
TL/F/12143

B
o
u
n
d
a
ry

-S
c
a
n
,
S
ilic

o
n

a
n
d

S
o
ftw

a
re

E
n
a
b
le

S
y
s
te

m
L
e
v
e
l
E
m

b
e
d
d
e
d

T
e
s
t

A
N

-1
0
2
2

National Semiconductor
Application Note 1022
Mark Grabosky
February 1996

Boundary-Scan,
Silicon and Software
Enable System Level
Embedded Test

ABSTRACT

Designing IC’s, boards, and systems with a DFT strategy

that utilizes boundary-scan, will make a quantum improve-

ment in test development cycle-time, and fault coverage

both in production and in the field. Tools are commercially

available that automate design, test development, and ulti-

mately embedded test for IEEE 1149.1 compatible systems.

This paper is intended to familiarize designers and test engi-

neers with the advantages of boundary-scan at the system

level as well as present the architectural and implementa-

tion challenges of developing National’s SCAN EASE soft-

ware. For more information, refer to AN-1037, ‘‘Embedded

IEEE 1149.1 Test Application Example.’’

INTRODUCTION

Boundary-Scan Fundamentals

The terms, 1149.1, 0.1, Boundary-Scan, and JTAG, are
used synonymously in the industry and throughout this pa-
per.

IEEE Std 1149.1 defines a standard architecture for design-

ing Boundary-Scan test circuitry into digital integrated cir-

cuits for the purpose of testing the IC and the interconnec-

tions between IC’s on a board or module. All 1149.1 compli-

ant devices must have a Test Access Port (TAP) with 4

required pins: Test-Data-Input (TDI), Test-Data-Output

(TDO), Test-Mode-Select (TMS), and Test-Clock (TCK). A

fifth pin for Asynchronous Test Reset (TRST*) is optional

(* means active low). See Figure 1.

TL/F/12143–1

FIGURE 1. Device Hardware

The boundary register is integrated into the input/output

cells of the device. While in Interconnect Test Mode (Extest

command is active) data shifted into the boundary registers’

output cells is driven onto the outputs; and data driven onto

the device’s inputs is sampled by the input cells and shifted

out for comparison to expected results. This simple process

of shifting data, updating output cells, and sampling input

cells, is the basic algorithm for board level interconnect fault

testing.[1,2,3]

BOARD LEVEL BOUNDARY-SCAN TEST COVERAGE

At the board level, boundary-scan components are daisy

chalned (TDI to TDO) to form a single scan chain. See Fig-
ure 2. Boards comprised of 100% 1149.1 compliant com-

ponents, can be tested with a vector set generated by

ATPG (Automatic Pattern Generation) software to 100%

fault coverage with a 4-wire JTAG tester, while achieving a

quantum reduction in test development time and eliminating

the need for expensive in-circuit testers. In addition, faults

are automatically isolated to the NET, and in the case of

opens, to the node (unit/pin).

TL/F/12143–2

FIGURE 2. Simple Board

Boundary-Scan Implementation

Boards that do not have 100% boundary-scan components

can greatly benefit from this methodology also. In fact, even

a single chip with boundary-scan will simplify the test devel-

opment effort, and may improve the testability of the board.

Especially if the boundary-scan component is a complex se-

quential device. For this reason, boundary-scan has be-

come a required feature of microprocessors, FPGAs and

ASICs for many board manufacturers.

The boundary-scan cells are often called ‘‘virtual nails’’ or

‘‘silicon nails’’, since they provide the same capability as

physical test points in a bed-of-nails fixture.[3] The task of

generating board level fault tests for a device with bounda-

ry-scan is greatly simplified. Because each device pin can

be sampled and/or forced by its boundary-cell, no knowl-

edge of the on-chip system logic is required for fault testing

the board. In an in-circuit test environment, assuming that

the tester has bed-of-nails access to all of the NETs the

C1996 National Semiconductor Corporation RRD-B30M36/Printed in U. S. A. http://www.national.com

device is connected to, a stuck-at-one test is performed on

all NETs with only one vector. To provide the stimulus, sim-

ply force all input NETs low via the physical nails and shift

all lows into the devices output boundary-cells (via TDI) to

drive the virtual nails low. To check the response, sample all

output NETs via the physical nails and shift the data cap-

tured by the input boundary-cells (virtual nails) out on TDO.

If the response is all lows, the test passes, otherwise the

test fails. Similarly, a stuck-at-low test requires just one vec-

tor. Bridging faults are isolated using a binary search algo-

rithm. For Example, 3 vectors are required to test for bridg-

ing faults on a board with 8 NETs as shown in Table I:

TABLE I

Vector N1 N2 N3 N4 N5 N6 N7 N8

1 0 0 0 0 1 1 1 1

2 0 0 1 1 0 0 1 1

3 0 1 0 1 0 1 0 1

The number of vectors to detect and isolate 100% of bridg-

ing faults is equal to:

NumÐVectors(bridging) e

logNETS

log 2

and

NumÐVectors e

logNETS

log 2
a 2

Therefore, a chip with 64 system inputs/outputs each con-

nected to a separate NET, 64 NETs, would require 6 vectors

for bridging faults. Added to the 2 vectors required for stuck-

at faults, a total of 8 vectors is required. Because of the

exponential nature of the calculation, the simplicity is even

more evident when a larger number of NETs are being test-

ed. A board with 1,000 NETs requires 12 vectors; a board

with 1 million NETs requires just 22 vectors.

Compare this to the number of vectors required to test a

board with non-JTAG compliant IC’s. If the device is simply

combinatorial, it can be tested with 2N Vectors (256 for 8

NETs). If the functionality is studied, the vector set may be

greatly reduced, but this requires functional models and/or

test development resources. The problem becomes even

more complex when testing a sequential device. Several

set-up vectors are typically required to condition a device to

test an input, and several vectors may be required to propa-

gate the fault to an output for observation.

The IEEE 1149.1 standard also defines a syntax, Boundary-
Scan Description Language (BSDL), for describing the IC’s

pin-out, and the specific implementation of its test circuitry

(e.g. boundary-register, optional registers, command set

and opcodes).[4] BSDL files are provided by the manufac-

turer of 1149.1 compliant devices.

TEST DEVELOPMENT PROCESS

At the board level, generating tests for boundary-scan NETs

is completely automated. ATPG requires only a NET list of

the board, and BSDL models for each 1149.1 compliant de-

vice on the board. Additional information can be provided to

the ATPG such as a NET information file to force a NET to

always be driven high or low. For boards with less than

100% boundary-scan components, fault coverage can be

increased by adding cluster tests to the vector set. Cluster

tests are generated the same way as in-circuit tests for non-

scan components. In the case of cluster testing, the stimu-

lus is driven from, and the response is sampled by, the ‘‘vir-

tual nails’’ of scan components that surround the cluster.

Using this approach it is possible to achieve a high level of

fault coverage even when several non-scan components

are used. Of course, physical test points can be added to

untestable NETs.

Further benefits are realized at system integration and field

testing. Traditionally, functional testing was used here due

to the complexity of obtaining physical access to test points

with in-circuit testers. Functional test development requires

a separate and complex effort. Intimate knowledge of the

system functionality is required and fault isolation is typically

poor. Using a boundary-scan approach, backplane intercon-

nect tests and board tests are automated. Fault isolation is

precise and the only tester access required is to the 4-wire

scan chain.

SYSTEM LEVEL JTAG TESTING

Typically, boards are designed with only one scan chain. At

system integration, the scan-chain of each board must be

tied into the backplane architecture. The backplane could

be designed so that the chains of each board would be

daisy-chained to form a single system wide chain. This is

undesirable for several reasons. Boards cannot be removed

without breaking the chain; boards must be located in spe-

cific slots; a fault in the chain of one board would leave the

entire system untestable. The preferred method for con-

necting the board level scan-chains to the backplane is a

multi-drop backplane design with a JTAG addressable de-

vice on each board interfacing the backplane test bus to the

board level scan-chains.

National’s hierarchical and multidrop addressable JTAG

Port, SCANPSC110F, provides this functionality.[2] SeeFig-
ure 3.

Unlike other approaches, the PSC110F provides an ad-

dressing scheme using 1149.1 compatible protocol. A

PSC110F is selected by shifting a 6-bit address into its in-

struction register that matches the value hardwired on its

slot inputs, when in the Walt-for-Address state. Refer to the

SCANPSC110F datasheet for detail.

The PSC110F also enables further partitioning of the board

level scan-chalns. Each PSC110F provides 3 Local Scan

Ports (LSP) that can be configured to be connected individ-

ually to the test bus, or simultaneously in series to the test

bus. This flexible LSP configuration helps partition hardware

and simplifies the ATPG vectors. For example, LSP1 could

be connected to all devices that interface to the backplane.

LSP2 could be connected to all other on-board devices.

LSP3 could connect to a mezzanine board. To test the mez-

zanine board, only LSP3 must be unparked. To test the in-

terface between the board and the mezzanine board, LSP2

and LSP3 must be unparked. To test the board, LSP1 and

LSP2 and to test the backplane interconnect, only LSP1

must be unparked. If NET lists are captured for each of

these hierarchical views of the system, a separate test can

be generated for each view resulting in a set of test parti-

tions that can give an immediate indication as to which part

of the system failed. This structured test methodology is

particularly useful for embedded system test where diag-

nostic processing is limited. For more on backplane inter-

connect testing, refer to AN-1023, Structural System Test

via IEEE Std. 1149.1 with SCANPSC110F.

http://www.national.com 2

EMBEDDED SYSTEM LEVEL JTAG TEST

Traditionally embedded or built-in self-test of non-boundary-

scan designs, as in the case of system integration testing,

was limited to functional testing. Here, a separate test de-

velopment effort was required. However, the advantage of a

boundary-scan design is that the test points are built into

the system logic. In addition, all of these ‘‘virtual nails’’ are

accessible via a 4-wire test-bus. In fact, with slight modifica-

tion, the same board tests that were used in production test

can be reused for embedded test.

Figure 4 shows the test development process from start to

finish. Production tests are generated for each board in the

system. One or more additional tests are generated for

backplane interconnect testing. These tests are typically

stored in tester specific formats such as SVF or PAT. These

non-compact ASCII vector formats are fine for production

testing, but the memory limitations of an embedded system

make them undesirable for embedded test. Therefore, the

tests are converted to Embedded Vector Format (EVF), a

compact binary format defined by National, using

SCAN EASE. Refer to the SCAN EASE datasheet.

Header information is stored along with each test so that

when the test is executed, and fails, the failure can be iso-

lated to the partition described in the header. The EVF parti-

tions for several boards can be appended into one file and

embedded on system PROM for power-up self-test, or they

can be down-loaded to the system via a serial communica-

tion link.

EMBEDDED VECTOR FORMAT

EVF was defined under the constralnts of being a compact

binary format that is highly structured to be easily parsed by

the embedded code, and independent of system architec-

ture and memory organization such as little-endian, big-en-

dian, 8-bit, 16-bit, 32-bit, 64-bit wide. To achieve the require-

ment of being memory organization independent, it was

necessary to define EVF as a contiguous array of bytes. All

architectures examined had one thing in common: a single

byte of data can be addressed anywhere in memory and

read into a byte-wide register, regardless of memory organi-

zations. Larger data-types such as words or double-words,

are in some cases required to be word or double-word

aligned, respectively.[6] Also, reading a word stored in little-

endian format on a big-endian machine would require the

LSB and MSB to be swapped. A set of data structures were

defined for each EVF record type.

TL/F/12143–3

FIGURE 3. Multidrop Configuration Using Boundary-Scan

TL/F/12143–4

FIGURE 4. Test Development Process

http://www.national.com3

A typical data structure is:

/* evf scan is used to parse SIR, SDR records */

struct evf scan À

unsigned char opcode; /* EVF SIR, EVF SDR */

unsigned char options; /* Mask, TDO, TDI, Flag */

LE LONG num bits le; /* Scan-Chain Length */
Ó;

The actual test data immediately follows the data structure.

Pointers to the outgoing TDI data, the expected TDO data,

and the mask, are calculated from the options field and the

scan-chain length. Note that the type LEÐLONG must be

used for reading/writing a 4-byte data type in order to make

EVF, architecture independent.

typedef struct À

unsigned char byte0;

unsigned char byte1;

unsigned char byte2;

unsigned char byte3;
Ó LE LONG;

EMBEDDED TEST APPLICATION CODE

The SCAN EASE application code was defined to be modu-

lar (see Figure 5), portable to most computer architectures

and efficient, from both a code size and performance per-

spective. The code was written completely in ANSI C. The

embedded test code was developed top-down in 5 mod-

ules. Additionally a communications module was developed

to give a ‘‘truly’’ embedded system a means to communi-

cate to a system administrator, or remote computer via mo-

dem.

The top layer of code is where hardware/software initializa-

tion is performed. Calls to the PgÐctrl level are made to

form test activity. A call to the PgÐctrl function: InitTestTa-

ble(PÐevfÐbist) creates a linked list of table entries that

contain a pointer to the EVF partition, whether it resides in

RAM or ROM, a pointer to the datalog, and pass/fall infor-

mation. A Table entry is added each time a new test is

downloaded, AddTableEntry(), and updated each time a

test is run, RunPartition(pÐtableÐentry).

Calls to EvfÐlib are made from RunPartition(). RunParti-

tion() reads each EVF op-code and calls the appropriate

evfÐlib function to parse and execute that command.

EvfÐlib functions include: EvfScanDr(), EvfScanlr(),

EvfState(), etc. EvfScanDr(pÐevfÐrecord), for example,

determines if the record contains TDI, TDO, or MASK data

by looking at bit-wise flags in the options field of the record,

using the evfÐscan data structure. If these flags are set,

pointers to the data arrays are calculated and stored as

statics. If the flags are not set, the function determines

whether or not to use the previous vectors data. This en-

ables vector compression and is typically useful for the

mask data, whose value is usually constant from vector to

vector for the duration of a board test. The options field is

also used to determine whether or not to sample data re-

turning from the scan-chain for comparison against an ex-

pected response.

Scanlib is where the 1149.1 intelligence resides. Scanlib

functions include ScanDr(), Scanlr(), State(), etc. and are

called from evfÐlib. For example, ScanDr (pÐoutgoingÐ
data, numÐbits, pÐincommingÐdata) determines the se-

quence of the TMS needed to progress the target TAPs

from their present tap state to Shift-DR, and then from the

Exit1-DR state to the EndÐIR state. Calls are made to the

SCANPSC100F device driver (pscdrv) to actually sequence

the target TAPS, SequenceTms(), and shift the data to and

from the scan chains, Shift().

The SCANPSC110F driver, pscdrv, was written in direct

support of National’s Embedded Boundary-Scan Controller

SCANPSC100F. Alternatively, a device driver written for a

micro-controller parallel port, an I/O register, or other com-

petitive devices, could be integrated into this software.

As previously mentioned, one constraint on this code is that

it must be portable to most computer architectures. In some

architectures, the SCANPSC100F may be memory-mapped,

in others it may be mapped into I/O space. In the case of

memory-mapped I/O devices, reads and writes to the de-

vice are made simply be equating a volatile variable located

at the physical address space in which the device resides,

(volatile)Tms e tms. If the device is I/O mapped, a function

call is typically required, since C operands do not directly

support I/O address space, WriteTms(tms).

TL/F/12143–5

FIGURE 5. SCAN EASE Code is Modular

http://www.national.com 4

/* Macro’s for Memory Mapped I/O */

#if BSM TYPE 44 MEM MAPPED

#pragma sep on segment psc100 class shadow

volatile unsigned char Filler byte;

volatile unsigned char Psc base;

#pragma sep off

#define WRITE PSC(PSC REG OFFSET, DATA) * (unsigned char

*) (&Psc base 0 PSC REG OFFSET) 4 DATA

#define READ PSC(PSC REG OFFSET) *(unsigned char

*) (&Psc base 0 PSC REG OFFSET)

#endif

/* Macro’s for I/O Port Mapped I/0 */

#if BSM TYPE 44 IO MAPPED

#define PSC BASE O2140

#include kdos.hl

#define WRITE PSC (PSC REG OFFSET, DATA)

outportb ((int) (PSC BASE 0 PSC REG OFFSET), DATA)

#define READ PSC(PSC REG OFFSET) inportb((int) (PSC BASE 0
PSC REG OFFSET))

#endif

/* If compiling for Corelis board, use Corelis low level

driver for PSC100 */

#if BSM TYPE 44 CORELIS BOARD

#include ‘cortest.h‘

#define PSC BASE O2140

#define WRITE PSC (PSC REG OFFSET, DATA) write psc(0,

PSC REG OFFSET, DATA)

#define READ PSC (PSC REG OFFSET) read psc(0,

PSC REG OFFSET)

#endif

These two cases are handled using a conditionally defined

macro. This is the only conditional define in the code, and

the only thing that may change when compiling for one ar-

chitecture verses another.

Note that the above code also includes an option to define

WRITEÐPSC and READÐPSC to call functions for a Corelis

ISA card, PC-1149.1/100F, High Speed PC-AT Bus Bound-

ary-Scan controller. This option was extremely helpful in

that it enabled the code development and debug to be per-

formed on a PC, with a SCANPSC100F mounted on an ISA

card, using a high level debugger. Once the code was de-

bugged, it could be compiled for the target embedded sys-

tem resulting in a great reduction in debug time of the em-

bedded environment.

SUMMARY

A DFT strategy that utilizes boundary-scan components

whenever available, will reduce test development cycle-

time, increase fault coverage, reduce test time, and enable

system level embedded test. Production tests can be

reused for embedded (built-in) test and tools are available

that automate this process. National provides components

such as the Embedded Boundary-Scan Controller,

SCANPSC100F, and the Hierarchical and Multidrop Ad-

dressable JTAG Port, SCANPSC110F Bridge, that enable

system wide embedded scan testing. With the SCAN EASE

software described in this paper, the task of implementing

embedded scan test has become virtually an ‘‘off the shell’’

solution.

REFERENCES

[1] IEEE Std. 1149.1-1990, ‘‘IEEE Siandard Test Access
Port and Boundary-Scan Architecture’’, IEEE Computer

Society, 1990.

[2] NSC ‘‘SCAN Databook’’, National Semiconductor,

1996.

[3] NSC, ‘‘Scan Tutorial Handbook Volume I’’, National

Semiconductor, 1994.

[4] IEEE Std. 1149.1-1990 Sup. B, ‘‘Boundary-Scan De-
scription Language’’, IEEE Computer Society, 1990.

[5] Eichelberger # Lindbloom # Waicukauski # Williams,

‘‘Structured Logic Testing’’, Prentice Hall, 1991.

[6] Motorola, ‘‘M68000 Microprocessor User’s Manual’’,
Motorola 1990.

http://www.national.com5

A
N

-1
0
2
2

B
o
u
n
d
a
ry

-S
c
a
n
,
S
il
ic

o
n

a
n
d

S
o
ft

w
a
re

E
n
a
b
le

S
y
s
te

m
L
e
v
e
l
E
m

b
e
d
d
e
d

T
e
s
t

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: a49 (0) 180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2308
Arlington, TX 76017 Email: europe.support@nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: a49 (0) 180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: a49 (0) 180-532 78 32 Hong Kong

Fran3ais Tel: a49 (0) 180-532 93 58 Tel: (852) 2737-1600
http://www.national.com Italiano Tel: a49 (0) 180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

