.1 except in terms of guaranteeing a Fixed Size Packet

and implementation of a QuickRing Control/Extended Pro-

tocol (QRCP/QRXP).

Client Interface Topics

A. The How and Where of Transmit Packet Construc-

tion: The CPU/M could construct each packet (QRCP/

QRXP) to be transmitted in its internal RAM (Head,

Frame Command, Data Address and Possible Data, Sec-

tion 3.2, 3.3) symbol by symbol. This could be slow since

each symbol could take multiple CPU/M instruction cy-

cles to construct/access.

B. Enqueuing the Packet to be Transmitted: Method 2 is

a much better choice when implementing QRCP/QRXP

because it can guarantee a fixed Packet size.

This method involves the CPU/M building the packet in

its internal Register Space. Once the Packet is complet-

ed it can be transmitted very rapidly by the CPU, i.e.

Burst write to QRDSC Transmit Port. The speed with

which the Packet is enqueued into the Transmit FIFO

determines the guaranteed packet size (see Table III).

Guaranteeing a complete Packet (i.e. Read, Write, Atom-

ic Operation, etc.) during transmission makes the Recep-

tion and implementation of the Packet Command much

simpler.

C. Dequeueing the Received Packet (Two Methods): As

mentioned in Section 4.1, The Client Interface Method
Ý1 of Section 2.2 would be a good choice for this Client

Interface. The ‘‘Client Port Interface Logic’’ can watch

the Receive type field for a Non-Null Type Field. When a

Non-Null type is observed the Interface Logic Block

should latch it and hold it available to be accessed by the

CPU/M. Once the Symbol (RxS[31:0]) has been cap-

tured RxSTALL is negated for one clock cycle to allow

the next Non-Null Type and symbol to be output.

Note that Client Interface Method Ý3 could be used but

would require a 32-bit symbol latch to hold received sym-

bols more then two clocks.

Ð Method 1 involves the CPU/M accessing the ‘‘Stored

Type Field’’ (stored in Interface Logic) for each sym-

bol accessed. Since each symbol takes several ac-

cesses (type field access, symbol access) this meth-

od is very low performance.

Ð Method 2 involves taking advantage of a fixed packet

size. The type of Frame Command (Read, Write,

Atomic Command, Sections 3.2, 3.3) following the

Head Symbol will denote the Fixed Packet Transfer

size. When the CPU/M reads the Fixed Packet Trans-

fer Size it can then read ‘‘n’’ Symbols (‘‘n’’ being the

fixed Packet size) without looking at the Stored Type

Fields. This would have some performance advan-

tages. As long as the Stored Type is Null the CPU/M

interface logic continually dequeues symbols from the

QRDSC Receive Port, (Interrupt Logic could be built

to Interrupt on Non-Null Types).

15

D. Receive Packet Protocol Issues: The CPU/M can

keep track of any number of Received Streams by stor-

ing the Received Heads, along with other pertinent

Stream information (current RAM address, count, etc.) in

RAM. In this type of Client Interfaces the CPU/M acts as

an ‘‘N’’ Channel DMA controller implementing the

QRCP/QRXP, see Sections 3.2, 3.3.

For Example, in a Write Operation the DMA controller could

Read (Dequeue) the Head Symbol and Frame Command

Symbol, and address of the Write Command. The CPU/M

could then perform the Write Operation with the following

piece of Data dequeued from the QRDSC. The CPU/M

would then build (in internal Register Space) and Enqueue

the Head Complement and appropriate Acknowledge back

to the Source node.

In Packet Transactions an initial Request and Acknowledge

Response transaction would take place first before the

Write Packet Request could occur (Section 3.3). These ini-

tial subactions are useful in limiting the number of Packet

Transactions that can take place simultaneously at a partic-

ular Target Node.

4.3 CPU Handles All Housekeeping Chores, Extended

Control Protocol (QRCP/QRXP), Fixed Packet Length,

Single Channel Receive DMA Controller, and Optional

External Pending Request FIFO to Hold Transaction Re-

quests

This system design is basically the same design as Sections

4.1 and 4.2 except that several FPGA devices have been

added to provide Fixed Packet Length (FPGA TxFIFO), a

Single Channel Receive DMA Controller, and optionally a

Pending Request FIFO to hold Channel Requests from oth-

er nodes when the DMA channel is currently occupied.

This interface represents a good compromise on a high per-

formance/low cost interface between the QRDSC and the

Client/Host. The principles behind this interface are as fol-

lows:

A. The How and Where of Transmit Packet Construc-

tion: The CPU/M could construct each packet (QRCP/

QRXP) to be transmitted (Head, Frame Command, Data

Address and Possible Data, Sections 3.2, 3.3) symbol by

symbol. These Packet Symbols can be enqueued into a

FIFO inside of an FPGA (Field Programmable Gate Ar-

ray).

An FPGA can be used to provide a Transmit Client Inter-

face as well as an Integrated Transmit FIFO (TxFIFO).

FPGA devices are available (i.e. Xilinx XC4000 series)

that are low cost and allow the Configurable Logic

Blocks (CLB) to be configured as 32 x 1-bit or 16-bit

deep x 2-bit wide RAM. 34 CLB’s could be used to pro-

vide two 34-bit (Each FIFO e 32-bit data a 2-bit type

field x 16 deep) Tx FIFOs to hold incoming Packets to be

transmitted over QuickRing. Note that the TxFIFO may

not add much performance over the CPU/M building

packets in its internal Register Space (Sections 4.1, 4.2)

and burst Writing the Packet to the QRDSC TxFIFO, if

this is the case the Transmit FPGA could be considera-

bly simplified.

As discussed earlier, FIFO’s are advantageous because

they allow the user to guarantee that many 32-bit data

symbols are transmitted together as one packet (one

Head followed by up to 20 Quadlets of data). The least

significant HOP field could be automatically incremented

each packet with an integrated two bit counter. This

would guarantee that each Transmit packet remains to-

gether as a single packet and does not get concatenated

with previous packets transmitted.

When responding to another Nodes Requests the re-

ceived Head routing symbol must be complemented.

The complementing of the Head routing symbol can also

be done in the Transmit Interface FPGA (see part C be-

low).

B. Enqueueing the Packet to be Transmitted: The FPGA

could wait until an entire Packet is enqueued in its inter-

nal FIFO. It can then enqueue that packet into the

QRDSC, paying attention to the TxOK Handshake signal.

This method of the CPU/M enqueueing the Packet into

the Transmit FPGA FIFO first allows greater control of a

Fixed Packet Size on the Ring (compared to the CPU/M

design, Section 4.1). This results from the FPGA en-

queueing the Packet into the QRDSC at one symbol ev-

ery one or two clocks.

C. Dequeueing the Received Packet: The ‘‘Client Port In-

terface Logic’’ as well as a single DMA channel can pos-

sibly be implemented in an EPLD (Altera MAX 7000/Xi-

linx XC7300) or an FPGA (Xilinx XC4000 series).

Ð The single DMA channel could contain a 32-bit ad-

dress hold and increment register, a counter, and a

Read/Write/Atomic Command register.

Ð As mentioned in Section 4.1 and 4.2, The Client Inter-

face Method Ý1 of Section 2.2 would be a good

choice for this Client Interface. The ‘‘Client Port Inter-

face Logic’’ can watch the Receive type field for a

Non-NULL Type Field. When a Non-Null type is ob-

served the Interface Logic Block should latch it and

hold it available to be accessed by the CPU/M. Once

the Symbol (RxS[31:0]) has been captured RxSTALL

is negated for one clock cycle to allow the next Non-

Null Type and symbol to be output.

Note that Client Interface Method Ý3 could be used

but would require a 32-bit symbol latch to hold re-

ceived symbols more then two clocks.

Ð The FPGA can access the ‘‘Stored Type Field’’

(stored in the FPGA) for each symbol accessed, to

guarantee only valid symbols are acted upon.

Ð A Head Comparator could also be built in to allow the

DMA channel to determine when its current stream

was writing data.

Ð During Read Accesses the DMA channel could drive

the Transmit Interface FPGA and control how data is

loaded into the Transmit FIFO(s) of the interface.

The Extended Control Protocol (Sections 3.2 and 3.3)

allows the Client Interface to have control of the num-

ber of Data Streams being serviced at any one time.

In this particular design only one Data Stream would

be serviced at a time because of its single DMA chan-

nel limitation.

The FPGA also needs a separate address register,

Read/Write/Atomic Request register, and Byte Se-

lect Register to handle the QuickRing Control Proto-

col Commands (QuickRing Protocol Specification).

Note that QuickRing Control Protocol Commands are

single symbol accesses, thus the simple logic needed

to perform those types of accesses. This functionality

allows the FPGA to handle a QuickRing Control Proto-

col Command (i.e. Read Request of the Configuration

ROM) during a Extended Control Protocol Command

(i.e. Packet Write Request Transaction).

16

D. Receive Packet Protocol Issues: The following scenar-

io describes how the FPGA Receive Client Interface with

Integrated DMA channel implements the Extended Con-

trol Protocol of Section 3.3:

Ð All nodes wishing to communicate with another node

first send a Transaction Request (Head followed by

one Quadlet of Command Request).

Ð If a Transaction Request is received and no Transac-

tion is currently being serviced by this particular node

then an Acknowledge Response can be sent back to

the Requesting Node immediately (Head followed by

ACKÐRSP code Quadlet).

Ð When responding to another Nodes Request the re-

ceived Head routing symbol must be complemented.

The complementing of the Head routing symbol can

be done in the Transmit Interface FPGA.

Ð If a Transaction Request is received and this node is

currently servicing another nodes transaction then

two different scenarios could take place:

1. A Non-Acknowledge Response (retry the Request)

can be sent back to the Requesting Node immedi-

ately (Head followed by RETRYÐRSP code Quad-

let).

2. An optional small Pending Request FIFO (small

Xilinx XC4000 series) could store any further Re-

quests made to this node, the width of this queue

could be very small, 4 bits in a one ring system, 24

bits in a Multi-Ring QuickRing System (holds the

requesting Node ID). The depth of this queue could

be determined by the System Designer based upon

the number of nodes in the System and the number

of outstanding transactions allowed for each node.

If the queue filled up then the protocol could revert

to option Ý1 above. This queue allows a higher

performance system by immediately launching the

next ACKÐRSP once the current DMA Streaming

Transaction terminates.

Ð If a Transaction Request is received and this node

cannot service that request (ex. a node that cannot

perform Atomic Transactions) then an Illegal Re-

sponse (ILLÐRSP) can be sent back to the Request-

ing Node immediately (Head followed by ILLÐRSP

code Quadlet).

Ð When a Requesting Node receives an ‘‘ACKÐRSP’’

then it can send a Head followed by the appropriate

control information to set the responder’s DMA con-

troller up to perform a Read/Write single/burst DMA

Transaction (address/Read or Write Cmmd/Length of

DMA/go bit/ ... etc). If the command was a Write

command the Requesting Node can also send the

stream of data.

Ð During a Read Packet Request the Responding Node

would then return the data followed by an ACK or

RETRY Response depending upon the success of the

Read Command. During a Write Packet Request the

Responding Node returns an ACK or RETRY Re-

sponse depending upon the success of the Write

command.

Proposed Advantages

1. All Burst (Streaming) Requests consist of only a single

Quadlet Frame Request and perform 4 handshake trans-

actions. This provides uniformity of length among re-

quests. The Uniform length of requests provides the fol-

lowing advantages:

Ð Requests take small amount of QuickRing Bandwidth.

Ð Destination storage space required for the Requests

is minimal, in a single ring the required storage space

could be as small as 4 bits (source node ID).

Ð Destination Hardware is simpler because it does not

have to be conscious of the details until it is perform-

ing the particular transaction.

2. Read, Write, and Atomic Commands are 2 handshake

transactions. These higher priority transactions are use-

ful for Control and Status operations. The extra Hard-

ware to support these transactions is fairly simple, an

extra Address, Byte Select, and Read/Write Register

Bits, and perhaps a small Counter (for Read Block

Transfers). This Hardware will allow a DMA Burst

(streaming) transaction to be interrupted by an Atomic

transaction, followed by the reactivation/continuation of

the DMA burst transaction.

Figure 18 shows a Block Diagram of example Hardware that

could easily support the QRCP/QRXP and give good sys-

tem performance.

TL/F/12044–17

FIGURE 18. Programmable Logic QuickRing Interface

17

4.4 CPU Handles All Housekeeping Chores, Extended

Control Protocol, Fixed Packet Length, Multi-Channel

Transmit/Receive DMA Controller, External Receive

FIFO to Hold Transaction Requests

This design is a continuation of the design of Section 4.3

except the DMA channels have been expanded (multiple

channels, Transmit and Receive) to allow multiple simulta-

neous transactions.

The Transmit DMA channel allows greater performance, es-

pecially for Streaming large amounts of data. The Transmit

DMA channel can do all the work of assembling the Packet

and enqueueing it into the QRDSC, previously performed by

the CPU/M.

4.5 No Local Intelligence, Extended Control Protocol,

Fixed Packet Length, Transmit/Receive DMA Control-

ler, External Receive FIFO to Hold Transaction Re-

quests

This design is a continuation of the designs of Sections 4.3

and 4.4 except that there is no Local CPU/M. The Block

Diagram for this design is the same as the Section 4.3 Block

Diagram except that there is no local CPU/M (see Figure
19).

TL/F/12044–18

FIGURE 19. Programmable Logic QuickRing Interface

18

This Node can function as:

Ð A Slave only Node. In the slave only mode the FPGA/

EPLD client interface must respond to Requests from

other nodes as specified in the QRCP/QRXP (Sections

3.2, 3.3).

Ð A Master Node in a three party transaction, where this

Node is the Requester. The three Nodes involved in a

three party transaction are:

a. Instigator: Provides the intelligence of the transaction

by setting up the DMA channels of the Requester to

perform the transaction.

b. Requester: (This Node) Once its DMA channels are

set up it can perform the transaction set up by the

Instigator.

c. Responder: Functions as the slave node in the trans-

action, either writing or reading the data from/to the

Requester.

The Client Interface to this design is very similar to the de-

signs of Section 4.3 and 4.4 except for Section C.

Dequeueing the Received Packet: The Client Interface

Method Ý2 will be a good choice for this Client Interface

given that the Hardware should be able to dequeue a re-

ceived symbol within two clocks maximum. The ‘‘Client Port

Interface Logic’’ can watch the Receive type field for a Non-

Null Type Field. When a Non-Null type is observed the Inter-

face Logic Block should do two actions:

Latch the Non-Null Type and hold it available to be ac-

cessed by the CPU/M.

Assert RxSTALL to hold the Received Symbol for up to

two clocks.

Once the Symbol (RxS[31:0]) has been captured RxSTALL

is negated until the next Non-Null Type and symbol are out-

put.

5.0 FINAL THOUGHTS

This Application Note gives the reader several different

QRDSC Client Interfaces, these application interfaces range

from low hardware complexity (i.e. lower performance) to

greater hardware complexity (higher performance). The sys-

tem designer can choose the level of complexity needed to

give the required performance (see Table IV below).

TABLE IV. Client Interface Performance Approximations

Tx Port Tx Port Receive Port Receive Port

Assume Tx/Rx Client Average Max Burst Average Max Burst

Interface at 50 MHz Performance Performance Performance Performance

(Clks/Symbol) (Clks/Symbol) (Clks/Symbol) (Clks/Symbol)

Ý1 CPU/M No 32 4 40/32 40/32

Protocol

Ý2 CPU/M, Higher 40 4 44/36 44/36

Level Protocol

Ý3 CPU/M, Higher 30 2 4 2

Level Protocol, DMA

Channel, TxFIFO,

Pending Request

FIFO

Ý4 CPU/M, Higher 4 2 4 2

Level Protocol, Tx and

Rx Multi-Channel

DMA, TxFIFO,

Pending Request

FIFO

Assumptions:

Maximum Burst performance is considered for Streaming large amounts of Data.

Ý1 and Ý2: CPU/M software takes multiple instructions to Transmit and Receive but Burst Write Transmit from internal Registers is fast. Two Values for the

Receive Average and Maximum depend upon Method 1 (examine Type field for each symbol) or Method 2 (only examine type field for the Head). The Ý2 times are

slightly greater because of the Protocol overhead.

Ý3: CPU/M software takes multiple instructions to Transmit but Burst Write Transmit from FIFO is fast. The Receive Port has a DMA channel to improve

performance, but the average is lower because of DMA setup by CPU/M software.

Ý4: DMA channels on both Transmit and Receive allow maximum performance.

19

A
N

-9
4
2

Q
u
ic

k
R

in
g

C
li
e
n
t
In

te
rf

a
c
e
s

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

