
Drawing With QuickDraw 12-1

12
DRAWING WITH QUICKDRAW

Includes Demonstration Program QuickDraw

Mathematical Foundations of QuickDraw

QuickDraw defines the following mathematical constructs which are widely used in its functions and
data types:

• The coordinate plane.

• The point.

• The rectangle.

• The region.

The Coordinate Plane

QuickDraw maintains a global coordinate system for the entire potential drawing space. The screen
on which QuickDraw displays images represents a small part of a large global coordinate plane. The
global coordinate plane is bounded by the limits of QuickDraw coordinates, which range from -32768
to 32767. The (0,0) origin point of the global coordinate plane is assigned to the upper-left corner of the
screen. From there, coordinate values decrease to the left and up and increase to the right and down.
Any pixel on the screen can be specified by a vertical coordinate (ordinarily labelled v) and a horizontal
coordinate (ordinarily labelled h).

In addition to the global coordinate system, QuickDraw maintains a local coordinate system for every
window. The relationship between global and local coordinates is shown at Fig 1.

FIG 1 - LOCAL AND GLOBAL COORDINATE SYSTEMS

- h

+ v

v

(h=0,v=0) IN GLOBAL COORDINATES

(h=70,v=60) IN GLOBAL COORDINATES
(h=0,v=0) IN LOCAL COORDINATES

- v

+ h

h

GLOBAL ORIGIN

WINDOW ORIGIN

12-2 Drawing With QuickDraw

Points

The intersection of (imaginary) horizontal and vertical grid lines on the coordinate plane marks a point.
There is a distinction between points on the coordinate grid and pixels (the dots which make up the
visible image on the screen). Points themselves are dimensionless whereas a pixel is not. As shown at
Fig 2, a pixel "hangs" down and to the right of the point by which it is addressed. A pixel thus lies
between the infinitely thin lines of the coordinate grid.

FIG 2 - POINTS AND PIXELS

POINT

PIXEL

GRID LINES

The data type for points is Point:

struct Point
{

short v; // Vertical coordinate.
short h; // Horizontal coordinate.

};
typedef struct Point Point;
typedef Point *PointPtr;

Rectangles

Rectangles are used to define active areas on the screen, to assign coordinate systems to graphics
entities, and to specify the sizes and locations for various graphics operations. Rectangles, like points,
are mathematical entities which have no direct representation on the screen. Just as points are
infinitely small, the borders of the rectangle are infinitely thin.

The data type for rectangles is Rect:

struct Rect
{

short top;
short left;
short bottom;
short right;

};
typedef struct Rect Rect;
typedef Rect *RectPtr;

If the bottom coordinate of a rectangle is equal to or less than the top, or the right coordinate is less than
the left, the rectangle is an empty rectangle, that is, one that contains no data.

Regions

One of QuickDraw's most powerful features is to work with regions of arbitrary size, shape and
complexity. A region is an arbitrary area, or set of areas, the outline of which is one or more closed
loops. A region can be concave or convex, can consist of one connected area or many separate ones,
and can even have holes in the middle. In the examples at Fig 3, the region on the left has a hole and
the one on the right consists of two unconnected areas.

Drawing With QuickDraw 12-3

FIG 3 - TWO REGIONS

ENCLOSING
RECTANGLE

ENCLOSING
RECTANGLE

The data type for regions is Region:

struct Region
{

unsigned short rgnSize; // Size in bytes.
Rect rgnBBox; // Enclosing rectangle.
… // More data if region is not rectangular.

};
typedef struct Region Region;
typedef Region *RgnPtr;
typedef RgnPtr *RgnHandle;

The rgnSize field contains the size, in bytes, of the region. The maximum size is 64 KB.

The rgnBBox field is a rectangle which completely encloses the region. The simplest region is a
rectangle. In this case, the rgnBBox field defines the entire region, and there is no optional region data.
For rectangular regions (or empty regions), the rgnSize field contains 10. The data for more complex
regions is stored in a proprietary format.

The Graphics Pen, Foreground and Background Colours, Pixel
Patterns and Bit Patterns, and Transfer Modes

The Graphics Pen

The metaphorical graphics pen used for drawing lines and shapes in a colour graphics port is
rectangular in shape and its size (that is, its height and width) is measured in pixels. Whenever you
draw into a graphics port, the characteristics of the graphics pen determine how the drawing looks.
Those characteristics are as follows:

• Pen location, which is specified in local coordinates stored in the pnLoc field of the colour
graphics port. The functions Move and MoveTo are used to move the pen to a specified location,
and the function GetPen gets the pen's current location.

• Pen size, which is specified by the width and height (in pixels) stored in the pnSize field of the
colour graphics port. The pen's default size is one-by-one pixel; however, PenSize can be used
to change the size and shape up to a 32,767-by-32767 pixel square. Note that, if either the width
or height is set to 0, the pen does not draw.

• Pen colour, that is, the colour graphics port's foreground colour.

• Pen pattern, which defines the pattern that the pen draws with.

• Pen transfer mode, a Boolean or arithmetic operation which determines how QuickDraw
transfers the pen pattern to the pixel map during drawing operations.

• Pen visibility, which is specified by an integer stored in the pnVis field of the graphics port,
indicating whether drawing operations will actually appear. For example, for 0 or negative
values, the pen draws with "invisible ink". The functions ShowPen and HidePen are used to
change pen visibility.

12-4 Drawing With QuickDraw

Getting and Setting the Pen State

The following functions are used to get and set the current pen state:

Function Description
GetPenState Returns, in a PenState structure, the graphics pen's current location, size, transfer mode, and pattern.

SetPenState Using information supplied by a PenState structure, sets the graphics pen's location, size, transfer mode,
and pattern.

PenNormal Resets the pen size, transfer mode, and pattern to the state initialised when the colour graphics port was
opened.

Foreground and Background Colour

Foreground Colour

The function RGBForecolor is used to assign a requested foreground colour to the rgbFgColor field of the
colour graphics port. The pixel value determined by the Color Manager to represent the closest
available match for the device is stored in the fgColor field. The colour represented by the pixel value
in the fgColor field is the colour actually used as the foreground colour.

If your application uses the Palette Manager, you may also use the Palette Manager function
PmForeColor to set the foreground colour.

The foreground colour is used by the graphics pen for drawing lines, framed shapes, and text. The
foreground colour is also used by QuickDraw shape painting functions.

Background Colour

The function RGBBackColor is used to assign a requested background colour to the rgbBkColor field of
the colour graphics port. The pixel value determined by the Color Manager to represent the closest
available match for the device is stored in the bkColor field. The colour represented by the pixel value
in the bkColor field is the colour actually used as the background colour.

If your application uses the Palette Manager, you may also use the Palette Manager function
PmBackColor to set the background colour.

The background colour is used by QuickDraw erasing functions, and is also used by the ScrollRect
function to replace the scrolled pixels.

Pixel Patterns and Bit Patterns

Pixel Patterns

If you wish to draw or paint with a colour pattern, rather than the colour in the colour graphics port's
fgColor field, you can assign a pixel pattern to the colour graphics port's pnPixPat field using the
function PenPixPat. (Initially, the pixel pattern in the colour graphics port's pnPixPat field is all-
"black". When you assign a non-all-"black" pattern, the pattern in the pnPixPat field overrides the
foreground colour.)

You define a pixel pattern in a 'ppat' resource. To retrieve the pixel pattern stored in the 'ppat'
resource, you use the GetPixPat function. The handle to a pixPat data structure returned by GetPixPat
may then be used in a call to PenPixPat to assign the pattern to the pnPixPat field.

Similarly, if you wish to erase with a pixel pattern rather than the background colour, or replace the
pixels scrolled by ScrollRect with a pixel pattern rather than the background colour, you can assign a
pixel pattern to the colour graphics port's bkPixPat field using the function BackPixPat. (Initially, the
pixel pattern in the colour graphics port's bkPixPat field is all-"white". When you assign a non-all-
"white" pattern, the pattern in the bkPixPat field overrides the background colour)

Drawing With QuickDraw 12-5

In addition to drawing, painting and erasing functions, QuickDraw includes shape filling functions,
which may be used to fill a specified shape using a specified pixel pattern. A handle to a pixPat data
structure is passed in the thePPat parameter of these functions.

Bit Patterns

After drawing or painting with a pixel pattern, you can return to drawing or painting with the
foreground colour by simply restoring the default all-"black" pattern to the pnPixPat field by calling
PenPat and passing in the bit pattern contained in the QuickDraw global variable black as follows:

PenPat(&qd.black);

After erasing with a pixel pattern, you can return to erasing with the background colour by simply
restoring the default all-"white" pattern to the bkPixPat field by calling PenPat and passing in the bit
pattern contained in the QuickDraw global variable white as follows:

BackPat(&qd.white);

When you use the PenPat and BackPat functions, QuickDraw constructs a pixel pattern equivalent to
the bit pattern, The colour graphics port's current foreground colour is used for the "black" bits in the
bit pattern, and the background colour is used for the "white" bits.

The PenPat and BackPat functions may also be used to assign other bit patterns to the pnPixPat and
bkPixPat fields of the colour graphics port.

Transfer Modes

The term transfer mode may be considered as a generic term encompassing three different transfer
mode types. Each has to do with the way source pixels interact with destination pixels during
drawing, painting, erasing, filling, and copying operations. The three types of transfer mode are as
follows:

• Boolean Pattern Mode. Boolean pattern modes apply to line drawing, framing, painting,
erasing, and filling operations.

• Boolean Source Mode. Boolean source modes apply to text drawing and copying
operations.

• Arithmetic Source Mode. Arithmetic source modes apply to drawing (including text
drawing), painting, and copying operations.

Boolean Pattern Modes

Pattern modes may be assigned to the pnMode field of the colour graphics port using the PenMode
function. The modes are represented by eight constants, each of which relates to a specific Boolean
operation (COPY, OR, XOR, and BIC (for bit clear) and their inverse variants.

The effects of these modes are best explained assuming a 1-bit (black-and-white) environment in which
the foreground colour is black and the background colour is white. The following lists the pattern
modes and describes the effect of source pixels on destination pixels in such an environment.

Pattern Mode Action On Destination Pixel
If source pixel is black If source pixel is white

patCopy Apply foreground colour. Apply background colour.

patOr Apply foreground colour. Leave alone.

patXor Invert. Leave alone.

patBic Apply background colour. Leave alone.

notPatCopy Apply background colour. Apply foreground colour.

notPatOr Leave alone. Force black.

notPatXor Leave alone. Invert.

12-6 Drawing With QuickDraw

notPatBic Leave alone. Apply background colour.

These effects are illustrated at Fig 4. Note particularly that patCopy causes the destination pixels to be
completely over-written. patCopy is the transfer mode initially assigned to the pnMode field of the
colour graphics port.

FIG 4 - EFFECT OF PATTERN MODES

DESTINATION SOURCE

patCopy patOr patXor patBic notPatCopy notPatOr notPatXor notPatBic

Boolean Source Modes

Boolean source modes may be assigned to the txMode field of the colour graphics port using the
function TextMode, and may be passed as parameters in QuickDraw functions for copying pixel images.
The Boolean source modes are the equivalent in text drawing and copying to the Boolean pattern mode
used for non-text drawing, painting, filling, and erasing operations.

The relevant constants are srcCopy, srcOr, srcXor, srcBic, notSrcCopy, notSrcOr, notSrcXor, and
notSrcBic. In general, for pixel images, you will probably want to use the srcCopy mode (which causes
the destination pixels to be overwritten completely) or one of the arithmetic source modes.

Arithmetic Source Modes

Arithmetic source modes may be assigned to both the pnMode and txMode fields of the colour graphics
port, and may be passed as parameters in QuickDraw functions for copying pixel images.

Arithmetic source modes perform arithmetic operations on the values of the red, green and blue
components of the source and destination pixels. Although rarely used by applications, arithmetic
transfer modes produce predictable results on indexed devices because they work with RGB colours
rather than with colour table indexes. The arithmetic source modes and their effects in a colour
environment are as follows:

Constant Value Description
blend 32 Replace destination pixel with a blend of the source and destination pixel colours. If the

destination is a bitmap or 1-bit pixel image, revert to srcCopy mode.

addPin 33 Replace destination pixel with the sum of the source and destination pixel colours up to a
maximum allowable value. If the destination is a bitmap or 1-bit pixel image, revert to srcBic
mode.

addOver 34 Replace destination pixel with the sum of the source and destination pixel colours, but if the
value of the red, green or blue component exceeds 65,536, then subtract 65,536 from that value.
If the destination is a bitmap or 1-bit pixel image, revert to srcXor mode.

subPin 35 Replace destination pixel with the difference of the source and destination pixel colours, but
not less than a minimum allowable value. If the destination is a bitmap or 1-bit pixel image,
revert to srcOr mode.

transparent 36 Replace the source and destination pixel with the source pixel if the source pixel is not equal to
the background colour.

addMax 37 Compare the source and destination pixels, and replace the destination pixel with the colour
containing the greater saturation of each of the RGB components. If the destination is a bitmap
or 1-bit pixel image, revert to srcBic mode.

subOver 38 Replace destination pixel with the difference of the source and destination pixel colours, but if
the value of the red, green or blue is less than 0, add the negative result to 65,536. If the
destination is a bitmap or 1-bit pixel image, revert to srcXor mode.

adMin 39 Compare the source and destination pixels, and replace the destination pixel with the colour
containing the lesser saturation of each of the RGB components. If the destination is a bitmap
or 1-bit pixel image, revert to srcOr mode.

Drawing With QuickDraw 12-7

Drawing Lines and Framed Shapes

Functions for Drawing Lines

You can move the graphics pen to a specified location, and you can draw lines from that location.
Lines are drawn using the current graphics pen size, foreground colour or pen pixel/bit pattern, and
pen pattern mode.

Functions for moving the graphics pen and drawing lines are as follows:

Function Description
MoveTo Moves the graphics pen location to the specified location, in local coordinates.

Move Moves the graphics pen a specified distance from its current location.

LineTo Draws a line from the current pen location to the specified location, in local coordinates.

Line Draws a line a specified distance from the graphics pen's current location.

Fig 5 shows a line drawn using one of the system-supplied bit patterns, and with a pen of size 20-by-40
pixels. Note that the pen "hangs" below and to the right of the defining points,

FIG 5 - A LINE DRAWN BY LineTo OR Line

POINT

POINT

PEN SIZE 20
BY 40 PIXELS

Functions for Drawing Framed Shapes

Framing a shape draws its outline only, using the current pen size, foreground colour or pen pixel/bit
pattern, and pen pattern mode. The interior of the shape in unaffected. Framed shapes are drawn
using the current graphics pen size, foreground colour or pen pixel/bit pattern, and pen pattern mode.

Functions for drawing framed shapes are as follows:

Function Description
FrameRect Draws a rectangle, the position and size of which are defined by a Rect structure.

FrameOval Draws an oval, the position and size of which are determined by a bounding rectangle
defined by a Rect structure.

FrameRoundRect Draws a rounded rectangle, the position and size of which are determined by a bounding
rectangle defined by a Rect structure. Curvature of the corners is defined by ovalWidth and
ovalHeight parameters.

FrameArc Draws an arc, the position and size of which are determined by a bounding rectangle
defined by a Rect structure. Starting point and arc extent are determined by startAngle and
arcAngle parameters.

FramePoly Draws a polygon by "playing back" all the line drawing calls that define it.

FrameRgn Draws an outline around a specified region. The line is drawn just inside the region.

Fig 6 shows various framed shapes drawn with various graphics pen sizes and bit patterns. Note that
the bounding rectangles completely enclose the shapes they bound, that is, no pixels extend outside the
infinitely thin lines of the bounding rectangle. Note also that the arc is a portion of the circumference of
an oval bounded by a pair or radii joining at the oval's centre.

12-8 Drawing With QuickDraw

A ROUNDED RECTANGLE DRAW BY FrameRoundRect AN ARC DRAWN BY FrameArc A POLYGON DRAWN BY FramePoly

RECTANGLE AS
DEFINED BY Rect.
(SHOWN FOR
ILLUSTRATIVE
PURPOSES ONLY.)

A RECTANGLE DRAWN BY FrameRect

DIAMETER OF
CURVATURE

BOUNDING
RECTANGLE

ROUNDED
RECTANGLE

ARC

BOUNDING RADIUS

BOUNDING
RADIUS

BOUNDING RECTANGLE

RECTANGLE AS
DRAWN BY
FrameRect WITH
20 BY 40
GRAPHICS PEN

OVAL AS DRAWN
BY FrameOval
WITH 30 BY 10
GRAPHICS PEN

RECTANGLE AS
DEFINED BY Rect.
(SHOWN FOR
ILLUSTRATIVE
PURPOSES ONLY.)

AN OVAL DRAWN BY FrameOval

FIG 6 - FRAMED SHAPES DRAWN WITH QUICKDRAW FRAMED SHAPE DRAWING FUNCTIONS

Framed Polygons and Regions

Framed polygons and regions require that you call several functions to create and draw them. You
begin by calling a function that collects drawing commands into a definition for the object. You then
use drawing functions to define the object before calling a function which signals the end of the object
definition. Finally, you use a function which draws the newly-defined object.

Framed Polygons

To define a polygon you must first call OpenPoly and then call LineTo a number of times to create lines
from the first vertex to the second, from the second vertex to the third, and so on. You then call
ClosePoly, which completes the definition process. After defining a polygon in this way, you can draw
the polygon, as a framed polygon, using FramePoly.

Note that, in the framed polygon at Fig 5, the final defining line from the last vertex back to the first
vertex was not drawn during the definition process. Note also that, as in all line drawing, FramePoly
hangs the pen down and to the right of the infinitely thin lines that define the polygon.

Framed Regions

To define a region, you can use any set of lines or shapes, including other regions, so long as the
region's outline consists of one or more closed loops. First, however, you must call NewRgn and OpenRgn.
You then use line, shape, or region drawing commands to define the region. When you have finished
collecting commands to define the outline of the region, you call CloseRgn. You can then draw the
framed region using FrameRegion.

Drawing Painted and Filled Shapes

Painting a shape fills both its outline and its interior with the current foreground colour or graphics pen
pixel/bit pattern (that is, the pattern in the pnPixPat field of the colour graphics port). Filling a shape
fills both its outline and its interior with a pixel pattern or bit pattern passed in a parameter of the
QuickDraw shape filling functions.

Transfer Mode. Painting operations utilise the current graphics pen pattern mode. In filling
operations, the transfer mode is invariably the pattern mode patCopy, meaning that the destination
pixels are always completely overwritten.

Drawing With QuickDraw 12-9

Functions for Painting and Filling Shapes

The following lists the available functions for painting and filling shapes:

Function Description
PaintRect Fills a rectangle with the current foreground colour or graphics pen pixel/ bit pattern.

PaintOval Fills an oval with the current foreground colour or graphics pen pixel/ bit pattern.

PaintRoundRect Fills a round rectangle with the current foreground colour or graphics pen pixel/ bit pattern.

PaintArc Fills a wedge with the current foreground colour or graphics pen pixel/ bit pattern.

PaintPoly Fills a polygon with the current foreground colour or graphics pen pixel/ bit pattern.

PaintRgn Fills a region with the current foreground colour or graphics pen pixel/ bit pattern.

FillRect
FillCRect

Fills a rectangle with a specified bit pattern.
Fills a rectangle with a specified pixel pattern.

FillOval
FillCOval

Fills an oval with a specified bit pattern.
Fills an oval with a specified pixel pattern.

FillRoundRect
FillCRoundRect

Fills a round rectangle with a specified bit pattern.
Fills a round rectangle with a specified pixel pattern.

FillArc
FillCArc

Fills a wedge of an oval with a specified bit pattern.
Fills a wedge of an oval with a specified pixel pattern.

FillPoly
FillCPoly

Fills a polygon with a specified bit pattern.
Fills a polygon with a specified pixel pattern.

FillRgn
FillCRgn

Fills a region with a specified bit pattern.
Fills a region with a specified pixel pattern.

Wedges

The wedges drawn by PaintArc, FillArc, and FillCArc are pie-shaped segments of an oval bounded
by a pair of radii joining at the oval's centre. A wedge includes part of the oval's interior. Like the
framed arc, wedges are defined by the bounding rectangle that encloses the oval, along with a pair of
angles marking the positions of the bounding radii. Fig 7 shows a wedge.

Painted and Filled Polygons and Regions

The general procedure for drawing painted and filled polygons and regions is the same as described
for their framed counterparts, above.

Fig 7 shows the polygon as defined for the framed polygon at Fig 6, but this time drawn with one of the
polygon painting or filling functions. Note that, although the final defining line from the last vertex
back to the first vertex was not drawn, the painting and filling functions complete the polygon
(whereas FramePoly did not).

Fig 7 also shows a region comprising two rectangles and an overlapping oval, drawn using PaintRgn.
Note that, where two regions overlap, the additional area is added to the region and the overlap is
removed from the region.

FIG 7 - A WEDGE, A PAINTED OR FILLED POLYGON, AND A PAINTED OR FILLED REGION

A WEDGE

WEDGE

BOUNDING RECTANGLE

BOUNDING
RADIUS

BOUNDING RADIUS

A PAINTED OR FILLED REGIONA PAINTED OR FILLED POLYGON

12-10 Drawing With QuickDraw

Erasing and Inverting Shapes

Erasing a shape fills both its outline and its interior with the background colour or background
pixel/bit pattern (that is, the pattern in the bkPixPat field of the colour graphics port). Inverting a
shape simply inverts all the pixels in the shape; for example, all black pixels become white, and vice
versa.

Transfer Mode. In erasing operations, the transfer mode is invariably the pattern mode patCopy,
meaning that the destination pixels are always completely overwritten.

Functions for Erasing and Inverting Shapes

The following list the available functions for painting and filling shapes:

Function Description
EraseRect Fills a rectangle with the current background colour or pixel/ bit pattern.

EraseOval Fills an oval with the current background colour or pixel/ bit pattern.

EraseRoundRect Fills a round rectangle with the current background colour or pixel/ bit pattern.

EraseArc Fills a wedge with the current background colour or pixel/ bit pattern.

ErasePoly Fills a polygon with the current background colour or pixel/ bit pattern.

EraseRgn Fills a region with the current background colour or pixel/ bit pattern.

InvertRect Inverts all the pixels in a rectangle.

InvertOval Inverts all the pixels in an oval.

InvertRoundRect Inverts all the pixels in a round rectangle.

InvertArc Inverts all the pixels in a wedge.

InvertPoly Inverts all the pixels in a polygon.

InvertRgn Inverts all the pixels in a region.

Drawing Pictures

Your application can record a sequence of QuickDraw drawing operations in a picture and play its
image back later. Pictures provide a form of graphic data exchange: one program can draw something
that was defined in another program, with great flexibility and without having to know any details
about what is being drawn. Fig 8 shows an example of a simple picture containing a filled rectangle, a
filled oval, and some text.

FIG 8 - A SIMPLE QUICKDRAW PICTURE

TEXT

The subject of pictures is addressed in more detail at Chapter 13 — Offscreen Graphics Worlds,
Pictures, Cursors, and Icons.

Drawing Text

Text is just another form of graphics, as is evidenced by the colour graphics port text-related fields
txFont, txFace, txSize, txMode, and spExtra. QuickDraw functions are available for changing the
values in these fields.

Drawing With QuickDraw 12-11

Setting the Font

The font used to draw text in a graphics port may be set using the function TextFont. TextFont takes a
single parameter, of type SInt16, which may be either a predefined constant or a font family ID
number. Although predefined constants remain in the header file Fonts.h, their use is now discouraged
by Apple.

Fonts are resources, and the font family ID is a resource ID. You can get the font family ID using
GetFNum.1 For example, the following sets the current font to Palatino:

short fontNum;

GetFNum("\pPalatino",&fontNum);
TextFont(fontNum);

Setting and Modifying the Text Style

You use the function TextFace to change the text style, using any combination of the constants bold,
italic, underline, outline, shadow, condense, and extend. Some examples of usage are as follows:

TextFace(bold); // Set to bold.
TextFace(bold | italic); // Set to bold and italic.)
TextFace(thePort->txFace | bold); // Add bold to existing.
TextFace(thePort->txFace &~ bold); // Remove bold.
TextFace(normal); // Set to plain.

Setting the Font Size

You use the function TextSize to change the font size in typographical points. A point is
approximately 1/72 inch.

Changing the Width of Characters

Widening and narrowing space and non-space characters lets you meet special formatting
requirements. You use SpaceExtra to specify the extra pixels to be added to or subtracted from the
standard width of the space character. SpaceExtra is ordinarily used in application-defined text-
justification functions.

Transfer Mode

The transfer mode initially assigned to the txMode field of the colour graphics port is the Boolean source
mode srcOr. This mode causes the colour of the glyph2 to be determined by the foreground colour and
the drawn glyph to completely overwrite the existing pixels. (In this mode only those bits which make
up the actual glyph are drawn.)

You should generally use either srcOr or srcBic when drawing text, because all other transfer modes
draw the character's background as well as the glyph itself. This can result in the clipping of characters
by adjacent characters.

1 If you know the font family ID, you can get its name by calling the Font Manager's GetFontName function. If you do not know either the font
family ID or the font name, you can use the Resource Manager's GetIndResource function followed by the GetResInfo function to determine
the names and IDs of all available fonts.
2 A glyph is the visual representation of a character.

12-12 Drawing With QuickDraw

Copying Pixel Images Between Graphics Ports

QuickDraw provides the following three primary image-processing functions:

• CopyBits, which copies a pixel image to another graphics port, with facilities for:

• Resizing the image.

• Modifying the image with transfer modes.

• Clipping the image to a region.

• CopyMask, which copies a pixel image to another graphics port, with facilities for:

• Resizing the image.

• Modifying the image by passing it through a mask.

• CopyDeepMask, which combines the effects of CopyBits and CopyMask, allowing you to:

• Resize the image.

• Clip the image to a region.

• Specify a transfer mode.

• Modify the image by passing it through a mask.

The mask used by CopyMask and CopyDeepMask may be another pixel map whose pixels indicate
proportionate weights of the colours for the source and destination pixels.

Coercion of CGrafPtr Data Type to GrafPtr Data Type

The CopyBits, CopyMask, and CopyDeepMask functions date from the era of black-and-white
Macintoshes, which is why they expect a pointer to a bitmap, not a pixel map, in their source and
destination parameters.

Fig 9 shows the relative locations of the first four bytes of the portBits field in a graphics port and the
portPixMap field in a colour graphics port. The portBits field is actually a structure of type BitMap, and
the first four bytes of that structure (baseAddr) are a pointer to a bit image. portPixMap is a handle to a
PixMap structure, the first four bytes of which are a pointer to the pixel map's image data.

FIG 9 - FIRST 27 BYTES OF GrafPort AND CGrafPort STRUCTURES

baseAddr

bounds

portRect

visRgn

portPixMap

grafVars

chExtra
pnLocHFrac

portRect

visRgn

device device

GrafPort CGrafPort

portBits

portVersionrowBytes
The two high bits of
the portVersion field
are always set

The two high bits of
the rowBytes field
are always clear

When you use CopyBits, CopyMask, and CopyDeepMask to copy pixel images between colour graphics
ports, you must coerce each port's CGrafPtr data type to a GrafPtr data type, dereference the portBits
fields of each and then pass these "bitmaps" in the source and destination parameters. For example, if

Drawing With QuickDraw 12-13

your application copies a pixel image from a colour graphics port called, say, myColourPort, you could
specify (GrafPtr) myColourPort->portBits in the source parameter.

All this works because:

• In a CGrafPort structure, the two high bits of the portVersion field are always set. These bits in
a GrafPort structure are the two high bits in the portBits.rowBytes field, which are always
clear.

• By looking at these bits, CopyBits, CopyMask, and CopyDeepMask can establish that you have
passed the functions a handle to a pixel map rather than the base address of a bitmap.

Using Masks

With CopyMask and CopyDeepMask, you supply a pixel map to act as the copying mask. The values of
pixels in the mask act as weights that proportionally select between source and destination pixel
values.

On indexed devices, pixel images are always copied using the colour table of the source PixMap
structure for source colour information, and using the colour table of the current GDevice structure for
destination colour information. The colour table attached to the destination PixMap is ignored.

When the PixMap structure for the mask is 1 bit deep, it has the same effect as a bitmap mask, that is, a
black bit in the mask means that the destination pixel will take the colour of the source pixel and a
white bit in the mask means that the destination pixel is to retain its current colour. When masks have
PixMap structures with pixel depths greater than 1, Colour QuickDraw takes a weighted average
between the colours in the source and destination PixMap structures. Within each pixel, the calculation
is done in RGB colour, on a colour component basis. As an example, a red mask (that is, one with high
values for the red components of all pixels) filters out red values coming from the source pixel image.

Transfer Modes

CopyBits and CopyDeepMask both allow you to specify the transfer mode, which can be either a Boolean
source mode or an arithmetic source mode.

The Importance of Foreground and Background Colour

Applying a foreground colour other than black or a background colour other than white to the pixel
can produce an unexpected result. For consistent results, you should set the foreground colour to black
and the background colour to white before using CopyBits, CopyMask, or CopyDeepMask. (That said,
setting foreground and background colours to something other than black or white can achieve some
interesting colouration effects.)

Dithering

You can use dithering with CopyBits and CopyDeepMask. Dithering is a technique used by these
functions to mix existing colours together to create the illusion of a third colour that may be unavailable
on an indexed device, and to improve images that you shrink when copying them from a direct device
to an indexed device.

If you specify a destination rectangle that is smaller than the source rectangle when using CopyBits,
CopyMask, CopyDeepMask on a direct device, Color QuickDraw automatically uses an averaging
technique to produce the destination pixels, maintaining high-quality images when shrinking them.
On indexed devices, Color QuickDraw averages these pixels only when you explicitly specify
dithering.

You can add dithering to any transfer mode by adding the following constant to the transfer mode:

ditherCopy = 64 // Add to source mode for dithering.

12-14 Drawing With QuickDraw

Copying From Offscreen Graphics Ports

To gracefully display complex images, your application should construct the image in an offscreen
graphics world and then use CopyBits to transfer the image to the onscreen graphics port. (Offscreen
graphics worlds are addressed at Chapter 13 — Offscreen Graphics Worlds, Pictures, Cursors, and
Icons.)

Scrolling Pixels in the Port Rectangle

You can use ScrollRect to scroll the pixels in the port rectangle. ScrollRect takes four parameters: the
rectangle to scroll, a horizontal distance to scroll, a vertical distance to scroll, and a region handle.
ScrollRect is a special form of CopyBits which copies bits enclosed by a rectangle and stores them
within that same rectangle. The vacated area is filled with the current background colour or pixel/bit
pattern.

Manipulating Rectangles and Regions

QuickDraw provides many functions for manipulating rectangles and regions. You can use the
functions which manipulate rectangles to manipulate any shape based on a rectangle, that is, rounded
rectangles, ovals , arcs, and wedges.

For example, you could define a rectangle to bound an oval and then frame the oval. You could then
use OffsetRect to move the oval's bounding rectangle downwards. Using the offset bounding
rectangle, you could frame a second, connected oval to form a figure eight with the first oval. You
could then use that shape to help define a region. You could create a second region, and then use
UnionRgn to create a region from the union of the two.

Manipulating Rectangles

The following summarises the functions for manipulating, and performing calculations on, rectangles:

Function Description
EmptyRect Determine whether a rectangle is an empty rectangle.
EqualRect Determine whether two rectangles are equal.
InsetRect Shrinks or expands a rectangle.
OffsetRect Moves a rectangle.
PtInRect Determines whether a pixel is enclosed in a rectangle.
PtToAngle Calculates the angle from the middle of a rectangle to a point.
Pt2Rect Determines the smallest rectangle that encloses two points.
SectRect Determines whether two rectangles intersect.
UnionRect Calculates the smallest rectangle that encloses two rectangles.

Manipulating Regions

The following summarises the functions for manipulating, and performing calculations on, regions:

Function Description
CopyRgn Makes a copy of a region.
DiffRgn Subtracts one region from another.
EmptyRgn Determines whether a region is empty.
EqualRgn Determines whether two regions have identical sizes, shapes, and locations.
InsetRgn Shrinks or expands a region.
OffsetRgn Moves a region.
PtInRgn Determines whether a pixel is within a region.
RectInRgn Determines whether a rectangle intersects a region.
RectRgn Changes the structure of an existing region to that of a rectangle (using a Rect).
SectRgn Calculates the intersection of two regions.

Drawing With QuickDraw 12-15

SetEmptyRgn Sets a region to empty.
SetRectRgn Changes the structure of an existing region to that of a rectangle (using coordinates).
UnionRgn Calculates the union of two regions.
XorRgn Calculates the difference between the union and the intersection of two regions.

Manipulating Polygons

You can use OffSetPoly to move a polygon; however, QuickDraw provides no other functions for
manipulating polygons.

Scaling Shapes and Regions Within the Same Graphics Port

To scale shapes and regions within the same graphics port, you can use the functions ScalePt, MapPt,
MapRect, MapRgn, and MapPoly.

Highlighting

Highlighting is used when selecting and deselecting objects such as text or graphics. TextEdit, for
example, uses highlighting to indicate selected text. If the current highlight colour is, for example, blue,
TextEdit draws the selected text, then uses InvertRgn to produce a blue background for the text.

The system highlight colour, which can be changed by the user at the Highlight Color item in the Color
pane of the Appearance control panel, is stored in a low memory global represented by the symbolic
name HiliteRGB. It can be retrieved using LMGetHiliteRGB. You can override the default colour using
the function HiliteColor. The current colour is copied to the rgbHiliteColor field of the GrafVars
structure, a handle to which is stored in the grafVars field of the colour graphics port structure.

Color QuickDraw implements highlighting by replacing the background colour with the highlight
colour. Another low memory global, represented by the symbolic name HiliteMode, contains a byte
which represents the current highlight mode. One bit in that byte, represented by the constant
pHiliteBit, is used to toggle the background and highlight colours.

Color QuickDraw resets the highlight bit after performing each drawing operation, so your application
should always clear the highlight bit immediately before calling InvertRgn (or, indeed, any of the other
drawing or image-copying function that uses the patXor or srcXor transfer modes.) The highlight
mode can be retrieved and set using LMGetHiliteMode and LMSetHiliteMode, and BitClr may be used to
clear the highlight bit:

UInt8 hiliteMode;
...
hiliteMode = LMGetHiliteMode();
BitClr(&hiliteMode,pHiliteBit);
LMSetHiliteMode(hiliteMode);

Another way to use highlighting is to add this constant to the transfer mode you pass in calls to the
functions PenMode, CopyBits, CopyDeepMask and TextMode:

hilite = 50 // Add to source or pattern mode for highlighting.

Drawing Other Graphics Entities

In addition to drawing lines, rectangles, rounded rectangles, ovals, arcs, wedges, polygons and regions,
and text, you can also use QuickDraw to draw the following:

• Cursors, which are 16-by-16 pixel images which map the user's movements of the mouse to
relative locations on the screen.

• Icons, which are images that an object, concept, or message. Icons are stored as resources.

12-16 Drawing With QuickDraw

Cursors and Icons are addressed at Chapter 13 — Offscreen Graphics Worlds, Pictures, Cursors, and
Icons.)

Saving and Restoring the Drawing Environment

As stated above, the functions GetPenState and SetPenState are used to save and restore the graphics
pen's location, size, transfer mode, and pattern, and PenNormal is used to initialise the pen's size,
transfer mode, and pattern.

Typically, an application calls GetPenState at the beginning of a function that changes the pen's
location, size, transfer mode, and/or pattern and restores the saved state to the pen on exit from that
function. Depending on its requirements, an application might also save and restore the colour
graphics port's foreground and background colours, and the text transfer mode, in the same way.

Since the introduction of the Appearance Manager, it has also become necessary to save and restore the
pen pixel/bit pattern and background pixel/bit pattern in functions that call the Appearance Manager
functions SetThemeBackground, SetThemePen, and/or SetThemeWindowBackground. Recall from Chapter 6
— The Appearance Manager that constants of type ThemeBrush are passed in the inBrush parameter of
these Appearance Manager functions and that the value in the inBrush parameter can represent either a
colour or a pattern depending on the current theme. If it is a colour, that colour will be assigned to the
relevant field of the graphics port structure, that is, the rgbFgColor or rgbBkColor field. If it is a pattern,
that pattern will be assigned to the relevant field of the colour graphics port structure, that is, the
pnPixPat or bkPixPat field.

Accordingly, in the era of the Appearance Manager, you should furnish an application which calls
SetThemeBackground, SetThemePen, and/or SetThemeWindowBackground with functions for saving and
restoring the complete drawing environment and, if required, a function for re-initialising that
environment. With regard to the former two functions, you could establish a data structure as shown
in the following example, and provide applications-defined functions for saving the drawing
environment to, and restoring it from, the fields of such a structure:

struct drawingEnvironment
{

PenState penLocSizeModePat; // Pen location, size, mode, pattern.
RGBColor requestedForeColour; // rgbFgColor field of colour graphics port.
RGBColor requestedBackColour; // rgbBkColor field of colour graphics port.
SInt16 textTransferMode; // txMode field of colour graphics port.
PixPatHandle penPixelPattern; // pnPixPat field of colour graphics port.
PixPatHandle backPixelPattern; // bkPixPat field of colour graphics port.
Pattern penBitPattern; // If pen pixel pattern is a bit pattern.
Pattern backBitPattern; // If background pixel pattern is a bit pattern.

};
typedef struct drawingEnvironment drawingEnvironment;

Your function for re-initialising the drawing environment should:

• Call PenNormal to initialise the pen location, size, mode, and pattern.

• Call RGBForeColor and RGBBackColor to set the foreground and background colours to,
respectively, black and white.

• Call TextMode with the Boolean source mode srcOr.

• Call BakPat with the pattern in the QuickDraw global variable white.

Drawing With QuickDraw 12-17

Main QuickDraw Constants, Data Types and Functions

Constants

Boolean Pattern Modes

patCopy = 8
patOr = 9
patXor = 10
patBic = 11
notPatCopy = 12
notPatOr = 13
notPatXor = 14
notPatBic = 15

Boolean Source Modes

srcCopy = 0
srcOr = 1
srcXor = 2
srcBic = 3
notSrcCopy = 4
notSrcOr = 5
notSrcXor = 6
notSrcBic = 7
ditherCopy = 64

Arithmetic Transfer Modes

blend = 32
addPin = 33
addOver = 34
subPin = 35
transparent = 36
addMax = 37
subOver = 38
adMin = 39
ditherCopy = 64

Highlighting

hilite = 50
hiliteBit = 7
pHiliteBit = 0

Pattern List Resource ID for Pattern Resources in the System File

sysPatListID = 0

Data Types

typedef unsigned char PixelType;

Point

struct Point
{

short v;
short h;

};

typedef struct Point Point;
typedef Point *PointPtr;

Rect

struct Rect
{

short top;
short left;

12-18 Drawing With QuickDraw

short bottom;
short right;

};

typedef struct Rect Rect;
typedef Rect *RectPtr;

Region

struct Region
{

short rgnSize;
Rect rgnBBox;

};

typedef struct Region Region;
typedef Region *RgnPtr, **RgnHandle;

Polygon

struct Polygon
{

short polySize;
Rect polyBBox;
Point polyPoints[1];

};

typedef struct Polygon Polygon;
typedef Polygon *PolyPtr, **PolyHandle;

PenState

struct PenState
{

Point pnLoc;
Point pnSize;
short pnMode;
Pattern pnPat;

};

typedef struct PenState PenState;

Functions

Initialising QuickDraw

void InitGraf(void *globalPtr);

Managing the Graphics Pen

void HidePen(void);
void ShowPen(void);
void GetPen(Point *pt);
void GetPenState(PenState *pnState);
void SetPenState(const PenState *pnState);
void PenSize(short width,short height);
void PenMode(short mode);
void PenNormal(void);

Getting and Setting Foreground, Background , and Pixel Colour

void RGBForeColor(const RGBColor *color);
void RGBBackColor(const RGBColor *color);
void GetForeColor(RGBColor *color);
void GetBackColor(RGBColor *color);
void GetCPixel(short h,short v,RGBColor *cPix);
void SetCPixel(short h,short v,const RGBColor *cPix);

Creating and Disposing of Pixel Patterns

PixPatHandle GetPixPat(short patID);
PixPatHandle NewPixPat(void);
void CopyPixPat(PixPatHandle srcPP,PixPatHandle dstPP);

Drawing With QuickDraw 12-19

void MakeRGBPat(PixPatHandle pp,const RGBColor *myColor);
void DisposePixPat(PixPatHandle pp);

Getting Pattern Resources

PatHandle GetPattern(short patternID);
void GetIndPattern(Pattern *thePat,short patternListID,short index);

Changing the Pen and BackGround Pixel Pattern and Bit Pattern

void BackPixPat(PixPatHandle pp);
void PenPixPat(PixPatHandle pp);
void BackPat(const Pattern *pat);
void PenPat(const Pattern *pat);

Drawing Lines

void MoveTo(short h,short v);
void Move(short dh,short dv);
void LineTo(short h,short v);
void Line(short dh,short dv);

Drawing Rectangles

void FrameRect(const Rect *r);
void PaintRect(const Rect *r);
void FillRect(const Rect *r,ConstPatternParam pat);
void FillCRect(const Rect *r,PixPatHandle pp);
void InvertRect(const Rect *r);
void EraseRect(const Rect *r);

Drawing Rounded Rectangles

void FrameRoundRect(const Rect *r,short ovalWidth,short ovalHeight);
void PaintRoundRect(const Rect *r,short ovalWidth,short ovalHeight);
void FillRoundRect(const Rect *r,short ovalWidth,short ovalHeight,const Pattern *pat;
void FillCRoundRect(const Rect *r,short ovalWidth,short ovalHeight,PixPatHandle pp);
void InvertRoundRect(const Rect *r,short ovalWidth,short ovalHeight);
void EraseRoundRect(const Rect *r,short ovalWidth,short ovalHeight);

Drawing Ovals

void FrameOval(const Rect *r);
void PaintOval(const Rect *r);
void FillOval(const Rect *r,const Pattern *pat);
void FillCOval(const Rect *r,PixPatHandle pp);
void InvertOval(const Rect *r);
void EraseOval(const Rect *r);

Drawing Arcs and Wedges

void FrameArc(const Rect *r,short startAngle,short arcAngle);
void PaintArc(const Rect *r,short startAngle,short arcAngle);
void FillArc(const Rect *r,short startAngle,short arcAngle,const Pattern *pat);
void FillCArc(const Rect *r,short startAngle,short arcAngle,PixPatHandle pp);
void InvertArc(const Rect *r,short startAngle,short arcAngle);
void EraseArc(const Rect *r,short startAngle,short arcAngle);

Drawing and Painting Polygons

void FramePoly(PolyHandle poly);
void PaintPoly(PolyHandle poly);
void FillPoly(PolyHandle poly,const Pattern *pat);
void FillCPoly(PolyHandle poly,PixPatHandle pp);
void InvertPoly(PolyHandle poly);
void ErasePoly(PolyHandle poly);

Drawing Regions

void FrameRgn(RgnHandle rgn);
void PaintRgn(RgnHandle rgn);
void FillCRgn(RgnHandle rgn,PixPatHandle pp);
void EraseRgn(RgnHandle rgn);

12-20 Drawing With QuickDraw

void InvertRgn(RgnHandle rgn);
void FillRgn(RgnHandle rgn, const Pattern *pat);

Setting Text Characteristics

void TextFont(short font);
void TextFace(short face);
void TextMode(short mode);
void TextSize(short size);
void SpaceExtra(Fixed extra);
void GetFontInfo(FontInfo *info);

Drawing and Measuring Text

void DrawChar(short ch);
void DrawString(ConstStr255Param s);
void DrawText(const void *textBuf,short firstByte,short byteCount);
short CharWidth(short ch);
short StringWidth(ConstStr255Param s);

Copying Images

void CopyBits(const BitMap *srcBits,const BitMap *dstBits,const Rect *srcRect,
const Rect *dstRect,short mode,RgnHandle maskRgn);

void CopyMask(const BitMap *srcBits,const BitMap *maskBits,const BitMap *dstBits,
const Rect *srcRect,const Rect *maskRect,const Rect *dstRect);

void CopyDeepMask(const BitMap *srcBits,const BitMap *maskBits,const BitMap *dstBits,
const Rect *srcRect,const Rect *maskRect,const Rect *dstRect,short mode,
RgnHandle maskRgn)

Getting and Setting the Highlight Colour and HighLight Mode

void HiliteColor(const RGBColor *color);
void LMGetHiliteRGB(RGBColor *hiliteRGBValue);
void LMSetHiliteRGB(const RGBColor *hiliteRGBValue);
UInt8 LMGetHiliteMode(void);
void LMSetHiliteMode(UInt8 value);

Creating and Disposing of Colour Tables

CTabHandle GetCTable(short ctID);
void DisposeCTable(CTabHandle cTable);

Creating and Managing Polygons

PolyHandle OpenPoly(void);
void ClosePoly(void);
void KillPoly(PolyHandle poly);
void OffsetPoly(PolyHandle poly,short dh,short dv);

Creating and Managing Rectangles

void SetRect(Rect *r,short left,short top,short right,short bottom);
void OffsetRect(Rect *r,short dh,short dv);
void InsetRect(Rect *r,short dh,short dv);
Boolean SectRect(const Rect *src1,const Rect *src2,Rect *dstRect);
void UnionRect(const Rect *src1,const Rect *src2,Rect *dstRect);
Boolean PtInRect(Point pt,const Rect *r);
void Pt2Rect(Point pt1,Point pt2,Rect *dstRect);
void PtToAngle(const Rect *r,Point pt,short *angle);
Boolean EqualRect(const Rect *rect1,const Rect *rect2);
Boolean EmptyRect(const Rect *r);

Creating and Managing Regions

RgnHandle NewRgn(void);
void OpenRgn(void);
void CloseRgn(RgnHandle dstRgn);
void DisposeRgn(RgnHandle rgn);
void CopyRgn(RgnHandle srcRgn,RgnHandle dstRgn);
void SetEmptyRgn(RgnHandle rgn);
void SetRectRgn(RgnHandle rgn,short left,short top,short right,short bottom);
void RectRgn(RgnHandle rgn,const Rect *r);
void OffsetRgn(RgnHandle rgn,short dh,short dv);

Drawing With QuickDraw 12-21

void InsetRgn(RgnHandle rgn,short dh,short dv);
void SectRgn(RgnHandle srcRgnA,RgnHandle srcRgnB,RgnHandle dstRgn);
void UnionRgn(RgnHandle srcRgnA,RgnHandle srcRgnB,RgnHandle dstRgn);
void DiffRgn(RgnHandle srcRgnA,RgnHandle srcRgnB,RgnHandle dstRgn);
void XorRgn(RgnHandle srcRgnA,RgnHandle srcRgnB,RgnHandle dstRgn);
Boolean PtInRgn(Point pt,RgnHandle rgn);
Boolean RectInRgn(const Rect *r,RgnHandle rgn);
Boolean EqualRgn(RgnHandle rgnA,RgnHandle rgnB);
Boolean EmptyRgn(RgnHandle rgn);
OSErr BitMapToRegion(RgnHandle region,const BitMap *bMap);

Scaling and Mapping Points, Rectangles, Polygons, and Regions

void ScalePt(Point *pt,const Rect *srcRect,const Rect *dstRect);
void MapPt(Point *pt,const Rect *srcRect,const Rect *dstRect);
void MapRect(Rect *r,const Rect *srcRect,const Rect *dstRect);
void MapRgn(RgnHandle rgn,const Rect *srcRect,const Rect *dstRect);
void MapPoly(PolyHandle poly,const Rect *srcRect,const Rect *dstRect);

Determining Whether QuickDraw has Finished Drawing

Boolean QDDone(GrafPtr port);

Retrieving Color QuickDraw Result Codes

short QDError(void);

Managing Port Rectangles and Clipping Regions

void ScrollRect(const Rect *r,short dh,short dv,RgnHandle updateRgn);
void SetOrigin(short h,short v);
void PortSize(short width,short height);
void MovePortTo(short leftGlobal,short topGlobal);
void GetClip(RgnHandle rgn);
void SetClip(RgnHandle rgn);
void ClipRect(const Rect *r);

Manipulating Points in Colour Graphics Ports

void GlobalToLocal(Point *pt);
void LocalToGlobal(Point *pt);
void AddPt(Point src,Point *dst);
void SubPt(Point *src,Point *dst);
void SetPt(Point *pt,short h,short v);
Boolean EqualPt(Point pt1,Point pt2);
Boolean GetPixel(short h,short v);

Demonstration Program

// **
// QuickDraw.c
// **
//
// This program:
//
// • Opens a window in which the results of various QuickDraw drawing operations are
// displayed. Individual line and text drawing, framing, painting, filling, erasing,
// inverting, and copying operations are chosen from a Demonstration pull-down menu.
//
// • Quits when the user chooses Quit from the File menu.
//
// To keep the non-QuickDraw code to a minimum, the program contains no functions for
// updating the window or for responding to activate and operating system events.
//
// The program utilises the following resources:
//
// • 'WIND' resources for the main window, and a small window used for the CopyBits
// demonstration (purgeable) (initially visible).
//
// • An 'MBAR' resource and associated 'MENU' resources (preload, non-purgeable).
//
// • Two 'ICON' resources (purgeable) used for the boolean source modes demonstration.

12-22 Drawing With QuickDraw

//
// • Two 'PICT' resources (purgeable) used in the arithmetic source modes demonstration.
//
// • 'STR#' resources (purgeable) containing strings used in the source modes and text
// drawing demonstrations.
//
// • Three 'ppat' resources (purgeable), two of which are used in various drawing,
// framing, painting, filling, and erasing demonstrations. The third is used in the
// drawing with mouse demonstration.
//
// • A 'SIZE' resource with with is32BitCompatible flag set.
//
// **

// ……… includes

#include <Appearance.h>
#include <Devices.h>
#include <Fonts.h>
#include <LowMem.h>
#include <Menus.h>
#include <Processes.h>
#include <Sound.h>
#include <TextUtils.h>
#include <ToolUtils.h>

// …… defines

#define rMenubar 128
#define mApple 128
#define iAbout 1
#define mFile 129
#define iQuit 11
#define mDemonstration 131
#define iLine 1
#define iFrameAndPaint 2
#define iFillEraseInvert 3
#define iPolygonRegion 4
#define iText 5
#define iScrolling 6
#define iBooleanSourceModes 7
#define iArithmeticSourceModes 8
#define iHighlighting 9
#define iDrawWithMouse 10
#define iDrawingEnvironment 11
#define rWindow 128
#define rPixelPattern1 128
#define rPixelPattern2 129
#define rPixelPattern3 130
#define rDestinationIcon 128
#define rSourceIcon 129
#define rFontsStringList 128
#define rBooleanStringList 129
#define rArithmeticStringList 130
#define rPicture 128
#define MAXLONG 0x7FFFFFFF

// ……… typedefs

struct drawingEnvironment
{

PenState penLocSizeModePat;
RGBColor requestedForeColour;
RGBColor requestedBackColour;
SInt16 textTransferMode;
PixPatHandle penPixelPattern;
PixPatHandle backPixelPattern;
Pattern penBitPattern;
Pattern backBitPattern;

};
typedef struct drawingEnvironment drawingEnvironment;

// ……… global variables

Boolean gDone;
WindowPtr gWindowPtr;

Drawing With QuickDraw 12-23

Boolean gDrawWithMouseActivated;
SInt16 gPixelDepth;
Boolean gIsColourDevice = false;
RGBColor gWhiteColour = { 0xFFFF, 0xFFFF, 0xFFFF };
RGBColor gBlackColour = { 0x0000, 0x0000, 0x0000 };
RGBColor gRedColour = { 0xAAAA, 0x0000, 0x0000 };
RGBColor gYellowColour = { 0xFFFF, 0xCCCC, 0x0000 };
RGBColor gGreenColour = { 0x0000, 0x9999, 0x0000 };
RGBColor gBlueColour = { 0x6666, 0x6666, 0x9999 };

// …… function prototypes

void main (void);
void doInitManagers (void);
void doEvents (EventRecord *);
void doDemonstrationMenu (SInt16);
void doLines (void);
void doFrameAndPaint (void);
void doFillEraseInvert (void);
void doPolygonAndRegion (void);
void doScrolling (void);
void doText (void);
void doBooleanSourceModes (void);
void doArithmeticSourceModes (void);
void doHighlighting (void);
void doDrawWithMouse (void);
void doDrawingEnvironment (void);
void doGetDrawingEnvironment (drawingEnvironment *);
void doSetDrawingEnvironment (drawingEnvironment *);
void doInitDrawingEnvironment (void);
void doDrawingEnvironmentProof (SInt16);
void doGetDepthAndDevice (void);
UInt16 doRandomNumber (UInt16,UInt16);

// *** main

void main(void)
{

Handle menubarHdl;
MenuHandle menuHdl;
EventRecord eventStructure;
Boolean gotEvent;

// …… initialise managers

doInitManagers();

// …… cause the Appearance-compliant menu bar definition function to be called directly

RegisterAppearanceClient();

// …… see random number generator

GetDateTime((UInt32 *) (&qd.randSeed));

// …… set up menu bar and menus

if(!(menubarHdl = GetNewMBar(rMenubar)))
ExitToShell();

SetMenuBar(menubarHdl);
DrawMenuBar();

if(!(menuHdl = GetMenuHandle(mApple)))
ExitToShell();

else
AppendResMenu(menuHdl,'DRVR');

// …… open window

if(!(gWindowPtr = GetNewCWindow(rWindow,NULL,(WindowPtr)-1)))
ExitToShell();

SetPort(gWindowPtr);
TextSize(10);

// ……………………… get pixel depth and whether colour device for certain Appearance functions

12-24 Drawing With QuickDraw

doGetDepthAndDevice();

// …… eventLoop

gDone = false;

while(!gDone)
{

gotEvent = WaitNextEvent(everyEvent,&eventStructure,MAXLONG,NULL);
if(gotEvent)

doEvents(&eventStructure);
}

}

// *** doInitManagers

void doInitManagers(void)
{

MaxApplZone();
MoreMasters();

InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(NULL);

InitCursor();
FlushEvents(everyEvent,0);

}

// *** doEvents

void doEvents(EventRecord *eventStrucPtr)
{

SInt8 charCode;
SInt32 menuChoice;
SInt16 menuID, menuItem;
SInt16 partCode;
WindowPtr windowPtr;
Str255 itemName;
SInt16 daDriverRefNum;

switch(eventStrucPtr->what)
{

case keyDown:
case autoKey:

charCode = eventStrucPtr->message & charCodeMask;
if((eventStrucPtr->modifiers & cmdKey) != 0)
{

menuChoice = MenuEvent(eventStrucPtr);
menuID = HiWord(menuChoice);
menuItem = LoWord(menuChoice);
if(menuID == mFile && menuItem == iQuit)

gDone = true;
}
break;

case mouseDown:
if(partCode = FindWindow(eventStrucPtr->where,&windowPtr))
{

switch(partCode)
{

case inMenuBar:
menuChoice = MenuSelect(eventStrucPtr->where);
menuID = HiWord(menuChoice);
menuItem = LoWord(menuChoice);

if(menuID == 0)
return;

switch(menuID)
{

case mApple:

Drawing With QuickDraw 12-25

if(menuItem == iAbout)
SysBeep(10);

else
{

GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);
daDriverRefNum = OpenDeskAcc(itemName);

}
break;

case mFile:
if(menuItem == iQuit)

gDone = true;
break;

case mDemonstration:
doDemonstrationMenu(menuItem);
break;

}
HiliteMenu(0);
break;

case inDrag:
DragWindow(windowPtr,eventStrucPtr->where,&qd.screenBits.bounds);
break;

case inContent:
if(windowPtr != FrontWindow())

SelectWindow(windowPtr);
else

if(gDrawWithMouseActivated)
doDrawWithMouse();

break;
}

}
break;

case updateEvt:
windowPtr = (WindowPtr) eventStrucPtr->message;
BeginUpdate(windowPtr);
EndUpdate(windowPtr);
break;

}
}

// ** doDemonstrationMenu

void doDemonstrationMenu(SInt16 menuItem)
{

gDrawWithMouseActivated = false;

switch(menuItem)
{

case iLine:
doLines();
break;

case iFrameAndPaint:
doFrameAndPaint();
break;

case iFillEraseInvert:
doFillEraseInvert();
break;

case iPolygonRegion:
doPolygonAndRegion();
break;

case iText:
doText();
break;

case iScrolling:
doScrolling();
break;

12-26 Drawing With QuickDraw

case iBooleanSourceModes:
doBooleanSourceModes();
break;

case iArithmeticSourceModes:
doArithmeticSourceModes();
break;

case iHighlighting:
doHighlighting();
break;

case iDrawWithMouse:
SetWTitle(gWindowPtr,"\pDrawing with the mouse");
RGBBackColor(&gWhiteColour);
FillRect(&gWindowPtr->portRect,&qd.white);
gDrawWithMouseActivated = true;
break;

case iDrawingEnvironment:
doDrawingEnvironment();
break;

}
}

// ** doLines

void doLines(void)
{

RgnHandle oldClipRgn;
Rect newClipRect;
SInt16 a, b, c, top, left, bottom, right;
RGBColor theColour;
UInt32 finalTicks;
Pattern systemPattern;
PixPatHandle pixpatHdl;

PenNormal();

RGBBackColor(&gBlueColour);
FillRect(&gWindowPtr->portRect,&qd.white);

newClipRect = gWindowPtr->portRect;
InsetRect(&newClipRect,10,10);
oldClipRgn = NewRgn();
GetClip(oldClipRgn);
ClipRect(&newClipRect);

// ……………………………………………………………………… lines drawn with foreground colour and black pen pattern

SetWTitle(gWindowPtr,"\pDrawing lines with colours");
RGBBackColor(&gWhiteColour);
FillRect(&gWindowPtr->portRect,&qd.white);

for(a=1;a<60;a++)
{

b = doRandomNumber(0,gWindowPtr->portRect.right - gWindowPtr->portRect.left);
c = doRandomNumber(0,gWindowPtr->portRect.right - gWindowPtr->portRect.left);

theColour.red = doRandomNumber(0,65535);
theColour.green = doRandomNumber(0,65535);
theColour.blue = doRandomNumber(0,65535);
RGBForeColor(&theColour);

PenSize(a * 2,1);

MoveTo(b,gWindowPtr->portRect.top);
LineTo(c,gWindowPtr->portRect.bottom);

Delay(2,&finalTicks);
}

// …………………………………………………………………………………………………… lines drawn with system-supplied bit patterns

SetWTitle(gWindowPtr,"\pClick mouse for more lines");
while(!Button()) ;

Drawing With QuickDraw 12-27

SetWTitle(gWindowPtr,"\pDrawing lines with system-supplied bit patterns");
FillRect(&gWindowPtr->portRect,&qd.white);
c = 0;

for(a=1;a<39;a++)
{

b = doRandomNumber(0,gWindowPtr->portRect.bottom - gWindowPtr->portRect.top);
c = doRandomNumber(0,gWindowPtr->portRect.bottom - gWindowPtr->portRect.top);

theColour.red = doRandomNumber(0,32767);
theColour.green = doRandomNumber(0,32767);
theColour.blue = doRandomNumber(0,32767);
RGBForeColor(&theColour);

GetIndPattern(&systemPattern,sysPatListID,a);
PenPat(&systemPattern);

PenSize(1, a * 2);

MoveTo(gWindowPtr->portRect.left,b);
LineTo(gWindowPtr->portRect.right,c);

Delay(5,&finalTicks);
}

// ……… lines drawn with a pixel pattern

SetWTitle(gWindowPtr,"\pClick mouse for more lines");
while(!Button()) ;
SetWTitle(gWindowPtr,"\pDrawing lines with a pixel pattern");
FillRect(&gWindowPtr->portRect,&qd.white);

if(!(pixpatHdl = GetPixPat(rPixelPattern1)))
ExitToShell();

PenPixPat(pixpatHdl);

for(a=1;a<60;a++)
{

b = doRandomNumber(0,gWindowPtr->portRect.right - gWindowPtr->portRect.left);
c = doRandomNumber(0,gWindowPtr->portRect.right - gWindowPtr->portRect.left);

PenSize(a * 2,1);

MoveTo(b,gWindowPtr->portRect.top);
LineTo(c,gWindowPtr->portRect.bottom);

Delay(5,&finalTicks);
}

DisposePixPat(pixpatHdl);

SetClip(oldClipRgn);
DisposeRgn(oldClipRgn);

// ……… lines drawn with pattern mode patXor

SetWTitle(gWindowPtr,"\pClick mouse for more lines");
while(!Button()) ;
SetWTitle(gWindowPtr,"\pDrawing lines using pattern mode patXor");

RGBBackColor(&gRedColour);
FillRect(&gWindowPtr->portRect,&qd.white);

PenSize(1,1);
PenPat(&qd.black);
PenMode(patXor);

left = gWindowPtr->portRect.left + 10;
top = gWindowPtr->portRect.top + 10;
right = gWindowPtr->portRect.right - 10;
bottom = gWindowPtr->portRect.bottom - 10;

for(a=left,b=right;a<right+1;a++,b--)
{

MoveTo(a,top);
LineTo(b,bottom);

12-28 Drawing With QuickDraw

}

for(a=bottom,b=top;b<bottom+1;a--,b++)
{

MoveTo(left,a);
LineTo(right,b);

}
}

// ** doFrameAndPaint

void doFrameAndPaint(void)
{

SInt16 a;
Rect theRect;
UInt32 finalTicks;
Pattern systemPattern;
PixPatHandle pixpatHdl;

PenNormal();
PenSize(30,20);

for(a=0;a<3;a++)
{

RGBBackColor(&gWhiteColour);
FillRect(&gWindowPtr->portRect,&qd.white);

// …… preparation

if(a == 0)
{

SetWTitle(gWindowPtr,"\pFraming and painting with a colour");

RGBForeColor(&gRedColour); // set foreground colour to red
}
else if(a == 1)
{

SetWTitle(gWindowPtr,"\pFraming and painting with a bit pattern");

RGBForeColor(&gBlueColour); // set foreground colour to blue
RGBBackColor(&gYellowColour); // set foreground colour to yellow
GetIndPattern(&systemPattern,sysPatListID,16); // get bit pattern for pen
PenPat(&systemPattern); // set pen bit pattern

}
else if (a == 2)
{

SetWTitle(gWindowPtr,"\pFraming and painting with a pixel pattern");

if(!(pixpatHdl = GetPixPat(rPixelPattern1))) // get pixel pattern for pen
ExitToShell();

PenPixPat(pixpatHdl); // set pen pixel pattern
}

// ……… framing and painting

SetRect(&theRect,30,32,151,191);
FrameRect(&theRect); // FrameRect
MoveTo(30,29);
DrawString("\pFrameRect");
Delay(30,&finalTicks);

OffsetRect(&theRect,140,0);
FrameRoundRect(&theRect,30,50); // FrameRoundRect
MoveTo(170,29);
DrawString("\pFrameRoundRect");
Delay(30,&finalTicks);

OffsetRect(&theRect,140,0);
FrameOval(&theRect); // FrameOval
MoveTo(310,29);
DrawString("\pFrameOval");
Delay(30,&finalTicks);

OffsetRect(&theRect,140,0);
FrameArc(&theRect,330,300); // FrameArc
MoveTo(450,29);

Drawing With QuickDraw 12-29

DrawString("\pFrameArc");
Delay(30,&finalTicks);

OffsetRect(&theRect,-420,186);
PaintRect(&theRect); // PaintRect
MoveTo(30,214);
DrawString("\pPaintRect");
Delay(30,&finalTicks);

OffsetRect(&theRect,140,0);
PaintRoundRect(&theRect,30,50); // PaintRoundRect
MoveTo(170,214);
DrawString("\pPaintRoundRect");
Delay(30,&finalTicks);

OffsetRect(&theRect,140,0);
PaintOval(&theRect); // PaintOval
MoveTo(310,214);
DrawString("\pPaintOval");
Delay(30,&finalTicks);

OffsetRect(&theRect,140,0);
PaintArc(&theRect,330,300); // PaintArc
MoveTo(450,214);
DrawString("\pPaintArc");
Delay(30,&finalTicks);

if(a < 2)
{

SetWTitle(gWindowPtr,"\pClick mouse for more");
while(!Button()) ;

}
}

DisposePixPat(pixpatHdl);
}

// ** doFillEraseInvert

void doFillEraseInvert(void)
{

SInt16 a;
Pattern fillPat, backPat;
PixPatHandle fillPixpatHdl, backPixpatHdl;
Rect theRect;
UInt32 finalTicks;

PenNormal();
PenSize(30,20);

for(a=0;a<4;a++)
{

if(a < 3)
{

RGBBackColor(&gWhiteColour);
FillRect(&gWindowPtr->portRect,&qd.white);

}

// …… preparation

if(a == 0)
{

SetWTitle(gWindowPtr,"\pFilling and erasing with colours");

RGBForeColor(&gBlueColour); // set blue colour for foreground
RGBBackColor(&gRedColour); // set red colour for background
GetIndPattern(&fillPat,sysPatListID,1); // get black bit pattern for fill functions
BackPat(&qd.white); // set white bit pattern for background

}
else if(a == 1)
{

SetWTitle(gWindowPtr,"\pFilling and erasing with bit patterns");

RGBForeColor(&gBlueColour); // set blue colour for foreground
RGBBackColor(&gYellowColour); // set yellow colour for background
GetIndPattern(&fillPat,sysPatListID,37); // get bit pattern for fill functions

12-30 Drawing With QuickDraw

GetIndPattern(&backPat,sysPatListID,19); // get bit pattern for background
BackPat(&backPat); // set bit pattern for background

}
else if (a == 2)
{

SetWTitle(gWindowPtr,"\pFilling and erasing with pixel patterns");

if(!(fillPixpatHdl = GetPixPat(rPixelPattern1))) // get pixel patt - fill functions
ExitToShell();

if(!(backPixpatHdl = GetPixPat(rPixelPattern2))) // get pixel pattern - background
ExitToShell();

BackPixPat(backPixpatHdl); // set pixel pattern - background
}
else if(a == 3)
{

SetWTitle(gWindowPtr,"\pInverting");
BackPat(&qd.white);
SetRect(&theRect,30,15,570,29);
EraseRect(&theRect);
SetRect(&theRect,30,200,570,214);
EraseRect(&theRect);

}

// …… filling, erasing, and inverting

SetRect(&theRect,30,32,151,191);
MoveTo(30,29);
if(a < 2)
{

FillRect(&theRect,&fillPat); // FillRect
DrawString("\pFillRect");

}
else if(a == 2)
{

FillCRect(&theRect,fillPixpatHdl); // FillCRect
DrawString("\pFillCRect");

}
else if(a == 3)
{

InvertRect(&theRect); // InvertRect
DrawString("\pInvertRect");

}
Delay(30,&finalTicks);

OffsetRect(&theRect,140,0);
MoveTo(170,29);
if(a < 2)
{

FillRoundRect(&theRect,30,50,&fillPat); // FillRoundRect
DrawString("\pFillRoundRect");

}
else if(a == 2)
{

FillCRoundRect(&theRect,30,50,fillPixpatHdl); // FillCRoundRect
DrawString("\pFillCRoundRect");

}
else if(a == 3)
{

InvertRoundRect(&theRect,30,50); // InvertRoundRect
DrawString("\pInvertRoundRect");

}
Delay(30,&finalTicks);

OffsetRect(&theRect,140,0);
MoveTo(310,29);
if(a < 2)
{

FillOval(&theRect,&fillPat); // FillOval
DrawString("\pFillOval");

}
else if(a == 2)
{

FillCOval(&theRect,fillPixpatHdl); // FillCOval
DrawString("\pFillCOval");

}
else if(a == 3)

Drawing With QuickDraw 12-31

{
InvertOval(&theRect); // InvertOval
DrawString("\pInvertOval");

}
Delay(30,&finalTicks);

OffsetRect(&theRect,140,0);
MoveTo(450,29);
if(a < 2)
{

FillArc(&theRect,330,300,&fillPat); // FillArc
DrawString("\pFillArc");

}
else if(a == 2)
{

FillCArc(&theRect,330,300,fillPixpatHdl); // FillCArc
DrawString("\pFillCArc");

}
else if(a == 3)
{

InvertArc(&theRect,330,300); // InvertArc
DrawString("\pInvertArc");

}
Delay(30,&finalTicks);

OffsetRect(&theRect,-420,186);
MoveTo(30,214);
if(a < 3)
{

EraseRect(&theRect); // EraseRect
DrawString("\pEraseRect");

}
else
{

InvertRect(&theRect); // InvertRect
DrawString("\pInvertRect");

}
Delay(30,&finalTicks);

OffsetRect(&theRect,140,0);
MoveTo(170,214);
if(a < 3)
{

EraseRoundRect(&theRect,30,50); // EraseRoundRect
DrawString("\pEraseRoundRect");

}
else
{

InvertRoundRect(&theRect,30,50); // InvertRoundRect
DrawString("\pInvertRoundRect");

}
Delay(30,&finalTicks);

OffsetRect(&theRect,140,0);
MoveTo(310,214);
if(a < 3)
{

EraseOval(&theRect); // EraseOval
DrawString("\pEraseOval");

}
else
{

InvertOval(&theRect); // InvertOval
DrawString("\pInvertOval");

}
Delay(30,&finalTicks);

OffsetRect(&theRect,140,0);
MoveTo(450,214);
if(a < 3)
{

EraseArc(&theRect,330,300); // EraseArc
DrawString("\pEraseArc");

}
else

12-32 Drawing With QuickDraw

{
InvertArc(&theRect,330,300); // InvertArc
DrawString("\pInvertArc");

}
Delay(30,&finalTicks);

if(a < 3)
{

SetWTitle(gWindowPtr,"\pClick mouse for more");
while(!Button()) ;

}
}

DisposePixPat(fillPixpatHdl);
DisposePixPat(backPixpatHdl);

}

// *** doPolygonAndRegion

void doPolygonAndRegion(void)
{

Pattern backPat;
PixPatHandle fillPixpatHdl;
PolyHandle polygonHdl;
RgnHandle regionHdl;
UInt32 finalTicks;
Rect theRect;

SetWTitle(gWindowPtr,"\pFraming, painting, filling, and erasing polygons and regions");

RGBBackColor(&gWhiteColour);
FillRect(&gWindowPtr->portRect,&qd.white);

// …… preparation

GetIndPattern(&backPat,sysPatListID,17); // get bit pattern for background
BackPat(&backPat); // set bit pattern for background
if(!(fillPixpatHdl = GetPixPat(rPixelPattern2)))// get pixel pattern for fill functions

ExitToShell();
RGBForeColor(&gRedColour); // set red colour for foreground
RGBBackColor(&gYellowColour); // set yellow colour for background
PenNormal();

polygonHdl = OpenPoly(); // define polygon
MoveTo(30,32);
LineTo(151,32);
LineTo(96,103);
LineTo(151,134);
LineTo(151,191);
LineTo(30,191);
LineTo(66,75);
ClosePoly();

regionHdl = NewRgn(); // define region
OpenRgn();
SetRect(&theRect,30,218,151,279);
FrameRect(&theRect);
SetRect(&theRect,30,316,151,377);
FrameRect(&theRect);
SetRect(&theRect,39,248,142,341);
FrameOval(&theRect);
CloseRgn(regionHdl);

// …… framing, painting, filling, and erasing

FramePoly(polygonHdl); // FramePoly
MoveTo(30,29);
DrawString("\pFramePoly (colour)");
Delay(30,&finalTicks);

OffsetPoly(polygonHdl,140,0);
PaintPoly(polygonHdl); // PaintPoly
MoveTo(170,29);
DrawString("\pPaintPoly (colour)");
Delay(30,&finalTicks);

Drawing With QuickDraw 12-33

OffsetPoly(polygonHdl,140,0);
FillCPoly(polygonHdl,fillPixpatHdl); // FillCPoly
MoveTo(310,29);
DrawString("\pFillCPoly (pixel pattern)");
Delay(30,&finalTicks);

OffsetPoly(polygonHdl,140,0);
ErasePoly(polygonHdl); // ErasePoly
MoveTo(450,29);
DrawString("\pErasePoly (bit pattern)");
Delay(30,&finalTicks);

FrameRgn(regionHdl); // FrameRgn
MoveTo(30,214);
DrawString("\pFrameRgn (colour)");
Delay(30,&finalTicks);

OffsetRgn(regionHdl,140,0);
PaintRgn(regionHdl); // PaintRgn
MoveTo(170,214);
DrawString("\pPaintRgn (colour)");
Delay(30,&finalTicks);

OffsetRgn(regionHdl,140,0);
FillCRgn(regionHdl,fillPixpatHdl); // FillCRgn
MoveTo(310,214);
DrawString("\pFillCRgn (pixel pattern)");
Delay(30,&finalTicks);

OffsetRgn(regionHdl,140,0);
EraseRgn(regionHdl); // EraseRgn
MoveTo(450,214);
DrawString("\pEraseRgn (bit pattern)");
Delay(30,&finalTicks);

KillPoly(polygonHdl);
DisposeRgn(regionHdl);
DisposePixPat(fillPixpatHdl);
BackPat(&qd.white);

}

// *** doText

void doText(void)
{

SInt16 windowCentre, a, fontNum, stringWidth;
Rect theRect;
Str255 textString;
UInt32 finalTicks;

RGBBackColor(&gWhiteColour);
FillRect(&gWindowPtr->portRect,&qd.white);

SetWTitle(gWindowPtr,"\pDrawing text with default source mode (srcOr)");

windowCentre = (gWindowPtr->portRect.right - gWindowPtr->portRect.left) / 2;
SetRect(&theRect,windowCentre,gWindowPtr->portRect.top,gWindowPtr->portRect.right,

gWindowPtr->portRect.bottom);
RGBBackColor(&gBlueColour);
FillRect(&theRect,&qd.white);

for(a=1;a<9;a++)
{

// ………………………………………………………… set various text fonts, text styles, and foreground colours

if(a == 1)
{

GetFNum("\pGeneva",&fontNum);
TextFont(fontNum);
TextFace(normal);
RGBForeColor(&gRedColour);

}
else if(a == 2)

TextFace(bold);
else if(a == 3)

12-34 Drawing With QuickDraw

{
GetFNum("\pTimes",&fontNum);
TextFont(fontNum);
TextFace(italic);
RGBForeColor(&gYellowColour);

}
else if(a == 4)

TextFace(underline);
else if(a == 5)
{

GetFNum("\pHelvetica",&fontNum);
TextFont(fontNum);
TextFace(outline);
RGBForeColor(&gGreenColour);

}
else if(a == 6)

TextFace(shadow);
else if(a == 7)
{

GetFNum("\pChicago",&fontNum);
TextFont(fontNum);
TextFace(condense);
RGBForeColor(&gBlackColour);

}
else if(a == 8)
{

TextFace(extend);
}

// …… set text size

if(a < 7)
TextSize(a * 2 + 15);

else
TextSize(12);

// …………… get a string and draw it in the set font, style, size, and foreground colour

GetIndString(textString,rFontsStringList,a);
stringWidth = StringWidth(textString);
MoveTo(windowCentre - (stringWidth / 2),a * 46 - 10);
DrawString(textString);

Delay(30,&finalTicks);
}

// …… reset to Geneva 10pt normal

GetFNum("\pGeneva",&fontNum);
TextFont(fontNum);
TextSize(10);
TextFace(normal);

// ………………… erase a rectangle, get a string, and use TETextBox to draw it left justified

SetRect(&theRect,gWindowPtr->portRect.left + 5,gWindowPtr->portRect.bottom - 55,
gWindowPtr->portRect.left + 138,gWindowPtr->portRect.bottom - 5);

EraseRect(&theRect);
InsetRect(&theRect,5,5);
GetIndString(textString,rFontsStringList,9);
RGBForeColor(&gWhiteColour);
TETextBox(&textString[1],textString[0],&theRect,teFlushLeft);

}

// ** doScrolling

void doScrolling(void)
{

PixPatHandle pixpat1Hdl, pixpat2Hdl;
Rect theRect;
RgnHandle oldClipHdl, regionAHdl, regionBHdl, regionCHdl, scrollRegionHdl;
SInt16 a;

SetWTitle(gWindowPtr,"\pScrolling pixels");

RGBBackColor(&gWhiteColour);

Drawing With QuickDraw 12-35

FillRect(&(gWindowPtr->portRect),&qd.white);

if(!(pixpat1Hdl = GetPixPat(rPixelPattern1)))
ExitToShell();

PenPixPat(pixpat1Hdl);
PenSize(50,0);
SetRect(&theRect,30,30,286,371);
FrameRect(&theRect);
SetRect(&theRect,315,30,571,371);
FillCRect(&theRect,pixpat1Hdl);

if(!(pixpat2Hdl = GetPixPat(rPixelPattern2)))
ExitToShell();

BackPixPat(pixpat2Hdl);

regionAHdl = NewRgn();
regionBHdl = NewRgn();
regionCHdl = NewRgn();
SetRect(&theRect,80,30,236,371);
RectRgn(regionAHdl,&theRect);
SetRect(&theRect,315,30,571,371);
RectRgn(regionBHdl,&theRect);
UnionRgn(regionAHdl,regionBHdl,regionCHdl);

oldClipHdl = NewRgn();
GetClip(oldClipHdl);
SetClip(regionCHdl);

SetRect(&theRect,80,30,571,371);

scrollRegionHdl = NewRgn();

for(a=0;a<371;a++)
{

ScrollRect(&theRect,0,1,scrollRegionHdl);
theRect.top ++;

}

SetRect(&theRect,80,30,571,371);
BackPixPat(pixpat1Hdl);

for(a=0;a<371;a++)
{

ScrollRect(&theRect,0,-1,scrollRegionHdl);
theRect.bottom --;

}

SetClip(oldClipHdl);

DisposePixPat(pixpat1Hdl);
DisposePixPat(pixpat2Hdl);
DisposeRgn(oldClipHdl);
DisposeRgn(regionAHdl);
DisposeRgn(regionBHdl);
DisposeRgn(regionCHdl);
DisposeRgn(scrollRegionHdl);

}

// *** doBooleanSourceModes

void doBooleanSourceModes(void)
{

Rect theRect;
Handle destIconHdl, sourceIconHdl;
SInt16 a, b;
UInt32 finalTicks;
BitMap sourceIconMap;
Str255 sourceString;

SetWTitle(gWindowPtr,"\pBoolean source modes");

RGBForeColor(&gBlackColour);
RGBBackColor(&gGreenColour);
FillRect(&gWindowPtr->portRect,&qd.white);
SetRect(&theRect,gWindowPtr->portRect.left,gWindowPtr->portRect.top,

gWindowPtr->portRect.right,(gWindowPtr->portRect.bottom -

12-36 Drawing With QuickDraw

gWindowPtr->portRect.top) / 2);
RGBBackColor(&gWhiteColour);
FillRect(&theRect,&qd.white);

destIconHdl = GetIcon(rDestinationIcon);
sourceIconHdl = GetIcon(rSourceIcon);

for(a=0;a<2;a++)
{

if(a == 1)
{

RGBForeColor(&gYellowColour);
RGBBackColor(&gRedColour);

}

SetRect(&theRect,235,a * 191 + 30,299,a * 191 + 94);
PlotIcon(&theRect,destIconHdl);
MoveTo(235,a * 191 + 27);
DrawString("\pDestination");

SetRect(&theRect,304,a * 191 + 30,368,a * 191 + 94);
PlotIcon(&theRect,sourceIconHdl);
MoveTo(304,a * 191 + 27);
DrawString("\pSource");

}

RGBForeColor(&gBlackColour);
RGBBackColor(&gWhiteColour);

for(a=0;a<2;a++)
{

if(a == 1)
{

RGBForeColor(&gYellowColour);
RGBBackColor(&gRedColour);

}

for(b=0;b<8;b++)
{

SetRect(&theRect,b * 69 + 28,a * 191 + 121,b * 69 + 92,a * 191 + 185);
PlotIcon(&theRect,destIconHdl);

}
}

RGBForeColor(&gBlackColour);
RGBBackColor(&gWhiteColour);

HLock(sourceIconHdl);
sourceIconMap.baseAddr = *sourceIconHdl;
sourceIconMap.rowBytes = 4;
SetRect(&sourceIconMap.bounds,0,0,32,32);

for(a=0;a<2;a++)
{

if(a == 1)
{

RGBForeColor(&gYellowColour);
RGBBackColor(&gRedColour);

}

for(b=0;b<8;b++)
{

Delay(30,&finalTicks);
SetRect(&theRect,b * 69 + 28,a * 191 + 121,b * 69 + 92,a * 191 + 185);
CopyBits(&sourceIconMap,&qd.thePort->portBits,&sourceIconMap.bounds,&theRect,

 b,NULL);
GetIndString(sourceString,rBooleanStringList,b + 1);
MoveTo(b * 69 + 28,a * 191 + 118);
DrawString(sourceString);

}
}

HUnlock(sourceIconHdl);
}

// ** doArithmeticSourceModes

Drawing With QuickDraw 12-37

void doArithmeticSourceModes(void)
{

PicHandle sourceHdl, destinationHdl;
Rect sourceRect, destRect;
SInt16 a, b, arithmeticMode = 32;
Str255 modeString;
UInt32 finalTicks;

SetWTitle(gWindowPtr,"\pCopyBits with arithmetic source modes");

RGBForeColor(&gBlackColour);
RGBBackColor(&gWhiteColour);
FillRect(&(gWindowPtr->portRect),&qd.white);

if(!(sourceHdl = GetPicture(rPicture)))
ExitToShell();

SetRect(&sourceRect,44,21,201,133);
HNoPurge((Handle) sourceHdl);
DrawPicture(sourceHdl,&sourceRect);
HPurge((Handle) sourceHdl);
MoveTo(44,19);
DrawString("\pSOURCE IMAGE");

if(!(destinationHdl = GetPicture(rPicture + 1)))
ExitToShell();

HNoPurge((Handle) destinationHdl);
for(a=44;a<403;a+=179)
{

for(b=21;b<274;b+=126)
{

if(a == 44 && b == 21)
 continue;
SetRect(&destRect,a,b,a+157,b+112);
DrawPicture(destinationHdl,&destRect);

}
}
HPurge((Handle) destinationHdl);

for(a=44;a<403;a+=179)
{

for(b=21;b<274;b+=126)
{

if(a == 44 && b == 21)
 continue;

Delay(60,&finalTicks);

GetIndString(modeString,rArithmeticStringList,arithmeticMode - 31);
MoveTo(a,b - 2);
DrawString(modeString);

SetRect(&destRect,a,b,a+157,b+112);

CopyBits(&((GrafPtr) gWindowPtr)->portBits,
 &((GrafPtr) gWindowPtr)->portBits,
 &sourceRect,&destRect,
 arithmeticMode + ditherCopy,NULL);

arithmeticMode ++;
}

}

ReleaseResource((Handle) sourceHdl);
ReleaseResource((Handle) destinationHdl);

}

// *** doHighlighting

void doHighlighting(void)
{

RGBColor oldHighlightColour;
SInt16 a;
Rect theRect;
UInt8 hiliteVal;
UInt32 finalTicks;

12-38 Drawing With QuickDraw

SetWTitle(gWindowPtr,"\pHighlighting");

RGBForeColor(&gBlackColour);
RGBBackColor(&gWhiteColour);
FillRect(&(gWindowPtr->portRect),&qd.white);

LMGetHiliteRGB(&oldHighlightColour);

for(a=0;a<3;a++)
{

MoveTo(50,a * 100 + 60);
DrawString("\pClearing the highlight bit and calling InvertRect.");
Delay(60,&finalTicks);
SetRect(&theRect,44,a * 100 + 44,557,a * 100 + 104);

hiliteVal = LMGetHiliteMode();
BitClr(&hiliteVal,pHiliteBit);
LMSetHiliteMode(hiliteVal);

if(a == 1)
HiliteColor(&gYellowColour);

else if(a == 2)
HiliteColor(&gGreenColour);

InvertRect(&theRect);

MoveTo(50,a * 100 + 75);
Delay(60,&finalTicks);
DrawString("\pClick mouse to unhighlight. ");
DrawString("\p(Note: The call to InvertRect reset the highlight bit ...");

while(!Button()) ;

MoveTo(45,a * 100 + 90);
DrawString("\p... so we clear the highlight bit again before calling InvertRect.)");
Delay(60,&finalTicks);

LMSetHiliteMode(hiliteVal);

InvertRect(&theRect);
}

HiliteColor(&oldHighlightColour);

Delay(60,&finalTicks);
MoveTo(50,350);
DrawString("\pOriginal highlight colour has been reset.");

}

// ** doDrawWithMouse

void doDrawWithMouse(void)
{
 PixPatHandle pixpatHdl;

Point initialMouse, previousMouse, currentMouse;
Rect drawRect;
UInt16 randomNumber;
RGBColor theColour;

RGBBackColor(&gWhiteColour);
FillRect(&gWindowPtr->portRect,&qd.white);

if(!(pixpatHdl = GetPixPat(rPixelPattern3)))
ExitToShell();

PenPixPat(pixpatHdl);
PenSize(1,1);
PenMode(patXor);

GetMouse(&initialMouse);
drawRect.left = drawRect.right = initialMouse.h;
drawRect.top = drawRect.bottom = initialMouse.v;

GetMouse(&previousMouse);

while(StillDown())

Drawing With QuickDraw 12-39

{
GetMouse(¤tMouse);

if(currentMouse.v != previousMouse.v || currentMouse.h != previousMouse.h)
{

FrameRect(&drawRect);

if(currentMouse.h >= initialMouse.h)
drawRect.right = currentMouse.h;

if(currentMouse.v >= initialMouse.v)
drawRect.bottom = currentMouse.v;

if(currentMouse.h <= initialMouse.h)
drawRect.left = currentMouse.h;

if(currentMouse.v <= initialMouse.v)
drawRect.top = currentMouse.v;

FrameRect(&drawRect);
}

previousMouse.v = currentMouse.v;
previousMouse.h = currentMouse.h;

}

FrameRect(&drawRect);

theColour.red = doRandomNumber(0,65535);
theColour.green = doRandomNumber(0,65535);
theColour.blue = doRandomNumber(0,65535);
RGBForeColor(&theColour);

PenMode(patCopy);
PenPat(&qd.black);
BackPixPat(pixpatHdl);

randomNumber = doRandomNumber(0,4);

if(randomNumber == 0)
PaintRect(&drawRect);

else if(randomNumber == 1)
EraseRoundRect(&drawRect,50,50);

else if(randomNumber == 2)
PaintOval(&drawRect);

else if(randomNumber == 3)
PaintArc(&drawRect,0,doRandomNumber(0,360));

BackPat(&qd.white);
}

// *** doDrawingEnvironment

void doDrawingEnvironment(void)
{

drawingEnvironment environment;
Rect theRect;
SInt16 a;
UInt32 finalTicks;

RGBBackColor(&gBlueColour);
FillRect(&gWindowPtr->portRect,&qd.white);
SetWTitle(gWindowPtr,"\pSaving and restoring the drawing environment");

doInitDrawingEnvironment();

doDrawingEnvironmentProof(0);
Delay(120,&finalTicks);

doGetDrawingEnvironment(&environment);

theRect = gWindowPtr->portRect;
theRect.right -= 300;

SetThemeBackground(kThemeListViewBackgroundBrush,gPixelDepth,gIsColourDevice);
EraseRect(&theRect);

theRect.left += 150;

12-40 Drawing With QuickDraw

SetThemeBackground(kThemeListViewSortColumnBackgroundBrush,gPixelDepth,gIsColourDevice);
EraseRect(&theRect);

SetThemePen(kThemeListViewSeparatorBrush,gPixelDepth,gIsColourDevice);

theRect.left -= 150;
for(a=theRect.top;a<=theRect.bottom;a+=18)
{

MoveTo(theRect.left,a);
LineTo(theRect.right - 1,a);

}

Delay(120,&finalTicks);
doDrawingEnvironmentProof(1);
Delay(120,&finalTicks);

doSetDrawingEnvironment(&environment);

doDrawingEnvironmentProof(2);
}

// ** doGetDrawingEnvironment

void doGetDrawingEnvironment(drawingEnvironment *environment)
{

GrafPtr currentPort;

GetPort(¤tPort);

GetPenState(&environment->penLocSizeModePat);
GetForeColor(&environment->requestedForeColour);
GetBackColor(&environment->requestedBackColour);
environment->textTransferMode = currentPort->txMode;

environment->penPixelPattern = NULL;
environment->backPixelPattern = NULL;

if((**((CGrafPtr) currentPort)->pnPixPat).patType != 0)
environment->penPixelPattern = ((CGrafPtr) currentPort)->pnPixPat;

if((**((CGrafPtr) currentPort)->bkPixPat).patType != 0)
environment->backPixelPattern = ((CGrafPtr) currentPort)->bkPixPat;

else
environment->backBitPattern =

 (PatPtr) ((**((CGrafPtr) currentPort)->bkPixPat).patData);
}

// ** doSetDrawingEnvironment

void doSetDrawingEnvironment(drawingEnvironment *environment)
{

GrafPtr currentPort;

GetPort(¤tPort);

SetPenState(&environment->penLocSizeModePat);
RGBForeColor(&environment->requestedForeColour);
RGBBackColor(&environment->requestedBackColour);
TextMode(environment->textTransferMode);

if(environment->penPixelPattern)
PenPixPat(environment->penPixelPattern);

if(environment->backPixelPattern)
BackPixPat(environment->backPixelPattern);

else
BackPat(&environment->backBitPattern);

}

// *** doInitDrawingEnvironment

void doInitDrawingEnvironment()
{

PenNormal();
RGBForeColor(&gBlackColour);
RGBBackColor(&gWhiteColour);

Drawing With QuickDraw 12-41

TextMode(srcOr);
BackPat(&qd.white);

}

// ** doDrawingEnvironmentProof

void doDrawingEnvironmentProof(SInt16 phase)
{

Rect theRect;

MoveTo(324,phase * 117 + 41);
if(phase == 0)

DrawString("\pBefore calls to SetThemePen and SetThemeBackground");
else if(phase == 1)

DrawString("\pAfter calls to SetThemePen and SetThemeBackground");
else if(phase == 2)

DrawString("\pAfter restoration of saved drawing environment");

MoveTo(324,phase * 117 + 54);
DrawString("\pPen pattern/colour");
MoveTo(462,phase * 117 + 54);
DrawString("\pBackgrd pattern/colour");

SetRect(&theRect,324,phase * 117 + 58,438,phase * 117 + 132);
PaintRect(&theRect);
SetRect(&theRect,462,phase * 117 + 58,576,phase * 117 + 132);
EraseRect(&theRect);

}

// ** doGetDepthAndDevice

void doGetDepthAndDevice(void)
{

GDHandle deviceHdl;

deviceHdl = LMGetMainDevice();
gPixelDepth = (*(*deviceHdl)->gdPMap)->pixelSize;
if(BitTst(&(*deviceHdl)->gdFlags,gdDevType))

gIsColourDevice = true;
}

// *** doRandomNumber

UInt16 doRandomNumber(UInt16 minimum, UInt16 maximum)
{

UInt16 randomNumber;
SInt32 range, t;

randomNumber = Random();
range = maximum - minimum;
t = (randomNumber * range) / 65535;
return(t + minimum);

}

// **

Demonstration Program Comments

When this program is run, the user should choose items from the Demonstration menu and click
the mouse button when instructed to do so by the advisory text in the window's title bar.

#define

In addition to the usual constants relating to menus and the window, constants are established
for pixel pattern, icon, string list, and picture resource IDs.

#typedef

A variable of type drawingEnvironment will be used in the function doDrawingEnvironment to
save and restore the drawing environment on either side of calls to the Appearance Manager
functions SetThemeBackground and SetThemePen. (These functions change the pen and background
colours or patterns.)

12-42 Drawing With QuickDraw

Global Variables

gDone will be set to true when the user selects Quit from the File menu, thus causing program
termination. gWindowPtr will be assigned the pointer to the main window's colour graphics
port. gDrawWithMouseActivated will be set to true when the Draw With Mouse item is chosen from
the Demonstration menu, and to false when other items are chosen.

gPixelDepth will be assigned the pixel depth of the main device. gIsColourDevice will be
assigned true if the graphics device is a colour device and false if it is a monochrome
device. The values in these two variables are required by the Appearance Manager functions
SetThemeBackground and SetThemePen.

The fields of the RGBColor global variables are assigned values representing the colours
described by the variable names.

main

Random numbers are used by various application-defined functions in the demonstration. The
call to GetDateTime seeds the random number generator. randSeed is a QuickDraw global
variable which holds the seed value for the random number generator. Unless randSeed is
modified, the same sequence of numbers will be generated each time the program is run.
Calling GetDateTime is one way to seed the generator. The parameter to the GetDateTime call
receives the number of seconds since midnight, January 1, 1904, a value that is bound to be
different each time the program is run.

Note that error handling in main(), as in other areas of the program, is somewhat rudimentary
in that the program simply terminates.

doEvents

Within the mouseDown case, at the inContent case, if the mouseDown is within the content
region of the window when it is the front window and gDrawWithMouseActivated is true, the
application-defined function doDrawWithMouse is called.

doDemonstrationMenu

doDemonstrationMenu switches according to the user's choices in the Demonstration menu. In
all but the iDrawWithMouse case, the only action taken is to call the relevant application-
defined function.

Note that the global variable gDrawWithMouseActivated is set to false at function entry, and
is set to true within the iDrawWithMouse case (which executes if the user chooses the Draw
With Mouse item). Also note that the window's background is filled with the white colour,
using the white pattern, within this case.

doLines

doLines demonstrates line drawing using colours, bit patterns, pixel patterns, and with the
Boolean pattern mode patXor. doLines also demonstrates modifying the colour graphics port's
clipping region so as to clip drawing to that modified region.

The first line sets the graphics pen's size, pattern, and pattern mode to the defaults. The
next two lines fill the window's content area with blue.

The next block sets the window's clipping region to a rectangle 10 pixels inside the port
rectangle. The first two lines define such a rectangle. The next two lines save the current
clipping region for later restoration. The call to ClipRect establishes the new clipping
region, in effect assigning it to the colour graphics port's clipRgn field.

Lines Drawn With Foreground Colour And Black Pen Pattern

After the window title is set, FillRect is called with the white pattern while the background
colour is set to white. This fill is clipped to the current clipping region, which is a
rectangle 10 pixels inside the port rectangle.

Within the for loop, random numbers between 0 and the width of the port rectangle are assigned
to two variables which will be used to specify the starting and finishing horizontal
coordinates for each of 60 drawn lines. The fields of an RGBColor variable are also assigned
random values, this time between 0 and 65534 (one less than the maximum possible value for a
UInt16). The call to RGBColor assigns this random colour as the requested foreground colour.
The pen width is increased by two pixels. Finally, the call to MoveTo moves the pen to the
random horizontal location at the top of the port rectangle, and the call to LineTo draws a
line to the random horizontal location at the bottom of the port rectangle. The line drawing
is clipped to the current clipping region.

Drawing With QuickDraw 12-43

Lines Drawn With System-Supplied Bit Patterns

This line drawing operation is similar to the previous one except that a system-supplied bit
pattern is assigned to the graphics pen and the lines are drawn from left to right rather than
top to bottom. The bit patterns are loaded by the call to GetIndPattern and are drawn from
the 38 patterns in the 'PAT#' resource in the System file with resource ID sysPatListID (0).
The call to PenPat assigns the specified bit pattern to the graphics pen. In this operation,
the height of the pen, rather than the width is increased by two each time around the for
loop.

Lines Drawn With A Pixel Pattern

In this line drawing operation, before the for loop is entered, GetPixPat is called to
allocate a PixPat structure and initialise it with information from the specified 'ppat'
resource. The call to PenPixPat then assigns this pixel pattern to the graphics pen.

After the last line is drawn, DisposePixPat is called to free the memory obtained by the
GetPixPat call.

At this point, the clipping region saved at the start of the function is restored, and all of
the memory obtained by the NewRgn call is freed.

Lines Drawn With Pattern Mode patXor

This block demonstrates a well-known but nonetheless exotic capability of the humble line when
it operates in the pattern mode patXor.

The content area is filled with red, following which the pen size and pen pattern are set to
the defaults. The call to PenMode sets the pen mode to patXor The next four lines assign
values to four variables which will be used to ensure that the starting and ending locations
of each drawn line will be ten pixels inside the port rectangle. The for loops, proceeding
clockwise, draw lines from points 10 pixels inside the periphery of the port rectangle through
the centre of the rectangle to points on the opposite side of the rectangle. The effect of
patXor on any destination pixel is to invert it. For example, assuming a white background and
black pen colour, any white pixel in the path of the drawn lines will be turned black and any
black pixel will be turned white. This produces a pattern known as a moire (watered silk)
pattern.

doFrameAndPaint

doFrameAndPaint demonstrates the use of QuickDraw's framing and painting functions with the
exception of those relating to polygons and regions.

At the first two lines, the pen pattern and mode are set to the defaults and the pen size is
set to 30 pixels wide and 20 pixels high.

The for loop is traversed three times, once for framing and painting with a colour, once for
framing and painting with a bit pattern, and once for framing and painting with a pixel
pattern. The first action is to fill the port rectangle with the colour white using the white
pattern.

Preparation

The first time around the loop, RGBForeColor is called to set the requested foreground colour
to red.

The second time around the loop, RGBForeColor and RGBBackColor are called to set the requested
foreground and background colours to, respectively, blue and yellow, GetIndPattern loads one
of the system-supplied bit patterns, and PenPat makes that pattern the pen's current bit
pattern.

The third time around the loop, a call to GetPixPat loads a 'ppat' resource, creating a new
PixPat structure, and a call to PenPixPat assigns that pixel pattern to the pen.

Framing and Painting

In this section, SetRect is used to assign the coordinates of a rectangle to the fields of a
Rect structure, and OffsetRect is used to move the rectangle horizontally and vertically
between the calls to the various framing and painting functions.

Before doFrameAndPaint exits, DisposePixPat is called to free the memory obtained by the
GetPixPat call.

12-44 Drawing With QuickDraw

doFillEraseInvert

doFillEraseInvert demonstrates the use of QuickDraw's filling, erasing, and inverting
functions with the exception of those relating to polygons and regions.

At the first two lines, the pen pattern and mode are set to the defaults and the pen size is
set to 30 pixels wide and 20 pixels high.

The for loop is traversed four times, once for filling and erasing with colours, once for
filling and erasing with bit patterns, once for filling and erasing with a pixel patterns, and
once for inverting. The first action, on the first three passes only, is to fill the port
rectangle with the colour white using the white pattern.

Preparation

The first time around the loop, RGBForeColor and RGBBackColor are called to set the requested
foreground and background colours to, respectively, blue and red. In addition, the calls to
GetIndPattern and BackPat set the background pattern to black.

The second time around the loop, RGBForeColor and RGBBackColor are called to set the requested
foreground and background colours to, respectively, blue and yellow. In addition,
GetIndPattern is called twice, once to assign a bit pattern to a Pattern variable which will
be passed as the second parameter in calls to FillRect, FillOval, etc., and once, in
conjunction with BackPat, to assign a bit pattern to the colour graphics port's bkPixPat
field.

The third time around the loop, GetPixPat is called twice, once to assign a pixel pattern to a
the variable which will be passed as the second parameter in calls to FillCRect, FillCOval,
etc., and once, in conjunction with BackPixPat, to assign a pixel pattern to the colour
graphics port's bkPixPat field.

The fourth time around the loop, and preparatory to calls to the erasing functions, the call
to BackPat sets the background pattern to white. (The calls to SetRect and EraseRect simply
erase the existing text in the window.)

Filling, Erasing, and Inverting

In this section, SetRect is used to assign the coordinates of a rectangle to the fields of a
Rect structure, and OffsetRect is used to move the rectangle horizontally and vertically
between the calls to the various filling, erasing, and inverting functions.

Before doFillEraseInvert exits, DisposePixPat is called twice to free the memory obtained by
the two GetPixPat calls.

doPolygonAndRegion

doPolygonAndRegion demonstrates defining a polygon and a region and the use of some of
QuickDraw's polygon and region framing, painting, filling, and erasing functions.

Preparation

The calls to GetIndPattern and BackPat set the background pattern to one on the system-
supplied bit patterns. The call to GetPixPat gets the pixel pattern to be used by the filling
functions. The calls to RGBForeColor and RGBBackColor set the requested foreground and
background colours. PenNormal sets the pen's size, pattern mode, and pattern to the defaults.

The OpenPoly call initiates the recording of the polygon definition, the MoveTo and LineTo
calls define the polygon, and ClosePoly stops the recording. Note that, in this
demonstration, the last vertex is not joined to the first vertex.

The NewRgn call allocates memory for a new region and a region pointer, initialises the
contents of the region and make it an empty rectangle. OpenRgn initiates the recording of a
region shape. The next seven lines create a region definition comprising two rectangles and
an overlapping oval. CloseRgn terminates the recording.

Framing, Painting, Filling, And Erasing

In this section, OffsetPoly and OffsetRgn are used to move the polygon and region horizontally
between the calls to the framing, filling, and erasing functions. OffsetPoly modifies the
polygon's definition. OffsetRgn adjusts the coordinates of the region.

Before doPolygonAndRegion exits, KillPoly is called to free all the memory obtained by
OpenPoly, DisposeRgn is called to free all the memory obtained by NewRgn, DisposePixPat is

Drawing With QuickDraw 12-45

called to free all the memory obtained by GetPixPat, and the background pattern is set to
white.

doText

doText draws text in various fonts, sizes and styles. In addition, the last block
demonstrates drawing justified text within a specified rectangle using the TextEdit function
TETextBox.

Prior to the for loop, the variable windowCentre is assigned a value which represents a
location midway across the port rectangle, and the right half of the content area is filled
with blue.

Within the first section of the for loop, the text font is changed using GetFNum and TextFont,
the text style is changed using TextFace, and the foreground colour is changed. At the last
two sections within the loop, the text size is changed using TextSize, a string is retrieved
from a 'STR#' resource, the width of the string in pixels is determined, and the string is
drawn centred laterally in the window.

After the loop exits, the text font, size and style are returned to Geneva 10pt plain.

At the final block, a small rectangle is defined at the bottom left of the content area.
Because the current background colour is blue, the call to EraseRect erases the rectangle in
that colour. The rectangle is then inset by five pixels all round. A string is then loaded
from a 'STR#' resource and the foreground colour is set to white. Finally, TETextBox is
called to draw the text within the specified rectangle with left justification. (Other
available justification constants are teFlushRight and teCenter.)

doScrolling

doScrolling demonstrates scrolling pixels within a specified rectangle, with the operation
clipped to a region comprising two unconnected rectangular areas.

The first call to GetPixPat loads a 'ppat' resource. The call to PenPixPat assigns that pixel
pattern to the pen, which is then made 50 pixels wide and zero pixels high. A framed
rectangle is then drawn in the left half of the window. (Note that, because the pen height is
set to zero, the two sides of the rectangle will be drawn but not the top and bottom.) A
filled rectangle is then drawn in the right side of the window using the same pixel pattern.

In the next block, another 'ppat' resource is retrieved. The call to BackPixPat makes this
pixel pattern the background pixel pattern.

The next block creates a region comprising two separate rectangles, the first one coincident
with the "inside" of the framed rectangle and the second one coincident with the whole of the
filled rectangle). The current clipping region is then saved and the newly created region is
established as the current clipping region.

The following call to SetRect defines a rectangle for the first parameter of the ScrollRect
function. Laterally, this extends from the left inside of the framed rectangle to the right
hand side of the filled rectangle. The call to NewRgn then creates the empty region required
by the ScrollRect calls.

In the first for loop, the pixels within the clipping region within the specified rectangle
are scrolled downwards, the top of the rectangle being incremented downwards between calls to
ScrollRect. ScrollRect fills the "vacated" areas with the background pattern .

Between the for loops, the rectangle used by ScrollRect is redefined and the background pixel
pattern is changed to the pixel pattern used to draw the original rectangles. The scrolling
operation is then repeated, this time in an upwards direction.

Before doScrolling exits, the saved clipping region is restored and all the memory obtained by
the GetPixPat and NewRgn calls is freed.

doBooleanSourceModes

doBooleanSourceModes demonstrates the effects of the Boolean source modes in both black-and-
white and colour.

The first block fills the content area with green and then fills the top half of the content
area with white. This block leaves the foreground colour black and the background colour
white.

The next block loads two 32 bit by 32 bit 'ICON' resources. One icon contains the image of a
cross and the other contains the image of a square.

12-46 Drawing With QuickDraw

The first for loop calls PlotIcon four times, twice to draw the icons in the white area at the
top of the window, and twice to draw them in the green area at the bottom of the window. The
rectangle passed in the first parameter of the PlotIcon calls expands the icon to 64 pixels by
64 pixels. The calls to RGBForeColor and RGBBackColor cause the icons in the green area to be
drawn using a foreground colour of yellow and a background colour of red.

The foreground and background colours are reset to black and white before the second for loop
is entered.

The second for loop draws the cross icon eight times across the bottom of the white half of
the window. The foreground and background colours are then changed to yellow and red before
this process is repeated across the bottom of the green area of the window.

The foreground and background colours are again reset to black and white.

As a preamble to what is to come, note that there is no special data type for an icon. It is
simply 128 bytes of bit data arranged as 32 rows of 4 bytes per row. All that is available is
a handle to that 128 bytes of data. The intention is to cause the 128 bytes of data which
constitutes the square icon to be regarded as bitmap data pointed to by the baseAddr field of
a BitMap record. That way, the CopyBits routine can be used to copy the bitmap into the
colour graphics port.

Because CopyBits is one of those functions which can move memory around, the first action is
to lock the icon data in the heap. The address of the square icon image data is then assigned
to the baseAddr field of a BitMap record, the rowBytes field is assigned the value 4, and the
bounds field is assigned a rectangle defining the normal icon size.

The final for loop calls CopyBits to copy the bit image into the graphics port sixteen times,
overdrawing the previously drawn cross icons. The call to SetRect within the inner for loop
defines the expanded destination rectangle which governs the size at which the image will be
drawn. This rectangle is passed in the destRect parameter of the CopyBits call. Note that,
in the CopyBits call, the value passed in the tMode (transfer mode) parameter is incremented
each time through the loop so that the square image overdraws the cross image once in each of
the eight available Boolean source modes. The three lines following the CopyBits call
retrieve the appropriate string containing the relevant source mode from the specified 'STR#'
resource and draw this string above each copied image.

The last line unlocks the icon image data.

doArithmeticSourceModes

doArithmeticSourceModes demonstrates the effects of the arithmetic source modes.

Since CopyBits will be called, the foreground and background colours are set to black and
white respectively. The call to FillRect clears the window to white.

The first call to GetPicture loads a 'PICT' resource into a Picture structure. (Since the
'PICT' resource is purgeable, it is made non-purgeable immediately it is retrieved, used
immediately, and immediately made purgeable again.) The call to DrawPicture draws the picture
in the top left of the window, where it is labelled as the source image.

The second call to GetPicture loads another 'PICT' resource which will be used as the
destination image. The first for loop draws this picture in the window at eight separate
locations, these locations being determined by the rectangle passed in the first parameter of
the DrawPicture calls.

The last for loop is traversed once for each of the eight arithmetic source modes. CopyBits
is called eight times to overdraw the destination images with the source image. Note that the
value in the tMode (transfer mode) parameter of the CopyBits call is incremented each time
around the loop. Note also that, each time around the loop, a new string is retrieved from a
'STR#' resource and drawn above the destination image.

Before doArithmeticSourceModes exits, ReleaseResource is called twice to free the memory
obtained by the GetPicture calls.

doHighlighting

doHighlighting demonstrates highlighting, first with the colour set by the user in the Colour
pane of the Appearance control panel, and then with two colours set by the program.

Firstly, the highlight colour set by the user is saved via a call to LMGetHiliteRGB.

The for loop is traversed three times. On the second and third traverses, the highlight
colour is changed.

Drawing With QuickDraw 12-47

Within the for loop, a copy of the value at the low memory global HiliteMode is retrieved
using LMGetHiliteMode, BitClr is called to clear the highlight bit, and LMSetHiliteMode is
called to set to low memory global to this new value. At the if/else block, the highlight
colour is changed if this is the second or third time around the loop. With the highlight bit
cleared, InvertRect is called to invert a specified rectangle.

Note that the call to InvertRect resets the highlight bit. Accordingly, when the user clicks
the mouse button, the highlight bit is cleared once again before InvertRect is called once
again. This second call restores the colour in the specified rectangle to the background
colour.

Before the doHighLighting function returns, it sets the highlight colour to the saved
highlight colour.

doDrawWithMouse

doDrawWithMouse demonstrates the use of the mouse to define bounding rectangles for QuickDraw
shape drawing functions. It also demonstrates the implementation of the "rubber band"
rectangle commonly used to provide visual feedback to the user as he drags the mouse during
such operations. (While the mouse button remains down, the "rubber-band" rectangle is
continually erased and redrawn as the mouse is moved. It is erased when the mouse button is
released.)

doDrawWithMouse is called when a mouse-down occurs in the window while it is the front window,
provided that the global variable gDrawWithMouseActivated is set to true.

The call to GetPixPat loads a 'ppat' resource containing a small 8 pixel by 8 pixel pattern.
This pixel pattern is assigned to the pen by the call to PenPixPat. The call to PenSize makes
the pen size one pixel high by one pixel wide. The pen pattern mode is then set to patXOr.
(Note: For a black-and-white "rubber band", replace the PenPixPat call with PenPat(&qd.gray).)

The call to GetMouse saves the initial mouse location to a Point variable. The contents of
the fields of this variable will remain unchanged. Those coordinates are also used to
initialise the left and top fields of the Rect variable drawRect.

The next call to GetMouse assigns the initial location of the mouse to another Point variable.
The contents of the fields of this variable will continually change as the mouse is dragged.

The while loop continues to execute while the mouse button remains down. Within the loop, the
current mouse location is retrieved and compared with the previous mouse location (the first
if statement). If the mouse has moved:

• FrameRect is called to draw the framed rectangle.

• If the current mouse horizontal coordinate is greater than or equal to the initial
horizontal mouse coordinate, the current mouse horizontal coordinate is assigned to the
right field of the rectangle.

• If the current mouse vertical coordinate is greater than or equal to the initial vertical
mouse coordinate, the current mouse vertical coordinate is assigned to the bottom field
of the rectangle.

• If the current mouse horizontal coordinate is less than or equal to the initial horizontal
mouse coordinate, the current mouse horizontal coordinate is assigned to the left field
of the rectangle.

• If the current mouse vertical coordinate is less than or equal to the initial vertical
mouse coordinate, the current mouse vertical coordinate is assigned to the top field of
the rectangle.

• FrameRect is called again with the newly defined rectangle passed in.

Because the drawing mode is patXor, the first call to FrameRect erases the old rectangle.
Because FrameRect is only called if the mouse has moved, the flicker which would otherwise
occur when the mouse is stationary is avoided.

Below the if block, and preparatory to the next comparison of current and previous mouse
location, the current mouse location becomes the previous mouse position.

When the mouse button is released:

• The final call to FrameRect erases the final "rubber-band" rectangle.

• The foreground colour is set to a random colour, the pen pattern mode is set to patCopy,
the pen pattern is set to black, and the background pixel pattern is set to that
previously used to draw the "rubber band".

12-48 Drawing With QuickDraw

• The rectangle as at mouse button release is used in calls to QuickDraw painting and
erasing functions to draw rectangles, round rectangles, ovals, and arcs. Just which
function is called depends on the value returned by the call to doRandomNumber.

• The background pattern is set to white.

doDrawingEnvironment

doDrawingEnvironment is similar to the function doDrawListView in the demonstration program
Appearance, the difference being that, in doDrawingEnvironment, the drawing environment is
saved at entry and restored at exit.

The call to doInitDrawingEnvironment is included in this function for demonstration purposes
only. Ordinarily, it would be called (if required) at other points in an application.

The call to doGetDrawingEnvironment saves the drawing environment prior to the calls to the
Appearance Manager functions SetThemeBackground and SetThemePen, which, depending on the
current theme, will change either the colour or the pattern in the relevant fields of the
colour graphics port.

The call to doSetDrawingEnvironment restores the saved drawing environment.

The intervening code simply draws an Appearance-compliant list view in the left half of the
window.

The calls to doDrawingEnvironmentProof are also for demonstration purposes only. As will be
seen, this function simply draws rectangles in the right half of the window in the pen and
background colours and patterns as they were after the call to doInitDrawingEnvironment, after
the calls to the Appearance Manager functions, and after the call to doSetDrawingEnvironment.

doGetDrawingEnvironment

doGetDrawingEnvironment saves the current drawing environment to a variable of type
drawingEnvironment.

The call to GetPort assigns a pointer to the current port to the variable currentPort.

GetPenState saves the current pen location, size, pattern mode, and pattern to the
penLocSizeModePat field of the drawingEnvironment structure. GetForeColor and GetBackColor
save the current foreground and background colours. The next line saves the text source mode.

At the next two lines, the fields of the drawingEnvironment structure relating to the pen and
background pixel patterns are initialised to NULL.

The patType field of the PixPat structure whose handle resides in the pnPixPat field of the
colour graphics port will contain 0 if the pattern is a bit pattern and 1 if it is a pixel
pattern. If it is a pixel pattern, the handle to the PixPat structure is saved.

If the patType field of the PixPat structure whose handle resides in the bkPixPat field of the
colour graphics port indicates that the pattern is a pixel pattern, the handle to the PixPat
structure is saved. If the pattern is a bit pattern, a pointer to the pattern data is saved.

doSetDrawingEnvironment

doSetDrawingEnvironment restores the saved drawing environment.

The first four calls restore the saved pen location, size, pattern mode, and bit pattern, the
requested foreground and background colours, and the text source mode.

If the penPixelPattern field of the drawingEnvironment structure does not contain NULL, the
pen pixel pattern is restored, overriding the effect of the pattern aspect of the previous
call to SetPenState.

If the backPixelPattern field of the drawingEnvironment structure does not contain NULL, the
background pixel pattern is restored, otherwise the background bit pattern is restored.

doInitDrawingEnvironment

doInitDrawingEnvironment shows how you might initialise the drawing environment. It sets the
pen size to (1,1), the pen pattern mode to patCopy, and the pen pattern to black. It also
sets the foreground and background colours to black and white respectively, the text source
mode to srcOr and the background pattern to white.

Drawing With QuickDraw 12-49

doDrawingEnvironmentProof

doDrawingEnvironmentProof is called by doDrawingEnvironment to draw rectangles in the right
half of the window in the pen and background colours and patterns as they were after the call
to doInitDrawingEnvironment, after the calls to the Appearance Manager functions, and after
the call to doSetDrawingEnvironment. Note that the colour or pattern in which the second pair
of rectangles is drawn will depend on the current theme.

doGetDepthAndDevice and
doRandomNumber

doGetDepthAndDevice and doRandomNumber are incidental to the demonstration.

doGetDepthAndDevice gets the pixel depth of the main device, and whether the device is a
colour device or a monochrome device, for the Appearance Manager functions SetThemeBackground
and SetThemePen. doRandomNumber returns a random number between the specified minimum value
and the specified maximum value minus one.

	Mathematical Foundations of QuickDraw
	The Coordinate Plane
	Points
	Rectangles
	Regions

	The Graphics Pen, Foreground and Background Colours, PixelPatterns and Bit Patterns, and Transfer Modes
	The Graphics Pen
	Getting and Setting the Pen State

	Foreground and Background Colour
	Foreground Colour
	Background Colour

	Pixel Patterns and Bit Patterns
	Pixel Patterns
	Bit Patterns

	Transfer Modes
	Boolean Pattern Modes
	Boolean Source Modes
	Arithmetic Source Modes

	Drawing Lines and Framed Shapes
	Functions for Drawing Lines
	Functions for Drawing Framed Shapes
	Framed Polygons and Regions

	Drawing Painted and Filled Shapes
	Functions for Painting and Filling Shapes
	Wedges
	Painted and Filled Polygons and Regions

	Erasing and Inverting Shapes
	Functions for Erasing and Inverting Shapes

	Drawing Pictures
	Drawing Text
	Setting the Font
	Setting and Modifying the Text Style
	Setting the Font Size
	Changing the Width of Characters
	Transfer Mode

	Copying Pixel Images Between Graphics Ports
	Coercion of CGrafPtr Data Type to GrafPtr Data Type
	Using Masks
	Transfer Modes
	The Importance of Foreground and Background Colour
	Dithering
	Copying From Offscreen Graphics Ports

	Scrolling Pixels in the Port Rectangle
	Manipulating Rectangles and Regions
	Manipulating Rectangles
	Manipulating Regions
	Manipulating Polygons
	Scaling Shapes and Regions Within the Same Graphics Port

	Highlighting
	Drawing Other Graphics Entities
	Saving and Restoring the Drawing Environment
	Main QuickDraw Constants, Data Types and Functions
	Demonstration Program
	Demonstration Program Comments

