
TL/D/12513

S
P
I
V

e
rs

u
s

M
IC

R
O

W
IR

E
E
E
P
R

O
M

C
o
m

p
a
ris

o
n

A
N

-1
0
1
2

National Semiconductor
Application Note 1012
Dovell Bonnett
September 1995

SPITM Versus
MICROWIRETM EEPROM
Comparison

INTRODUCTION

The SPI (Serial Peripheral Interface) provides a simple eight

bit serial port useful in communicating with external devices.

Prior to the SPI EEPROMs introduction, engineers used the

standard MICROWIRE EEPROMs to interface with the SPI

port. MICROWIRE’s diverse densities and data protection

options offered highly versatile solutions. Recently, several

manufacturers have developed serial EEPROMs that are

now specifically designed to interface with this port. Due to

SPI’s faster clock speed and interface compatibility, this

EEPROM device is increasing in popularity. The following

application note will compare these two EEPROMs and

where the advantages exist in each family.

To perform this comparison, a 4 kbit SPI and a 4 kbit

MICROWIRE EEPROM are interfaced to the SPI port of a

HC11. The NM25C04 SPI is a 512 by 8-bit serial EEPROM,

while the NM93C66 MICROWIRE is a 256 by 16-bit.

HARDWARE INTERFACE

HC11 microcontroller’s can be configured in one of two

modes when utilizing the SPI port. The ‘‘master’’ mode sets

the microcontroller to orchestrate data transfer to the pe-

ripheral device. The ‘‘slave’’ mode allows the peripheral de-

vice to command the HC11. In this application, the HC11 is

set as the ‘‘master’’ to control the data transfers to and from

the serial EEPROMs. Figure 1 and Figure 2 shows the typi-

cal SPI and MICROWIRE connection to a HC11 SPI port.

The HC11 SPI port has three lines that control data transfer

and one extra general purpose I/O line to control the pe-

ripheral device’s chip select. The MOSI (Master Out Slave

In) line is used as data out, MISO (Master In Slave Out) line

is the data input, and the SCK generates the serial clock.

The general purpose PD5 line controls the EEPROMs chip

select.

Both the SPI and the MICROWIRE devices are configurable

as a four wire interface. Thus, neither of the EEPROMs offer

a connection advantage.

DATA TRANSFER

The new SPI EEPROMs are specifically designed to inter-

face with the SPI port. Furthermore, it operates at 2.1 MHz

versus MICROWIRE’s 1 MHz clock. The SPI communication

protocol is broken down into byte size sequences contain-

ing instruction, address and data transfer information.

TL/D/12513–1

FIGURE 1. NM25C04 to HC11 Connections

TL/D/12513–2

FIGURE 2. NM93C66 to HC11 Connections

Address transfers are dependent on the memory density.

Standard MICROWIRE is organized in 16-bit words. To pro-

vide the SPI byte size data transfer protocol, three to five

bits of additional instructions are required.

Furthermore, a design consideration is required when inter-

facing a MICROWIRE device to the SPI port. Data is valid

relative to the clock signal. Data is written to the EEPROM

on the rising edge of the clock. When reading from a

MICROWIRE device data is valid on the falling edge.

Development of SPI compatibility is easily accomplished

once the design issues are understood. Non-byte wide in-

struction and address issues can be dealt with by shifting in

leading 0’s before the required start bit. The leading 0’s will

not be recognized and can be used to fill out an instruction

to byte length. The MICROWIRE word wide architecture can

be made to appear byte accessible with clever software.

The clock polarity issues can be handled by changing the

configuration of the SPI port when receiving or transmitting

data.

Both devices were driven with a 1 MHz clock from the SPI

port. Communications between the HC11 and the serial

EEPROMs took roughly the same amount of time.

SOFTWARE COMPARISON

Two software programs are included that demonstrate the

interfacing difference between the HC11 microcontroller to

a NM93C66 and a NM25C04. The MICROWIRE data trans-

ferring differences, as described in the previous section,

only required an additional 38 bytes of program space.

The standard MICROWIRE family is organized in a 16-bit

(word wide) manner. SPI is an 8-bit (byte wide) structure.

Therefore, the additional software overhead that is required

for converting a word organization into a byte organization.

However, there are devices available at National that offers

the designer the option of either a x8 or x16 mode. The data

size selection is determined by the ORG pin found on the

NM93CxxA family. By setting the ORG pin low, the SPI and

MICROWIRE devices are comparable in the amount of re-

quired programming space.

MICROWIRETM is a trademark of National Semiconductor Corporation.

SPITM is a trademark of Motorola.

C1995 National Semiconductor Corporation RRD-B30M115/Printed in U. S. A.

CONCLUSION

This application note has shown that both the SPI and

MICROWIRE families of devices can be effectively inter-

faced to the HC11. MICROWIRE performance compares fa-

vorably with the newer SPI EEPROMs. A few extra bytes of

software is the most significant disadvantage when using

word wide MICROWIRE mode. In applications where the

extra software storage space is available this becomes a

non-issue.

When considering availability and price per bit, both families

of EEPROMs are quite competitive.

2

* This code was developed to demonstrate how the NM25C04 serial EEPROM *

* can be interfaced to the MC68HC11 microcontroller. Basic read and *

* write operations have been developed. The software demonstrates the *

* following commands: *

* *

* READ :Read a byte *

* WREN :Enable write operations *

* WRDI :Disable write operations *

* WRITE :Program a byte *

* *

* The SPI port in Port D is used to interface the NM25C04 to the *

* 68HC11. The SPI port provides the clock (SCK), data out (MOSI) and *

* the data in (MISO) lines. The 25C04 CS line is driven by a general *

* purpose Port D I/O line. *

* *

* The mainline was used to test the functionality of the subroutines. *

* The subroutines can be copied directly into a customer’s program and *

* be expected to operate as described. The final mainline only *

* performs a write enable, write, write disable and finally a read. *

* ADDRESS LOCATION EQUATES *

DDRD EQU $09 port D direction register 4 $1009

PORTD EQU $08 port D data register 4 $1008

SPCR EQU $28 SPI control register

SPSR EQU $29 SPI status register

SPDR EQU $2A SPI data register

* BIT POSITION EQUATES *

* *

CSBIT EQU $20 CS position in port D 4 bit 5

* VARIABLE ADDRESS EQUATES *

HIADD EQU $0180 high order page pointer

LOADD EQU $0181 low order page pointer

DATVAL EQU $0182 data transfer register

* RESET VECTOR *

* *

ORG $FFFE reset vector to $E000

FDB $E000

3

* PROGRAM STARTING LOCATION *

ORG $E000 program execution begins at $E000

BEGIN: LDS #$01FF initialize stack pointer

LDX #$1000 initialize ‘address index register‘

LDAA #$EF initialize I/O ports (CS 4 1, SCK 4 0)

STAA PORTD, X

LDAA #$3F

STAA DDRD, X SPI bits set to outputs

LDAA #$54

STAA SPCR, X initialize SPI port CPOL 4 0, CPHA 4 1

LDAA SPSR, X reset SPIF bit

* MAINLINE *

JSR WREN enable write operations

LDAA #$01

STAA HIADD

LDAA #$23

STAA LOADD address 4 123H

LDAA #$96

STAA DATVAL data 4 96H

JSR WRITE write data 96H into address 0123H

JSR WRDI disable writes

LDAA #$01

STAA HIADD

LDAA #$23

STAA LOADD address 4 123H

JSR READ read address 123H

LOOP: BRA LOOP wait until reset loop

* NM25C04 FUNCTIONAL ROUTINES *

* WRITE performs a byte write operation into the 25C04. The routine *

* expects the address to modify to be specified in the HIADD and LOADD *

* variables. The new data value is specified in the DATVAL variable. *

* The 25C04 must be in the write enabled state for this function to be *

* executed successfully. *

4

WRITE: BCLR PORTD, X #CSBIT enable device

LDAA HIADD

ASLA move high order address to

ASLA proper bit location

ASLA

ORAA #$02 OR in WRITE instruction

JSR SENDB send WRITE instruction

LDAA LOADD

JSR SENDB send in low order address

LDAA DATVAL

JSR SENDB send in data value

BSET PORTD, X #CSBIT disable device

JSR BUSY wait until write has completed

RTS

* READ performs a byte read operation from the NM25C04. The routine *

* expects the address to read to be specified in the HIADD and LOADD *

* variables. The data in the specified address is returned in the *

* DATVAL variable. *

READ: BCLR PORTD, X #CSBIT enable device

LDAA HIADD

ASLA move high order address to

ASLA proper bit location

ASLA

ORAA #$03 OR in READ instruction

JSR SENDB send READ instruction

LDAA LOADD

JSR SENDB send in low order address

JSR SENDB read byte from NM25C04

STAA DATVAL

BSET PORTD, X #CSBIT disable device

* WREN enables the NM25C04 to perform a write operation. This *

* function along with the WRDI (write disable) function helps to *

* prevent against inadvertant data changes. *

WREN: BCLR PORTD, X #CSBIT enable device

LDAA #$06

JSR SENDB send EWEN instruction

BSET PORTD, X #CSBIT disable device

RTS

* WRDI disables the NM25C04 from further write operations. This *

* function prevents against inadvertant data changes. *

5

WRDI: BCLR PORTD, X #CSBIT enable device

LDAA #$04

JSR SENDB send EWDS instruction

BSET PORTD, X #CSBIT disable device

RTS

* BUSY is used to pause until a write operation has completed. *

BUSY: BCLR PORTD, X #CSBIT

LDAA #$05

JSR SENDB send ‘read status reg‘ instruction

JSR SENDB read status register

BSET PORTD, X #CSBIT

ANDA #$01

BNE BUSY loop until RDY bit in status is low

RTS

* SENDB is used to send a byte to the NM25C04 and also read the data *

* that has been returned to the 68HC11. *

SENDB: STAA SPDR, X send byte in A register

PAUSE: BRCLR SPSR, X #$80 PAUSE wait until byte has been sent

LDAA SPDR, X read byte into a register

RTS

* This code was developed to demostrate how the NM93C66 serial EEPROM *

* can be interfaced to the MC68HC11 microcontroller SPI port. The *

* software includes several subroutines that perform various interface *

* functions. The internal architecture of the NM93C66 is configured *

* with word wide data registers. This applications code demonstrates *

* storage of data in a byte wide manner. Odd byte addresses are stored *

* in the D8-D15 bits of each word and even address data is stored in *

* the D0-D7 bits. The software demonstrates the following commands: *

* *

* READ :Read a byte *

* WEN :Enable write and erase operations *

* WDS :Disable write and erase operations *

* WRITE :Program a byte *

* *

* The 68HC11 interfaces to the NM93C66A by using 3 lines from the SPI *

* port and a general purpose I/O port bit. The 68HC11 SCK, MOSI and *

* MISO pins are used to drive the NM93C66 SK, DI and DO pins *

* respectively. Port D bit 5 is used to drive the CS line of the *

* NM93C66. *

* *

* The mainline was used to test the functionality of the subroutines. *

* The subroutines can be copied directly into a customer’s program and *

* be expected to operate as described. The final mainline only *

* performs a write enable, write, write disable and finally a read. *

6

* ADDRESS LOCATION EQUATES *

DDRD EQU $09 port D direction register 4 $1009

PORTD EQU $08 port D data register 4 $1008

SPCR EQU $28 SPI control register

SPSR EQU $29 SPI status register

SPDR EQU $2A SPI data register

* BIT POSITION EQUATES *

* *

CSBIT EQU $20 CS position in port D 4 bit 5

* VARIABLE ADDRESS EQUATES *

HIADD EQU $0180 high order page pointer

LOADD EQU $0181 low order page pointer

DATVAL EQU $0182 data transfer register

TEMP EQU $0183 temporary ‘scratch‘ register

* RESET VECTOR *

* *

ORG $FFFE reset vector to $E000

FDB $E000

* PROGRAM STARTING LOCATION *

ORG $E000 program execution begins at $E000

BEGIN: LDS #$01FF initialize stack pointer

LDX #$1000 initialize ‘address index register‘

LDAA #$CF initialize I/O ports (CS 4 0, SCK 4 0)

STAA PORTD, X

LDAA #$3F

STAA DDRD, X SPI bits set to outputs

LDAA #$50

STAA SPCR, X initialize SPI port

LDAA SPSR, X reset SPIF bit

* MAINLINE *

7

JSR WREN enable write operation

LDAA #$01

STAA HIADD

LDAA #$23

STAA LOADD

LDAA #$96

STAA DATVAL

JSR WRITE write data 96H into address 0123H

JSR WDS disable writes

LDAA #$01

STAA HIADD

LDAA #$23

STAA LOADD

JSR READ read address 123H

LOOP: BRA LOOP wait until reset loop

* 98C66 FUNCTIONAL ROUTINES *

* WRITE performs a byte write operation into the 93C66. The routine *

* expects the address to modify to be specified in the HIADD and LOADD *

* variables. The new data value is specified in the DATVAL variable. *

* The 93C66 must be in the write enabled state for this function to be *

* executed successfully. Each word in the NM93C66 contains 2 bytes with *

* the high order byte used for ‘odd‘ addresses and the low order byte used *

* for ‘even‘ addresses. The word addresses to be accessed is determined by *

* dividing the byte address specified in HIADD and LOADD by two. The data *

* to be written is determined by reading the specified word address and *

* mapping in the new byte value into the specified high or low order byte. *

8

WRITE: LDAA DATVAL save the data value

PSHA

LDAA HIADD save the address

PSHA

LDAA LOADD

PSHA

EORA Ý$01 determine the byte address in the

STAA LOADD word that will not be modified

JSR READ read the valid byte

PULA

STAA LOADD retrieve address to modify

PULA

STAA HIADD

PULA

STAA TEMP retrieve new data value

ROR HIADD calculate word address

ROR LOADD

BCC NOFLIP if carry 4 0 then we are set

PSHA save new data value

LDAA DATVAL transfer valid byte in word

STAA TEMP into TEMP

PULA store new data byte value

STAA DATVAL into DATVAL

NOFLIP: BSET PORTD, X #CSBIT enable device

LDAA #$05

JSR SENDB send WRITE instruction

LDAA LOADD

JSR SENDB send word address to modify

LDAA DATVAL

JSR SENDB send high order data byte

LDAA TEMP

JSR SENDB send low order data byte

BCLR PORTD, X #CSBIT disable device

JSR BUSY wait until write has completed

RTS

* READ performs a byte read operation from the 93C66. The routine *

* expects the address to read to be specified in the HIADD and LOADD *

* variables. The data in the specified address is returned in the *

* DATVAL variable. Each word in the NM93C66 contains 2 bytes with the *

* high order byte used for ‘odd‘ addresses and the low order byte used *

* for ‘even‘ addresses. The word address to be accessed is determined *

* by dividing the byte address specified in HIADD and LOADD by two. *

9

READ: BSET PORTD, X #CSBIT enable device

LDAA #$06

JSR SENDB send READ instruction

ROR HIADD

ROR LOADD

LDAA LOADD

JSR SENDB send address

LDAA #$54

STAA SPCR, X sample on falling edge when reading

JSR SENDB read data value

BCS DONER

JSR SENDB

DONER: STAA DATVAL

BCLR PORTD, X #CSBIT disable device

LDAA #$50

STAA SPCR, X data valid on rising edge

RTS

* WEN enables the 93C66 to perform a write operation. This function *

* along with the WDS (write disable) function helps to prevent against *

* inadvertant data changes. *

WEN: BSET PORTD, X #CSBIT enable device

LDAA #$04

JSR SENDB send WEN instruction

LDAA #$C0

JSR SENDB send instruction 0 dummy address

BCLR PORTD, X #CSBIT disable device

RTS

* WDS disables the 93C66 from further write operations. This *

* function prevents against inadvertant data changes. *

WDS: BSET PORTD, X #CSBIT enable device

LDAA #$04

JSR SENDB send WDS instruction

LDAA #$00

JSR SENDB send instruction 0 dummy address

BCLR PORTD, X #CSBIT disable device

RTS

* SUPPORT ROUTINES *

10

* BUSY is used to pause until a write or erase operation has completed. *

BUSY: BSET PORTD, X #CSBIT enable device

TWC: BRCLR PORTD, X #$04 TWC wait until write cycle has finished

BCLR PORTD, X #CSBIT disable device

RTS

* SENDB is used to send a byte to the NM93C66 and also read the data *

* that has been returned to the 68HC11. *

SENDB: STAA SPDR, X send byte in A register

PAUSE: BRCLR SPSR, X #$80 PAUSE wait until byte has been sent

LDAA SPDR, X read byte in A register

RTS

11

A
N

-1
0
1
2

S
P
I
V

e
rs

u
s

M
IC

R
O

W
IR

E
E
E
P
R

O
M

C
o
m

p
a
ri
s
o
n

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

