
Low-Level and Operating System Events 2-1

2
LOW-LEVEL AND

OPERATING SYSTEM EVENTS
Includes Demonstration Program LowEvents

Introduction

All Macintosh applications share one essential characteristic: they are all event-driven. At its most
basic level, an application’s general strategy is to retrieve an event (such as a key press or a mouse
click), process it, retrieve the next event, process it, and so on indefinitely until the user quits the
application. The core of all Macintosh applications is thus the main event loop (see Fig 1).

FIG 1 - THE MAIN EVENT LOOP

EXIT

EVENT

Event
Queue

PROCESS
THE EVENT USER QUIT ?

EVENT
MANAGER

LAUNCH
AND

INITIALISE

RETRIEVE
AN EVENT

NO

YES

EVENT

EVENT LOOP

THE BULK OF AN APPLICATION'S SOURCE CODE IS
CONCERNED WITH PROCESSING EVENTS

EXIT

If no events are pending for the active application at a particular time, that application can choose to
relinquish control of the CPU (central processing unit, or microprocessor) for a specified amount of
time before again checking to see whether an event has occurred. Events are retrieved, and processor
time is relinquished, using the WaitNextEvent function.

Information about a received event is placed in an event structure. An application may specify which
types of events it wants to receive by including an event mask as a parameter in certain Event Manager
functions.

Processes and Events

The subject of processes is of some relevance to the subject of events.

When multiple applications are open, the user chooses one, and only one, to interact with at any given
time. This active application is known as the foreground process. The remaining open applications, if
any, are known as background processes. The user can bring a background process to the foreground
by clicking in one of its windows or by choosing its item in the Application menu. When an
application is switched between background and foreground in this way, a major switch is said to have
occurred.

2-2 Low-Level and Operating System Events

The foreground process has first priority for accessing the CPU, background processes accessing the
CPU only when the foreground process yields time to them. Any application whose 'SIZE' resource
(see below) specifies that it should receive null events (see below) when it is in the background is
eligible for CPU time when it is not in the foreground. A minor switch is said to have occurred when a
background process gains a period of CPU access without being brought to the foreground.

Categories of Events

An application can receive many types of events. It can also send certain types of events to other
applications. Events are broadly categorised as low-level events, Operating System events, and high-
level events. The high-level event is the category of event used to send events to other applications.

Of the three categories, this chapter is concerned only with low-level events and Operating System
events. High-level events are addressed at Chapter 10 — Required Apple Events.

Low Level Events

Low-level events, which are sent to the application by the Toolbox Event Manager, are originated by
such low-level occurrences as pressing and releasing a key, pressing and releasing the mouse button
and inserting a disk.

The Window Manager also originates low-level events, specifically, two events relating to an
application’s windows:

• The activate event, which has to do with informing the application to make changes to the
appearance of a window depending on whether or not it is the frontmost window.

• The update event, which has to do with informing the application to re-draw a window’s
contents.

The event which reports that the Event Manager has no other events to report (the null event) is also
categorised as a low-level event.

Low-level events, except for update events and null events, are invariably directed to the foreground
process only.

Operating System Events

Operating system events are returned to the application when the operating status of an application
changes. For example, when an application is about to be switched to the background, the Process
Manager sends it a suspend event. Then, when the application is switched back to the foreground, the
Process Manager sends it a resume event. Another Operating System event, called the mouse-moved
event, is sent when the mouse pointer is moved outside a designated region.

Operating system events are invariably directed to the foreground process only.

Low-Level and Operating System Events, System Software, and
Applications

Fig 2 shows the relationship between low-level and Operating System events, system software
managers and open applications.

In Fig 2, note that, in addition to the Operating System event queue created by the Operating System
Event Manager, the Toolbox Event Manager maintains a separate event stream for each open
application. An event stream contains only those events which are available to the related application.
Also note that, when an application is in the background, its event stream can contain only update
events and null events, and then only if the application's 'SIZE' resource so specifies.1

1 An application in the background can also receive high-level events. (See Chapter 10 — Required Apple Events.)

Low-Level and Operating System Events 2-3

A maximum of 20 events can be pending in the Operating System event queue. If the queue becomes
full, the oldest event is discarded to make room for the new.

FIG 2 - LOW-LEVEL AND OPERATING SYSTEM EVENTS

APPLICATION
(FOREGROUND)

APPLICATION
(BACKGROUND)

APPLICATION
(BACKGROUND)

KEYBOARD, MOUSE
BUTTON, FLOPPY DRIVE

WINDOW MANAGER

OPERATING SYSTEM
EVENT MANAGER

TOOLBOX EVENT MANAGER

activate
update

key up
key down

autokey
mouse up

mouse down
disk insert

OPERATING SYSTEM
EVENT QUEUE

PROCESS MANAGER

suspend
resume

mouse- moved

EVENT STREAMEVENT STREAM EVENT STREAM

null

key up
key down

autokey
mouse up

mouse down
disk insert

activate
update

suspend
resume

mouse-moved

null

update

null

update

Priority of Events

In general, the Event Manager returns events to the application in the order low-level events, Operating
System events, and high-level events. In detail, the order of priority is:

• Activate events.

• Mouse-down, mouse-up, key-down, key-up and disk events in FIFO (first in, first out) order.

• Auto-key events.

• Update events, in front-to-back order of windows.

• Operating system events.

• High-level events.

• Null events.

Obtaining Information About Events

The Event Structure

The Event Manager continually captures information about each keystroke, mouse click, etc., and puts
information about each event into an event structure. As more actions occur, additional event
structures are created and joined to the first, forming an event queue.

2-4 Low-Level and Operating System Events

The EventRecord data type defines the event structure:

struct EventRecord
{

EventKind what;
UInt32 message;
UInt32 when;
Point where;
EventModifiers modifiers;

};

typedef struct EventRecord EventRecord;

Field Descriptions

what Indicates the type of event received, which may be represented by one of the following
constants:

nullEvent = 0 No other pending events.
mouseDown = 1 Mouse button pressed.
mouseUp = 2 Mouse button released.
keyDown = 3 Character key pressed.
keyUp = 4 Character key released.
autoKey = 5 Key held down in excess of autoKey threshold.
updateEvt = 6 Window needs to be redrawn.
diskEvt = 7 Disk was inserted.
activateEvt = 8 Activate/deactivate window.
osEvt = 15 Operating system event (suspend, resume or mouse moved).

message Contains additional information about the event. The content of this field depends on the
event type, as follows:

Event Type Contents of message Field
nullEvent
mouseDown
mouseUp

Undefined.

keyDown
keyUp
autoKey

Bits 0-7 = character code. Bits 8-15 = virtual key code.
Bits 16-23 = For Apple Desktop Bus keyboards, the ADB address of the
keyboard where the event occurred.

updateEvt
activateEvt

Pointer to the window to update, activate or deactivate. (For an
activateEvt, Bit 0 of the modifiers field indicates whether to activate
or deactivate the window.)

diskEvt Bits 0-15 = drive number. Bits 16-31 = File Manager result code.

osEvt resume Bits 24-31 = suspendResumeMessage constant.
Also, a 1 in Bit 0 to indicate that the event is a resume event.
Also, a 0 or a 1 in Bit 1 to indicate if clipboard conversion is required.

osEvt suspend Bits 24-31 = suspendResumeMessage constant.
Also, a 0 in Bit 0 to indicate that the event is a suspend event.

osEvt mouse-moved Bits 24-31 = mouseMovedMessage constant.

The following constants may be used to extract certain data from, and to test certain bits
in, the message field:

charCodeMask = 0x000000FF Mask to extract ASCII character code.
keyCodeMask = 0x0000FF00 Mask to extract key code.
osEvtMessageMask = 0xFF000000 Mask to extract OS event message code.
mouseMovedMessage = 0x00FA osEvts: mouse-moved event?
suspendResumeMessage = 0x0001 osEvts: suspend/resume event?
resumeFlag = 1 osEvts: resume event or suspend event?
convertClipboardFlag = 2 osEvts: convert clipboard?

For example, the following code example determines whether an event which has
previously been determined to be an Operating System event is a resume event, a
suspend event, or a mouse-moved event. In this example, the high byte of the message
field is examined to determine whether it contains suspendResumeMessage (0x0001) or
mouseMovedMessage (0x00FA). If it contains suspendResumeMessage, Bit 0 is then examined
to determine whether the event is a suspend event or a resume event.

Low-Level and Operating System Events 2-5

switch((eventRecPtr->message >> 24) & 0x000000FF)
{

case suspendResumeMessage:
if((eventRecPtr->message & resumeFlag) == 1)

// This is a resume event.
else

// This is a suspend event.
break;

case mouseMovedMessage:
// This is a mouse-moved event.
break;

}

when Time the event was posted, in ticks since system startup. Typically, this is used to
establish the time between mouse clicks.

where Location of cursor, in global coordinates2, at the time the event was posted.

modifiers Contains information about the state of the modifier keys and the mouse button at the
time the event was posted.

For activate events, this field indicates whether the window should be activated or
deactivated.

For mouse-down events, this field indicates whether the event caused the application to
be switched to the foreground.

Bit Description
Bit 0 activateEvt: 1 if the window pointed to in the message field should be activated.

0 if the window pointed to in the message field should be deactivated.
mouseDown: 1 if the event caused the application to be switched to the foreground,

otherwise 0.

Bit 7 1 if mouse button was up, 0 if not.

Bit 8 1 if Command key down, 0 if not.

Bit 9 1 if Shiftkey down, 0 if not.

Bit 10 1 if Caps Lock key down, 0 if not.

Bit 11 1 if Option key down, 0 if not.

Bit 12 1 if Control key down, 0 if not.

Bit 13 1 if Right Shift Key down, 0 if not.

Bit 14 1 if Right Option Key down, 0 if not.

Bit 15 1 if Right Control Key down, 0 if not.

The following constants may be used as masks to test the setting of the various bits in the
modifiers field:

activeFlag = 0x0001 Window is to be activated? (activateEvt).
Foreground switch? (mouseDown).

btnState = 0x0080 Mouse button up?
cmdKey = 0x0100 Command key down?
shiftKey = 0x0200 Shift key down?
alphaLock = 0x0400 Caps Lock key down?
optionKey = 0x0800 Option key down?
controlKey = 0x1000 Control key down?
rightShiftKey = 0x2000 Right Shift Key down?
rightOptionKey = 0x4000 Right Option Key down?
rightControlKey = 0x8000 Right Control Key down?

For example, the following code example determines whether an event which has
previously been determined to be an activate event is intended to signal the application to
activate or deactivate the window referenced in the message field:

2 Global coordinates are explained at Chapter 4 -— Windows (see Fig 3).

2-6 Low-Level and Operating System Events

Boolean becomingActive;

becomingActive = ((eventRecPtr->modifiers & activeFlag) == activeFlag);

if(becomingActive)
// Application-defined window activation code here.

else
// Application-defined window deactivation code here.

Event Structure Examples - Diagrammatic

Fig 3 is a diagrammatic representation of the contents of some typical event structures.

NULL EVENT

what
message

when
where

modifiers

= nullEvt0000000000000000
Undefined
Undefined
Undefined

Undefined

MOUSE-DOWN EVENT WITH COMMAND KEY DOWN

Time event was posted
Location of cursor

what
message

when
where

modifiers

0000000000000001
Undefined

0000000100000000 = cmdKey

= mouseDown

KEY-DOWN EVENT WITH CONTROL KEY PRESSED

ADB Addr Chara codeKey code
Time event was posted

0000000000000011 = keyDown

0001000000000000 = controlKey

what
message

when
where

modifiers
Location of cursor

UPDATE EVENT

what
message

when
where

modifiers

0000000000000110
Pointer to window

Location of cursor
Time event was posted

Undefined

= updateEvt

ACTIVATE EVENT - WINDOW TO BE ACTIVATED

Pointer to window
Time event was posted

what
message

when
where

modifiers

0000000000001000

Location of cursor

= activateEvt

0000000000000001 = activeFlag

DISK EVENT

what
message

when
where

modifiers

= diskEvt0000000000000111
Drive numberResult code

Time event was posted
Location of cursor

Undefined

OPERATING SYSTEM EVENT - MOUSE MOVED

00000000000000001111101000000000
what

message
when

where
modifiers

0000000000001111 = osEvt

Time event was posted
Location of cursor

Undefined

= mouseMovedMessage

OPERATING SYSTEM EVENT - RESUME

0000000100000000
what

message
when

where
modifiers

0000000000001111 = osEvt

Time event was posted
Location of cursor

0000000000000001

Undefined

= suspendResumeMessage = resumeFlag

FIG 3 - EXAMPLES OF CONTENTS OF AN EVENT RECORD

The WaitNextEvent Function

The WaitNextEvent function retrieves events from the Event Manager. If no events are pending for the
application, the WaitNextEvent function may allocate processor time to other applications. When
WaitNextEvent returns, the event structure contains information about the retrieved event, if any.

WaitNextEvent returns true if it retrieves any event other than a null event. If there are no events of the
types specified in the eventMask parameter (other than null events), false is returned.

Boolean WaitNextEvent (EventMask eventMask, EventRecord *theEvent, UInt32 sleep,
RgnHandle mouseRgn)

Returns: A return code: 0 = null event; 1 = event returned.

eventMask A 16 bit binary mask which may be used to mask out the receipt of certain events.

The following constants are defined in Events.h:

mDownMask = 0x0002 Mouse button pressed.
mUpMask = 0x0004 Mouse button released.

Low-Level and Operating System Events 2-7

keyDownMask = 0x0008 Key pressed.
keyUpMask = 0x0010 Key released.
autoKeyMask = 0x0020 Key repeatedly held down.
updateMask = 0x0040 Window needs updating.
diskMask = 0x0080 Disk inserted.
activMask = 0x0100 Activate/deactivate window.
highLevelEventMask = 0x0400 High-level events (includes AppleEvents).
osMask = 0x8000 Operating system events (suspend, resume).
everyEvent = 0xFFFF All of the above.

Masked events are not removed from the event stream by the WaitNextEvent call. To
remove events from the Operating System event queue, call FlushEvents with the
appropriate mask.

theEvent Address of a 16-byte event structure.

sleep The amount of time, in ticks, the application agrees to relinquish the processor if no
events are pending for it. When that time expires, or when an event becomes available
for the application, the Process Manager schedules the application for execution.

Note: If your application needs to perform small subsidiary tasks at frequent
intervals, you must ensure that your application regains control of the CPU at
frequent intervals. For example, if the user is editing text and the application needs to
blink the caret, the application must specify a value for the sleep parameter which is
equal to the desired blink rate.

mouseRgn The screen region inside which the Event Manager does not generate mouse-moved
events. The region should be specified in global coordinates. If the user moves the
cursor outside this region and the application is the foreground process, the Event
Manager reports mouse-moved events.

If NULL is passed as this parameter, the Event Manager does not return mouse-moved
events.

Before returning to the application, WaitNextEvent performs certain additional processing and may, in
fact, intercept the received event so that it is never received by your application. As will be seen, key-
up and key-down events are intercepted in this way in certain circumstances.

Flushing the Operating System Event Queue

Immediately after application launch, the FlushEvents function should be called to empty the
Operating System event queue of any low-level events left unprocessed by another application, for
example, any mouse-down or keyboard events that the user may have entered while the Finder
launched the application.

Handling Events

Handling Mouse Events3

Your application receives mouse-down events only when it is the foreground process and the user
clicks in a window belonging to the application or in the menu bar, (If the user clicks in a window
belonging to another application, the Event Manager sends your application a suspend event.)

When your application receives a mouse-down event, you need to first determine where the cursor was
at the time the mouse button was pressed. A call to FindWindow will determine:

3 Events related to the movement of the mouse are not stored in the event queue. The mouse driver automatically tracks the mouse and
displays the cursor as the user moves the mouse.

2-8 Low-Level and Operating System Events

• Which of your application's windows, if any, the mouse button was pressed in.

• Which window part the mouse button was pressed in. In this context, a window part includes
the menu bar as well as various regions within the window.

• Whether the event occurred in a desk accessory launched in your application's partition.

The following constants, defined in MacWindows.h, may be used to test the value returned by
FindWindow:

inDesk = 0 In none of the following.
inNoWindow = 0 In none of the following.
inMenuBar = 1 In the menu bar.
inSysWindow = 2 In a desk accessory window.
inContent = 3 Anywhere in the content region except the grow region if the window

is active. Anywhere in the content region including the grow region
if the window is inactive.

inDrag = 4 In the drag (title bar) region.
inGrow = 5 In the grow region (active window only).
inGoAway = 6 In the go-away region (active window only).
inZoomIn = 7 In the zoom-in region (active window only).
inZoomOut = 8 In the zoom-out region (active window only).
inCollapseBox = 11 In the collapse region (active window only).

Historical Note

The inSysWindow constant relates to mouse-down events in an old-style desk accessory. Old-style
desk accessories were designed for early versions of the Macintosh system software which did
not support multitasking, and which were thus launched inside the running application's
partition. (Desk accessories written for the multitasking environment are really just small
applications which are launched in their own partition and behave in every respect like a
normal application.) The application responded to such mouse-downs by calling SystemClick,
which routed the event to the desk accessory for further handling. In the current day, it is all
but inconceivable that a machine running the Appearance Manager would also harbour an old-
style desk accessory. Accordingly, the demonstration programs accompanying this edition of
Macintosh C do not test for inSysWindow.

The inCollapseBox constant was introduced with Mac OS 8 and the Appearance Manager.
Previously, windows did not contain collapse boxes. When the Appearance Manager is not
available, inCollapseBox will not be returned by FindWindow.

In the Content Region

If the cursor was in the content region4 of the active window, your application should perform any
actions appropriate to the application. If the window has scroll bars, and since scroll bars actually
occupy part of the content region, your application should first determine whether the cursor was in
the scroll bars — or, indeed, in any other control — and respond appropriately.

In the Drag Bar, Grow Box, Go Away Box,
Zoom Box, or Collapse Box

If the cursor was in one of the non-content regions of the active window, your application should
perform the appropriate actions for that region as follows:

• Drag Bar . If the cursor was in the drag bar, your application should call DragWindow to allow
the user to drag the window to a new location. DragWindow retains control until the mouse
button is released.

• Grow Box. If the cursor was in the grow box, your application should first call GrowWindow to
track user actions while the mouse button remains down. When GrowWindow returns (that is,

4 The content region is the part of the window in which an application displays the contents of a document and the window's controls (for
example, scroll bars).

Low-Level and Operating System Events 2-9

when the mouse button is released), SizeWindow should be called to re-draw the window in its
new size.

• Go Away Box . If the cursor was in the go-away box, your application should call TrackGoAway
to track user actions while the mouse button remains down. TrackGoAway, which returns only
when the mouse is released, returns true if the cursor is still inside the close box when the
mouse button is released, and false otherwise.

• Zoom Box. If the cursor was in the zoom box, your application should call TrackBox to track the
mouse while the mouse button remains down. TrackBox returns true if the cursor is within the
zoom box when the button is released, and false otherwise. If true is returned, the window
content region should be erased, ZoomWindow should be called to redraw the window in its newly
zoomed state, and the window's content region should be redrawn.

• Collapse Box. If the cursor was in the collapse box, your application should do nothing,
because the system will collapse the window for you.

In the Menu Bar

If the cursor was in the menu bar, your application should first adjust its menus, that is, enable and
disable items and set marks (for, example, checkmarks) based on the context of the active window. It
should then call MenuSelect, which handles all user action until the mouse button is released.

When the mouse button is released, MenuSelect returns a long integer containing, ordinarily, the menu
ID in the high word and the chosen menu item in the low word. However, if the cursor was outside
the menu when the button was released, the high word contains 0.

In an Inactive Application Window

If the mouse click was in an inactive application window, FindWindow can return only the inContent or
inDrag constant. If inContent is reported, your application should bring the inactive window to the
front using SelectWindow. Note, however, that if the active window is a movable modal dialog box,
your application should instead call SysBeep to play the system alert sound rather than activate the
selected window. (See Chapter 8 — Dialogs and Alerts.)

Ordinarily, the first click in an inactive window should simply activate the window and do nothing
more. However, if the mouse click is in the drag bar, for example, you could elect to have your
application activate the window and call DragWindow to allow the user to drag the window to a new
location, all on the basis of the first mouse-down.

Detecting Mouse Double Clicks

Double clicks can be detected by comparing the time of a mouse-up event with that of an immediately
following mouse-down. LMGetDoubleTime returns the time difference required for two mouse clicks to
be interpreted as a double click.

Handling Keyboard Events

After retrieving a key-down event, an application should determine which key was pressed and which
modifier keys (if any) were pressed at the same time. When the user presses a key, or combination of
keys, your application should respond appropriately. For example, your application should allow the
user to choose a frequently used menu command by using its keyboard equivalent5.

5 The term keyboard equivalent refers to a keyboard combination, such as Command-C, or any other combination of the Command key,
another key and one or more modifier keys (Shift, Option, or Control). The term Command-key equivalent refers specifically to a keyboard
equivalent comprising the Command key and one other key other than a modifier key.

2-10 Low-Level and Operating System Events

Character Code and Virtual Key Code

The low-order word of the message field contains the character code and virtual key code
corresponding to the key pressed by the user. The virtual key code is always the same for a specific key
on a particular keyboard. To determine the virtual key code that corresponds to a specific physical key,
the system software uses a hardware-specific key-map ('KMAP') resource.

After determining the virtual key code, the system software uses a script-specific keyboard layout
('KCHR') resource to map the virtual keycode to a specific character code. Any given script system (that
is, writing system) has one or more 'KCHR' resources (for example, a French 'KCHR' and a U.S. 'KCHR')
which determine whether virtual key codes are mapped to, again for example, the French or the U.S.
character set.

Usually, your application should use the character code rather than the virtual key code when
responding to keyboard events. The following constants may be used as masks to access the virtual
key code and character code in the message field:

keyCodeMask = 0x0000FF00 Mask to extract key code.
charCodeMask = 0x000000FF Mask to extract ASCII character code.

Checking for Keyboard Equivalents

In its initial handling of key-down and auto-key events, the application should first extract the
character code from the message field and then check the modifiers field to determine if the Command
key was pressed at the time of the event. If the Command key was down, the menus should be
adjusted prior to further processing of the event. This further processing must necessarily
accommodate the possibility that one or more of the modifier keys (Shift, Option, and Control) were
also down at the same time as the Command key. If the Command key was not down, the appropriate
application-defined function should be called to further handle the event.

Historical Note

Prior to Mac OS 8 and the Appearance Manager, only Command-key equivalents for menu
items were supported. With the introduction of Mac OS 8 and the Appearance Manager, a
menu item can be assigned a keyboard equivalent , that is, any combination of the Command
key, optionally one or more modifier keys (Shift, Option, Control), and another key. (A
Command-key equivalent such as Command-C is thus, by definition, also a keyboard
equivalent.) This new capability is generally referred to as "support for extended modifier
keys".

Checking For a Command-Period Key
Combination

Your application should allow the user to cancel a lengthy operation by using the Command-period
combination. This can be implemented by periodically examining the state of the keyboard using
GetKeys or, alternatively, by scanning the event queue for a Command-period keyboard event. The
demonstration program at Chapter 23 — Miscellany contains a demonstration of the latter method.

Events Not Returned to the Application

Certain keyboard events will not, or may not, be returned to your application. These are as follows:

• Command-Shift-Numeric Key Combinations. Some keystroke combinations are handled
by the Event Manager and not returned to your application. These include certain combinations
of Command-Shift-numeric keys, for example, Command-Shift-1 to eject a disk and Command-
Shift-3 to take a snapshot of the screen. The action corresponding to such key combinations are
implemented as a function that takes no parameters and which is stored in an 'FKEY' resource
with a resource ID that corresponds to the number key that activates it. (Note that IDs of 1 to 4
are reserved by Apple.)

Low-Level and Operating System Events 2-11

• Key-Up Events. At application launch, the Operating System initialises another event mask,
called the system event mask, to exclude key-up messages. If an application needs to receive
key-up events, the system event mask must be changed using the SetEventMask function.

Handling Update Events

The Update Region

The Window Manager coordinates the display of windows and keeps track of the front-to-back
ordering of windows. When one window covers another and the user moves the front window, the
Window Manager generates an update event so that the contents of the newly exposed area of the rear
window can be updated, that is, redrawn.

The Window Manager maintains an update region for each window. It keeps track of all areas of a
window's content region that need to be redrawn and accumulates them in this region. When the
application calls WaitNextEvent, the Event Manager checks to see if any windows have an update
region that is not empty. If it finds a non-empty update region, the Event Manager reports an update
event to the appropriate application. If more than one window needs updating, the update events are
issued for the front window first.

Updating the Window

Upon receiving the update event, your application should first call BeginUpdate, which temporarily
replaces the visible region of the window's graphics port with the intersection of the visible region and
the update region and then clears the update region6. (If the update region is not cleared, the Event
Manager will continue to send an endless stream of update events. Accordingly, it is absolutely
essential that BeginUpdate be called in response to all update events.)

After the call to BeginUpdate, your application should draw the window's contents. (Note that, to
prevent the unnecessary drawing of unaffected areas of the window, the system limits redrawing to the
visible region, which at this point corresponds to the update region as it was before BeginUpdate
cleared it.)

EndUpdate should then be called to restore the normal visible region.

Application-defined update functions should first determine if the window is a document window or a
modeless dialog box and call separate application-defined functions for redrawing the window or the
dialog box accordingly. (See Chapter 8 — Dialogs and Alerts.)

Updating Windows in the Background

Recall that your application will receive update events when it is in the background if the application's
'SIZE' resource so specifies.

Automatic Updating - Windows with Static
Content

Your application can allow the Window Manager to automatically update the contents of a window,
without sending an update event, by supplying in the window structure a handle to a picture that
contains the contents of the window. This technique is generally useful only for windows which
contain static information.

Handling Activate Events

Whenever your application receives a mouse-down event, it should first call FindWindow to determine if
the user clicked in a window other than the active window. If the click was, in fact, in a window other

6 This process is explained in more detail at Chapter 4 — Windows.

2-12 Low-Level and Operating System Events

than the active window, SelectWindow should be called to begin the process of activating that window
and deactivating the currently active window.

SelectWindow does some of the activation/deactivation work for you, such as removing the
highlighting from the window being deactivated and highlighting the window being activated. It also
generates two activate events so that, at your application's next two requests for an event, an activate
event is returned for the window being deactivated followed by an activate event for the window being
activated. In response, your application must complete the action begun by SelectWindow, performing
such actions as are necessary to complete the activation or deactivation process. Such actions might
include, for example, showing or hiding the scroll bars, restoring or removing highlighting from any
selections, adjusting menus, etc.

The message field of the event structure contains a pointer to the window being activated or deactivated
and bit 0 of the modifiers field indicates whether the window is being activated or deactivated. The
activeFlag constant may be used to test the state of this bit.

Activation/Deactivation in Response to
Suspend and Resume Events

When the user switches between your application and another application, your application is notified
of the switch through Operating System (suspend and resume) events. If, in its 'SIZE' resource, your
application has the acceptSuspendResumeEvents flag set and the doesActivateOnFGSwitch flag not set,
your application receives an activate event immediately following all suspend and resume events. This
means that your application can rely on the receipt of those activate events to trigger calls to its
activation/deactivation functions when a major switch occurs.

On the other hand, if your application has both the acceptSuspendResumeEvents and the
doesActivateOnFGSwitch flags set, it does not receive an activate event immediately following suspend
and resume events. In this case, your application must call its application-defined window
activation/deactivation functions whenever it receives a suspend or resume event, in addition to the
usual call made in response to an activate event.

The accepted practise is to set the doesActivateOnFGSwitch flag whenever the
acceptSuspendResumeEvents flag is set.

Handling Disk-Inserted Events

When the user inserts a disk, the Operating System attempts to mount the volume by calling the File
Manager function PBMountVol. If the volume was successfully mounted, the disk's icon appears on the
desktop. The Operating System Event Manager then generates a disk-inserted event. If the user is, at
the time, interacting with a standard file dialog box, the Standard File Package intercepts the event and
handles it automatically. Otherwise, the event is left in the event queue for the application to retrieve.

In this latter case, your application should simply check if the disk was successfully mounted. If the
disk was not successfully mounted (that is, if the high order word of the message field does not contain
noErr), then the application should call the Disk Initialisation Manager function DIBadMount, which will
inform the user via a dialog box. If the user clicks the OK box in this dialog, the disk will be initialised.

Basically, this handling is intended to give the user the chance to initialise or eject an uninitialised or
damaged disk. If disk-inserted events are masked out, the event stays in the Operating System event
queue until your application calls the Standard File Package or until an application which handles disk-
inserted events becomes the foreground process. This behaviour can be confusing to the user;
accordingly, your application should handle disk inserted events when they occur.

Handling Null Events

The Event Manager reports a null event when the application requests an event and the application's
event stream does not contain any of the requested event types. The WaitNextEvent function reports a
null event by placing nullEvt in the what field and returning false.

Low-Level and Operating System Events 2-13

When your application receives a null event, and assuming it is the foreground process, it can perform
what is known as idle processing, such as blinking the caret in the active window of the application.

As previously stated, your application's 'SIZE' resource can specify that the application receive null
events while it is in the background. If your application receives a null event while it is in the
background, it can perform tasks or do other processing.

In order not to deny a reasonable amount of processor time to other applications, idle processing and
background processing should generally be kept to a minimum.

Handling Suspend and Resume Events

When an Operating System event is received, the message field of the event structure should be tested
with the constants suspendResumeMessage and mouseMovedMessage to determine what type of event was
received. If this test reveals that the event was a suspend or resume event, bit 0 should be tested with
the constant resumeFlag to ascertain whether the event was a suspend event or a resume event.

WaitNextEvent returns a suspend event when your application is about to be switched to the
background and returns a resume event when your application becomes the foreground process.

Suspend Events

When an application receives a suspend event, it does not actually switch to the background until it
makes its next request to receive an event from the Event Manager. This gives your application the
opportunity to get itself ready for a major switch to the background. On receipt of a suspend event,
therefore, your application should hide floating windows7, convert any private scrap into global scrap
if necessary8, call its application-defined window activation/deactivation function if appropriate (see
Handling Activate Events, above), and do anything else necessary to get itself ready for the switch.

Resume Events

When an application receives a resume event, it should show floating windows, convert any global
scrap back to private scrap, and call its application-defined window activation/deactivation function if
appropriate (see Handling Activate Events, above).

Handling Mouse-Moved Events

Mouse-moved events are used to trigger a change in the appearance of the cursor according to its
position in a window. For example, when the user moves the cursor outside the text area of a
document window, applications typically change its shape from the I-beam shape to the standard
arrow shape.

The main requirement is to specify a region in the mouseRgn parameter of the WaitNextEvent function.
This causes the Event Manager to report a mouse-moved event if the user moves the cursor outside
that region. On receipt of the mouse-moved event, the application can change the shape of the cursor.

An application might define two regions: a region which encloses the text area of a window (the I-beam
region) and a region which defines the scroll bars and all other areas outside the text area (the arrow
region). By specifying the I-beam region to WaitNextEvent, the mouse driver continues to display the I-
beam cursor until the user moves the cursor out of this region. When the cursor moves outside the
region, WaitNextEvent reports a mouse-moved event. Your application can then change the I-beam
cursor to the arrow cursor and change the mouseRgn parameter to the non-I-beam region. The cursor
now remains an arrow until the user moves the cursor out of this region, at which point your
application receives another mouse-moved event.

7 See Chapter 21— Floating Windows.
8 See Chapter 18 — Scrap.

2-14 Low-Level and Operating System Events

The application must, of course, recalculate and change the mouseRgn parameter immediately it receives
a mouse-moved event. Otherwise, mouse-moved events will be continually received as long as the
cursor is outside the original region.

The appearance of the cursor may be changed using SetCursor or other cursor handling functions. The
familiar I-beam, crosshairs, plus sign and wristwatch cursors are defined as resources, which can be
retrieved by a call to GetCursor. The following constants specify the resource IDs:

iBeamCursor = 1
crossCursor = 2
plusCursor = 3
watchCursor = 4

Cursor setting functions should account for whether a document window or modeless dialog box is
active and set the cursor appropriately.

Handling Events in Alert Boxes and Dialog Boxes

The handling of events in alert boxes and dialog boxes is covered in detail at Chapter 8 — Dialogs and
Alerts. The following is a brief overview only.

Modal and Movable Modal Alert Boxes

The Dialog Manager functions Alert, NoteAlert, CautionAlert, StopAlert, and StandardAlert are used
to invoke modal and movable modal alert boxes and to handle all user interaction while the alert box
remains open. The Dialog Manager handles all the events generated by the user until the user clicks a
button (typically, the OK or Cancel button). When the user clicks the OK or Cancel button, the Dialog
Manager closes the alert box and reports the user's action to the application, which is responsible for
performing the appropriate subsequent actions.

Modal Dialog Boxes and Movable Modal Dialog Boxes

For modal and movable modal dialog boxes, the Dialog Manager function ModalDialog is used to
handle all user interaction while the dialog box is open. When the user selects an item, ModalDialog
reports the selection to the application, in which case the application is responsible for performing the
action associated with that item. An application typically calls ModalDialog repeatedly, responding to
clicks on enabled items as reported by ModalDialog, until the user selects the OK or Cancel button.

Historical Note

The capability to use ModalDialog to handle all user interaction with movable modal dialog boxes
was introduced with Mac OS 8 and the Appearance Manager. Previously, it was necessary to
handle events in movable modal dialog boxes in the same manner as for modeless dialog boxes.

Modeless Dialog Boxes

For modeless dialog boxes, you can use the function IsDialogEvent to determine whether the event
occurred while a modeless dialog box was the frontmost window and then, optionally, use the function
DialogSelect to handle the event if it belongs to a modeless dialog box. DialogSelect is similar to
ModalDialog except that it returns control after every event, not just events relating to an enabled item.

Low-Level and Operating System Events 2-15

The 'SIZE' Resource

Several references have been made in the preceding to the application's 'SIZE' resource because some
(though not all) of the flag fields in this resource are relevant to the subject of events.

An application's 'SIZE' resource informs the Operating System:

• About the memory requirements of the application.

• About certain scheduling options (for example, whether the application can accept suspend and
resume events).

• Whether the application:

• Is 32-bit clean.

• Supports stationary documents.

• Supports TextEdit's inline input services.

• Wishes to receive notification of the termination of any application it has launched.

• Wishes to receive high-level events.

The 'SIZE' resource comprises a 16-bit flags field, which specifies the operating characteristics of your
application, followed by two 32-bit size fields, one indicating the minimum size, and one the preferred
size, of the application's partition.

Resource ID

The 'SIZE' resource created for your application should have a resource ID of -1. If the user modifies
the preferred size in the Finder's Get Info window, the Operating System creates a new 'SIZE'
resource having an ID of 0. If it exists, this latter resource will be invoked by the Operating System at
application launch. If it does not exist, the Process Manager looks for the original 'SIZE' resource with
ID -1.

Creating a 'SIZE' Resource in CodeWarrior

It is possible to create a 'SIZE' resource use Resorcerer; however, it is far more convenient to use the
built-in 'SIZE' resource creation facility within CodeWarrior.

Flags Fields. In CodeWarrior, the bits of the flags field can be set as desired using the 'SIZE' Flags
pop-up menu in the 68K Target or PPC Target sections of the Settings dialog box, which appears when
<Project Name> Settings… is chosen from the Edit Menu. The following descibes the meanings of the
items in the pop-up menu, and thus of the relevant bits of the 16-bit flags field. Those items relevant to
low-level and Operating System events appear on a gray background.

'SIZE' Flags Pop-Up Menu Meaning When Set Meaning When Not Set
acceptSuspendResumeEvents Your application can process, and thus

wants to receive, suspend and resume
events. (When this flag is set, the
doesActivateOnFGSwitch flag should also
normally be set.)

Your application does not want to
receive suspend and resume events.

canBackground Your application wants to receive null
event processing time while in the
background.

Your application does no background
processing and thus does not want to
receive null events when it is in the
background.

2-16 Low-Level and Operating System Events

doesActivateOnFGSwitch Your application does not want to
receive activate events associated with
suspend and resume events, and thus
activates and deactivates its windows in
response to suspend and resume events.
(Note that suspend and resume events
will be received only if the
acceptSuspendResumeEvents flag is set.)

Your application wants to receive
activate events associated with suspend
and resume events, and will activate
and deactivate its windows in response
to that activate event. (Note that
suspend and resume events will be
received only if the
acceptSuspendResumeEvents flag is set.)

onlyBackground Your application runs only in the
background. (Usually, this is because it
does not have a user interface and
cannot run in the foreground.)

Your application runs in the foreground
and the background.

getFrontClicks Your application wants to receive the
mouse-down and mouse-up events that
are used to bring your application into
the foreground when the user clicks in
your application's frontmost window.

Your application does not want to
receive the mouse-down and mouse-up
events that are used to bring your
application into the foreground.

acceptAppDiedEvents Your application wants to be notified
whenever an application launched by
your application terminates or crashes.
(This information is received via an
Apple event.)

Your application does not want to be
notified whenever an application
launched by your application
terminates or crashes.

is32BitCompatible Your application can be run with either
the 32-bit Memory Manager or the 24-
bit Memory Manager.

Your application cannot be run with the
32-bit Memory Manager.

isHighLevelEventAware Your application can send and receive
high-level events. (Your application
must support the four required Apple
events (see Chapter 10) if this flag is
set.)

The Event Manager does not give your
application high-level events when it
calls WaitNextEvent.

LocalAndRemoteHLEvents Your application is to be visible to
applications running on other
computers on a network.

Your application does not receive high-
level events across a network.

isStationeryAware Your application can recognise
stationery documents.

Your application cannot recognise
stationery documents. If the user opens
a stationery document, the Finder
duplicates the document and prompts
the user for a name for the duplicate
document.

useTextEditServices Your application can use the inline text
services provided by TextEdit.

Your application cannot use the inline
text services provided by TextEdit.

isDisplayManagerAware Your application can handle the Display
Notice event, which tells your
application to move its windows after
the monitor settings have changed.

When the monitor settings are changed,
the DisplayManager moves your
application’s windows so that they do
not disappear off the screen.

Size Fields. The minimum and preferred sizes of the application's partition may be set in the
Preferred Heap Size (k) and MinimumHeap Size (k) sections of the 68K Target section of the Settings
dialog box.

Notes on Multitasking

Cooperative Multitasking

The yielding of access to the CPU by the foreground process (via the value assigned to the sleep
parameter of the WaitNextEvent function, is central to the form of multitasking provided by the system
software as we know it today. That form of multitasking is known as cooperative multitasking.

Under cooperative multitasking, individual applications continue executing until they "decide" to
release control, thus allowing the background process of another application to begin executing. Even
though this results in a usable form of multitasking, the operating system itself does not control the
processor's scheduling. Even under the best of circumstances, an individual application (which has no
way of knowing what other applications are running or whether they have a greater "need" to execute)

Low-Level and Operating System Events 2-17

makes inefficient use of the processor, which often results in the processor idling when it could be used
for productive work.

Note also that, under this cooperative scheme, the assignment of zero to WaitNextEvent's sleep
parameter will cause your application to completely "hog" the CPU whenever it is in the foreground,
allowing no CPU time at all to the background processes.

Preemptive Multitasking

Under preemptive multitasking, the operating system itself retains control of which body of code
executes, and for how long. No longer does one task have to depend on the "good will" of another task
- that is, the second task's surrender of control - to gain access to the CPU.

Main Event Manager Constants, Data Types and Functions

Constants

Event Codes

nullEvent = 0 No other pending events.
mouseDown = 1 Mouse button pressed.
mouseUp = 2 Mouse button released.
keyDown = 3 Character key pressed.
keyUp = 4 Character key released.
autoKey = 5 Key held down in excess of autoKey threshold.
updateEvt = 6 Window needs to be redrawn.
diskEvt = 7 Disk was inserted.
activateEvt = 8 Activate/deactivate window.
osEvt = 15 Operating system event (suspend, resume or mouse moved).

Event Masks

mDownMask = 0x0002 Mouse button pressed.
mUpMask = 0x0004 Mouse button released.
keyDownMask = 0x0008 Key pressed.
keyUpMask = 0x0010 Key released.
autoKeyMask = 0x0020 Key repeatedly held down.
updateMask = 0x0040 Window needs updating.
diskMask = 0x0080 Disk inserted.
activMask = 0x0100 Activate/deactivate window.
highLevelEventMask = 0x0400 High-level events (includes AppleEvents).
osMask = 0x8000 Operating system events (suspend, resume).
everyEvent = 0xFFFF All of the above.Event Message

Masks for Keyboard Events

keyCodeMask = 0x0000FF00 Mask to extract key code.
charCodeMask = 0x000000FF Mask to extract ASCII character code.

Message Codes For Operating System Events

osEvtMessageMask = 0xFF000000 Mask to extract OS event message code.
mouseMovedMessage = 0x00FA For osEvts, test for mouse-moved event.
suspendResumeMessage = 0x0001 For osEvts, test for suspend/resume event.
resumeFlag = 1 For osEvts, test Bit 0.
convertClipboardFlag = 2 For osEvts, test whether to convert clipboard.

Constants Corresponding to Bits in the modifiers Field

activeFlag = 0x0001 Set if window being activated (activateEvt).
Set if event caused a foreground switch (mouseDown).

btnState = 0x0080 Set if mouse button up.
cmdKey = 0x0100 Set if Command key down.
shiftKey = 0x0200 Set if Shift key down.
alphaLock = 0x0400 Set if Caps Lock key down.
optionKey = 0x0800 Set if Option key down.
controlKey = 0x1000 Set if Control key down.
rightShiftKey = 0x2000 Set if Right Shift Key down.

2-18 Low-Level and Operating System Events

rightOptionKey = 0x4000 Set if Right Option Key down.
rightControlKey = 0x8000 Set if Right Control Key down.

Data Types

Event Structure

struct EventRecord
{

EventKind what; // Event code.
UInt32 message; // Event message.
UInt32 when; // Ticks since system startup.
Point where; // Mouse location in global coordinates.
EventModifiers modifiers; // Modifier flags.

} EventRecord;

typedef struct EventRecord EventRecord;

Functions

Receiving Events

Boolean WaitNextEvent(EventMask eventMask,EventRecord *theEvent,UInt32 sleep,
RgnHandle mouseRgn);

Boolean EventAvail(EventMask eventMask,EventRecord *theEvent;
void FlushEvents(EventMask whichMask,EventMask stopMask);
void SystemClick(const EventRecord *theEvent, WindowPtr theWindow);
void SystemTask(void);
Boolean GetOSEvent(EventMask mask,EventRecord *theEvent);
Boolean OSEventAvail(EventMask mask,EventRecord *theEvent);
void SetEventMask(EventMask value);

Reading the Mouse

void GetMouse(Point *mouseLoc);
Boolean Button(void);
Boolean StillDown(void);
Boolean WaitMouseUp(void);

Reading the KeyBoard

void GetKeys(KeyMap theKeys);
UInt32 KeyTranslate(const void *transData,UInt16 keycode,UInt32 *state);

Getting Timing Information

UInt32 TickCount(void);
UInt32 GetDblTime(void);
UInt32 GetCaretTime(void);

Demonstration Program

// **
// LowEvents.c
// **
//
// This program:
//
// • Contains a main event loop function, together with subsidiary functions which
// perform nominal handling only of low-level and Operating System events.
//
// • Opens a window in which the types of all received low-level and Operating System
// events are displayed.
//
// • Terminates when the user clicks the window's close box.
//
// Event handling is only nominal in this program because its main purpose is to
// demonstrate the basics of an application's main event loop.
//
// Programs in later chapters demonstrate the full gamut of individual event handling.
//

Low-Level and Operating System Events 2-19

// The program utilises the following resources:
//
// • A 'WIND' resource (purgeable).
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, doesActivateOnFGSwitch, and
// is32BitCompatible flags set.
//
// **

// ……… includes

#include <DiskInit.h>
#include <Fonts.h>
#include <Processes.h>
#include <Sound.h>
#include <ToolUtils.h>

// …… defines

#define rWindowResource 128

#define topLeft(r) (((Point *) &(r))[0])
#define botRight(r) (((Point *) &(r))[1])

// ……… global variables

Boolean gDone;
Boolean gInBackground;
RgnHandle gCursorRegionHdl;

// …… function prototypes

void main (void);
void doInitManagers (void);
void doNewWindow (void);
void eventLoop (void);
void doEvents (EventRecord *);
void doMouseDown (EventRecord *);
void doUpdate (EventRecord *);
void doDisk (EventRecord *);
void doOSEvent (EventRecord *);
void drawEventString (Str255);
void doAdjustCursor (WindowPtr);

// *** main

void main(void)
{

doInitManagers();
doNewWindow();
eventLoop();

}

// *** doInitManagers

void doInitManagers(void)
{

MaxApplZone();
MoreMasters();

InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(NULL);

InitCursor();
FlushEvents(everyEvent,0);

}

// ** doNewWindow

void doNewWindow(void)
{

WindowPtr windowPtr;

2-20 Low-Level and Operating System Events

if(!(windowPtr = GetNewCWindow(rWindowResource,NULL,(WindowPtr) -1)))
{

SysBeep(10);
ExitToShell();

}

SetPort(windowPtr);
TextSize(10);

}

// ** eventLoop

void eventLoop(void)
{

EventRecord eventStructure;
Boolean gotEvent;

gDone = false;
gCursorRegionHdl = NewRgn();
doAdjustCursor(FrontWindow());

while(!gDone)
{

gotEvent = WaitNextEvent(everyEvent,&eventStructure,180,gCursorRegionHdl);
if(gotEvent)

doEvents(&eventStructure);
}

}

// ** doEvent

void doEvents(EventRecord *eventStrucPtr)
{

switch(eventStrucPtr->what)
{

case mouseDown:
drawEventString("\p • mouseDown");
doMouseDown(eventStrucPtr);
break;

case mouseUp:
drawEventString("\p • mouseUp");
break;

case keyDown:
drawEventString("\p • keyDown");
break;

case autoKey:
drawEventString("\p • autoKey");
break;

case updateEvt:
drawEventString("\p • updateEvt");
doUpdate(eventStrucPtr);
break;

case diskEvt:
drawEventString("\p • diskEvt");
doDisk(eventStrucPtr);
break;

case activateEvt:
drawEventString("\p • activateEvt");
break;

case osEvt:
drawEventString("\p • osEvt - ");
doOSEvent(eventStrucPtr);
break;

}
}

// ** doMouseDown

void doMouseDown(EventRecord *eventStrucPtr)
{

Low-Level and Operating System Events 2-21

SInt16 partCode;
WindowPtr windowPtr;

partCode = FindWindow(eventStrucPtr->where,&windowPtr);

switch(partCode)
{

case inContent:
if(windowPtr != FrontWindow())

SelectWindow(windowPtr);
break;

case inDrag:
DragWindow(windowPtr,eventStrucPtr->where,&qd.screenBits.bounds);
doAdjustCursor(windowPtr);
break;

case inGoAway:
if(TrackGoAway(windowPtr,eventStrucPtr->where))

gDone = true;
break;

}
}

// *** doUpdate

void doUpdate(EventRecord *eventStrucPtr)
{

BeginUpdate((WindowPtr)eventStrucPtr->message);
EndUpdate((WindowPtr)eventStrucPtr->message);

}

// *** doDisk

void doDisk(EventRecord *eventStrucPtr)
{

Point thePoint;
OSErr osErr;

if(HiWord(eventStrucPtr->message) != noErr)
{

SetPt(&thePoint,120,120);
osErr = DIBadMount(thePoint,eventStrucPtr->message);

}
else
{

// Attempt to mount was successful. Record drive number for accessing the disk, etc.
}

}

// ** doOSEvent

void doOSEvent(EventRecord *eventStrucPtr)
{

switch((eventStrucPtr->message >> 24) & 0x000000FF)
{

case suspendResumeMessage:
if((eventStrucPtr->message & resumeFlag) == 1)
{

gInBackground = false;
DrawString("\pResume event");

}
else
{

gInBackground = true;
DrawString("\pSuspend event");

}
break;

case mouseMovedMessage:
doAdjustCursor(FrontWindow());
DrawString("\pMouse-moved event");
break;

}
}

// ** drawEventString

2-22 Low-Level and Operating System Events

void drawEventString(Str255 eventString)
{

RgnHandle tempRegion;
WindowPtr windowPtr;

windowPtr = FrontWindow();
tempRegion = NewRgn();

ScrollRect(&windowPtr->portRect,0,-15,tempRegion);
DisposeRgn(tempRegion);

MoveTo(8,291);
DrawString(eventString);

}

// *** doAdjustCursor

void doAdjustCursor(WindowPtr frontWindow)
{

RgnHandle myArrowRegion;
RgnHandle myIBeamRegion;
Rect cursorRect;
Point mousePt;

myArrowRegion = NewRgn();
myIBeamRegion = NewRgn();
SetRectRgn(myArrowRegion,-32768,-32768,32766,32766);

cursorRect = frontWindow->portRect;
LocalToGlobal(&topLeft(cursorRect));
LocalToGlobal(&botRight(cursorRect));

RectRgn(myIBeamRegion,&cursorRect);
DiffRgn(myArrowRegion,myIBeamRegion,myArrowRegion);

GetMouse(&mousePt);
LocalToGlobal(&mousePt);
if(PtInRgn(mousePt,myIBeamRegion))
{

SetCursor(*(GetCursor(iBeamCursor)));
CopyRgn(myIBeamRegion,gCursorRegionHdl);

}
else
{

SetCursor(&qd.arrow);
CopyRgn(myArrowRegion,gCursorRegionHdl);

}

DisposeRgn(myArrowRegion);
DisposeRgn(myIBeamRegion);

}

// **

Demonstration Program Comments

When the program is run, the user should move the mouse cursor inside and outside the window,
click the mouse inside and outside the window, drag the window, press and release keyboard
keys, and insert initialised and uninitialised disks, noting the types of events generated by
these actions as printed on the scrolling display inside the window.

The user should also note the basic window deactivation and activation which occurs when the
mouse is clicked outside, and then inside the window.

The program may be terminated by a click in the window's go-away box.

The general "flow" of the program is illustrated in the flow chart at Fig 4.

Low-Level and Operating System Events 2-23

FIG 4 - LowEvents FLOWCHART

GOT AN
EVENT?

CALL
WaitNextEvent

INITIALISE
MANAGERS

START

OPEN
WINDOW

yes

no

mouseDown?

mouseUp?

keyDown?

autoKey?

updateEvt?

diskEvt?

activateEvt?

osEvt?

inContent?

inDrag?

inGoAway?

CALL
BeginUpdate

CALL
doDisk

CALL
DragWindow

OF FRONT
WINDOW?

CALL
SelectWindow

CALL
TrackGoAway

gDone = true

suspend
Resume

Message?

mouse
Moved

Message?

RESUME?

SUSPEND?

gDone
= true?

TrackGoAway
RETURNED

true?

END

APPROPRIATE
ACTION

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

nono

no

no

CALL
EndUpdate

APPROPRIATE
ACTION

APPROPRIATE
ACTION

APPROPRIATE
ACTION

APPROPRIATE
ACTION

APPROPRIATE
ACTION

yes

yes

yes

yes

yes

no

no

no

no

no

yes

yes

yes

yes

no

no no

no

gInBackground
= false

gInbackground
= true

CALL
doAdjustCursor

E
V

E
N

T
 L

O
O

P

CALL
doAdjustCursor

CALL
doAdjustCursor

#define

rWindowResource establishes a constant for the ID of the 'WIND' resource.

The remaining two lines define two common macros. The first converts the top and left fields
of a Rect to a Point. The second converts the bottom and right field of a Rect to a Point.

Global Variables

The global variable gDone controls the termination of the main event loop and thus of the
program. gInBackground will be set to true when the application is about to move to the
background and to false when the application returns to the foreground. gCursorRegionHdl will

2-24 Low-Level and Operating System Events

be assigned the handle to a region to be passed in the mouseRgn parameter of the WaitNextEvent
function.

main

The main function calls the application-defined functions for initialising the system software
managers and creating the window. It then calls the function containing the main event loop.

doInitManagers

doInitManagers is the standard system software managers initialisation function which will be
used in all demonstration programs.

Note that the call to FlushEvents at has now been added to this function. FlushEvents empties
the Operating System event queue of any low-level events left unprocessed by another
application, for example, any mouse-down or keyboard events that the user may have entered
while this program was being launched.

doNewWindow

The function doNewWindow opens the window in which the types of low-level and Operating System
events will be printed as they occur. The 'WIND' resource passed as the first parameter
specifies that the window has a go-away box and a title (drag) bar. The window's graphics
port is set as the current port for drawing and the text size is set to 10 points.

eventLoop

eventLoop is the main event loop.

The global variable gDone is set to false before the event loop is entered. This variable
will be set to true when the user clicks on the window's go-away box. The event loop (the
while loop) terminates when gDone is set to true.

The calls to NewRgn and doAdjustCursor have to do with the generation of mouse-moved events.
The NewRgn call allocates storage for a Region structure and initializes the contents of the
region to make it an empty region. As will be seen, this first call to doAdjustCursor defines
two regions (one for the arrow cursor and one for the I-Beam cursor) and copies the handle to
one of them (depending on the current position of the mouse cursor) to the global variable
gCursorRegionHandle.

In the call to WaitNextEvent:

• The event mask everyEvent ensures that all types of low-level and Operating System
events will be returned to the application (except keyUp events, which are masked out by
the system event mask).

• eventStructure is the EventRecord structure which, when WaitNextEvent returns, will
contain information about the event.

• 180 represents the number of ticks for which the application agrees to relinquish the
processor if no events are pending for it. 180 ticks equates to about three seconds.

• If the cursor is now not within the region passed in the cursorRegion parameter, a
mouse-moved event will be generated immediately.

WaitNextEvent returns true if an event was pending, otherwise it returns NULL. If an event
was pending, the program branches to doEvent to determine the type of event and handle the
event according to its type.

doEvents

doEvents handles some events to finality and performs initial handling of others.

On return from WaitNextEvent, the what field of the event structure contains an unsigned short
integer which indicates the type of event received. The doEvent function isolates the type of
event and switches according to that type.

In this demonstration, the action taken in every case is to print the type of event in the
window. In addition, and in the case of mouse-down, update, disk and Operating System events
only, calls to individual event handling functions are made.

Note that, in the case of an Operating System event, doEvent will only print "osEvt - " in the
window. At this stage, the program has not yet established whether the event is a suspend,
resume or mouse-moved event.

Low-Level and Operating System Events 2-25

Note also that:

• The inclusion of the key-up event handling would be pointless, since key-up events are
masked out by the Operating System.

• Only one activate event will ever be received when the program is run (that is, when the
window opens), the reasons being that only one window is ever open and the
doesActivateOnFGSwitch flag in the 'SIZE' resource is set. This latter means that
activate events will not accompany suspend and resume events.

doMouseDown

The function doMouseDown handles mouse-down events to completion.

FindWindow is called to get a pointer to the window in which the event occurred and a "part
code" which indicates the part of that window in which the mouse-down occurred. The function
then switches according to that part code.

The inContent case deals with a mouse-down in a window's content region. FrontWindow returns
a pointer to the frontmost window. If this is not the same as the pointer in the event
structure's message field, SelectWindow is called to generate activate events and to perform
basic window activation and deactivation. (Actually, SelectWindow will never be called in
this demonstration because the program only opens one window, which is always the front
window.)

The inDrag case deals a mouse-down in the window's drag bar. In this case, control is handed
over to DragWindow, which tracks the mouse and drags the window according to mouse movement
until the mouse button is released. DragWindow requires a boundary rectangle limiting the
area in which the window can be dragged. This is supplied in the third argument which, in
this case, is established by the bounds field of the QuickDraw global variable screenBits.
screenBits.bounds contains a rectangle which encloses the main screen.

The regions controlling the generation of mouse-moved events are defined in global
coordinates. The region for the I-Beam cursor is based on the window's port rectangle.
Accordingly, when the window is moved, the new location of the port rectangle, in global
coordinates, must be re-calculated so that the arrow cursor and I-Beam cursor regions may be
re-defined. The call to doAdjustCursor re-defines these regions for the new window location
and copies the handle to one of them, depending on the current location of the mouse cursor,
to the global variable gCursorRegionHandle. (Note that this call to doAdjustCursor is also
required, for the same reason, when a window is re-sized or zoomed.)

The inGoAway case deals with the case of a mouse-down in the go-away box. In this case,
control is handed over to TrackGoAway, which tracks the mouse while the button remains down.
When the button is released, TrackGoAway returns true if the cursor is still inside the go-
away box, in which case the global variable gDone is set to true, terminating the event loop
and the program.

doUpdate

The function doUpdate handles update events to completion.

Although no window updating is performed by this program, it is nonetheless necessary to call
BeginUpdate because, amongst other things, BeginUpdate clears the update region, thus
preventing the generation of an unending stream of update events. The call to EndUpdate
always concludes a call to BeginUpdate, undoing the results of the visible/update region
manipulations of the latter.

doDisk

doDisk further processes a disk event. Many applications quite reasonably ignore unexpected
disk-inserted events; however, the function doDisk is included in this demonstration to
illustrate the basics of dealing with such occurrences.

In the case of a diskEvt event, the message field of the event structure contains the drive
number in bits 0-15 and the File Manager result code in bits 16-31. At the first line, the
high word is tested. If it indicates that the volume was not successfully mounted, DIBadMount
is called to inform the user via dialog box shown at Fig 5.

DIBadMount retains control until the disk is formatted (if the user clicks in the OK box) or
until the user clicks in the Cancel box.

The call to SetPt controls the positioning of the top left corner of the dialog box on the
screen.

2-26 Low-Level and Operating System Events

FIG 5 - DILAOG BOX INVOKED BY DIBadMount

doOSEvent

doOSEvent first determines whether the Operating System event passed to it is a suspend/resume
event or a mouse-moved event by examining bits 24-31 of the message field. It then switches
according to that determination.

In the case of a suspend/resume event, a further examination of the message field establishes
whether the event was a suspend event or a resume event. The global variable gInBackground is
set to true or false accordingly.

In the case of a mouse-moved event (which occurs when the mouse cursor has moved outside the
region whose handle is currently being passed in WaitNextEvent's mouseRgn parameter),
doAdjustCursor is called to change the handle passed in the mouseRgn parameter according to
the current location of the mouse.

drawEventString

drawEventString is incidental to the demonstration. It simply prints text in the window
indicating when the call to WaitNextEvent is made and when the various types of events are
received. ScrollRect scrolls the contents of the current graphics port within the rectangle
specified in the first parameter. The second parameter specifies the number of pixels to be
scrolled to the right and the third parameter specifies the number of pixels to scroll
vertically, in this case 15 up.

doAdjustCursor

doAdjustCursor's primary purpose in this particular demonstration is to force the generation
of mouse-moved events. The fact that it also changes the cursor shape simply reflects the
fact that changing the cursor shape is usually the sole reason for generating mouse-moved
events in the first place.

Basically, the function establishes two regions (the calls to NewRgn), one describing the
content area of the window (in global coordinates) and the other everything outside that. The
location of the cursor is then ascertained by the call to GetMouse. If the cursor is in the
content area of the window (the I-Beam region), the cursor is set to the I-Beam shape and the
handle to the I-Beam region is copied to the global variable passed in the mouseRgn parameter
in the WaitNextEvent call in the eventLoop function If the cursor is in the other region (the
arrow region), the cursor is set to the normal arrow shape and the arrow region is copied to
the global variable passed in the mouseRgn parameter.

GetCursor reads in the system 'CURS' resource specified by the constant iBeamCursor and
returns a handle to the 68-byte Cursor structure created by the call. The parameter for a
SetCursor call is required to be the address of a Cursor structure. Dereferencing the handle
once provides that address.

WaitNextEvent, of course, returns a mouse-moved event only when the cursor moves outside the
"current" region, the handle to which is passed in the mouseRgn parameter of the WaitNextEvent
call. Only one mouse-moved event, rather than a stream of mouse-moved events, will be
generated when the cursor is moved outside the "current" region because:

• The mouse-moved event will cause doAdjustCursor to be called.

• doAdjustCursor will thus reset the "current" region to the region in which the cursor is
now located.

Low-Level and Operating System Events 2-27

The cursor and cursor adjustment aspects, as opposed to the region-swapping aspects, of the
doAdjustCursor function are incidental to the demonstration. These aspects are addressed in
more detail at Chapter 13 — Offscreen Graphics Worlds, Pictures, Cursors, and Icons.

	Introduction
	Processes and Events
	Categories of Events
	Low Level Events
	Operating System Events

	Low-Level and Operating System Events, System Software, andApplications
	Priority of Events

	Obtaining Information About Events
	The Event Structure
	The WaitNextEvent Function

	Flushing the Operating System Event Queue
	Handling Events
	Handling Mouse Events 3
	In the Content Region
	In the Drag Bar, Grow Box, Go Away Box,Zoom Box, or Collapse Box
	In the Menu Bar
	In an Inactive Application Window
	Detecting Mouse Double Clicks

	Handling Keyboard Events
	Character Code and Virtual Key Code
	Checking for Keyboard Equivalents
	Checking For a Command-Period KeyCombination
	Events Not Returned to the Application

	Handling Update Events
	The Update Region
	Updating the Window
	Updating Windows in the Background
	Automatic Updating - Windows with StaticContent

	Handling Activate Events
	Activation/Deactivation in Response toSuspend and Resume Events

	Handling Disk-Inserted Events
	Handling Null Events
	Handling Suspend and Resume Events
	Suspend Events
	Resume Events

	Handling Mouse-Moved Events

	Handling Events in Alert Boxes and Dialog Boxes
	Modal and Movable Modal Alert Boxes
	Modal Dialog Boxes and Movable Modal Dialog Boxes
	Modeless Dialog Boxes

	The 'SIZE' Resource
	Resource ID
	Creating a 'SIZE' Resource in CodeWarrior

	Notes on Multitasking
	Cooperative Multitasking
	Preemptive Multitasking

	Main Event Manager Constants, Data Types and Functions
	Demonstration Program
	Demonstration Program Comments

