Metal Commands: Section "A"

ABORT$

Type: system variable/system control

ABORT$=keys_to_stop_output_on$

current_keys$=ABORT$

ABORT$=" "

x$=ABORT$

ABORT$=ABORT$+chr$(29)

ABORT$=""

ABORT$ is used to set or check keys that will cause text output to device #0 (local screen and modem) to be stopped - ie: no more text output until the ABORT$ is cleared or an Input/Get is taken from device #0.

When setting ABORT$, you are giving a list of keys, not words, that Metal will stop text output on. Note that lower-case characters are converted to upper-case, so that if you set ABORT$ to, say "a", then hitting either "A" or "a" will cause output to stop. The same goes for setting ABORT$ to "A" - Metal doesn't care what the case is of the key, it just checks if it's the same key. This does not hold true for non-alphabetic keys - thus, if you set Abort$ to the "[" character, hitting "{" (the "lower case" version of "[") will not stop output.

Reading the current ABORT$ values will result in a string from zero (null) to 96 characters long - some may be control characters, of course. Be warned that the keys will be presented in a sorted manner - for example:

 ABORT$="BA"

 print ABORT$

 The output here will be "AB".

The ABORT$ remains active until one of the following has happened:

 (a) ABORT$ is set to a null value (ABORT$="")

 (b) ABORT$ is cleared (CLEAR ABORT$)

 (c) An Input/Get from device #0 is executed.

When a key in the ABORT$ is hit during text output, that key is placed in SYSINFO(2) and SYSINFO$(2), where is stays until you or Metal clears ABORT$.

See also: CLEAR, GET, INPUT, PRINT, SYSINFO, TCOPY

ABS

Type: math function

result=ABS(value)

xp=ABS(yp)

The ABS - Absolute Value - math function simply returns the positive value of the value given. For example:

 print ABS(1) prints out "1".

 print ABS(0) prints out "0".

 print ABS(-10) prints out "10".

In other words, ABS strips the leading negative from the number.

See also: ASC, BITVAL, HEXVAL, INSTRING, LEN, MEMAREA, MEMSIZE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, PADDLE, RANDOM, ROTL, ROTR, SIGN, SYSINFO, VAL

ADDR

Type: complex system variable/memory storage

ADDR{area}{(index)}=value or starting_base

result or current_base=ADDR{area}{(index)}

ADDR=memarea(9)+82

ADDR3=memarea(2)

print ADDR2

ADDR1(3)=blks

lngh=ADDR(20)/word2(7)

ADDR - or "Address" - is a very specialized command that is used to manipulate memory areas in various ways.

ADDR "data chunks" are each 24 bits long - if that number sounds familiar, you're right - it's the exact size of Metal's integers. Thus, ADDR values, unlike Byte or Word values, directly reflect the given value, rather than trimming off unused parts.

Since 24 bits is 3 bytes long (24 bits/8 bits per byte = 3 bytes), each ADDR is, naturally, 3 bytes long. They are, by far, the biggest memory eaters outside of PokeAddr, which also operates on three bytes at a time.

Like Bit, Byte, etc, ADDR may be given one of ten distinct and separate memory "areas" to work out of. These are the {area} optionals.

The {area}, if given, is a single digit, ranging from 0 to 9. If no {area} is given, then it defaults into zero. Thus, the following are equal:

 ADDR=memarea(2)+82

 ADDR0=memarea(2)+82

The {area} must immediately follow the ADDR command word, otherwise you will cause rather odd things to happen in your code, depending on where you made the mistake - the results could range from a Syntax Error to simply having wrong numbers being printed out. There must be no spaces between the ADDR and the {area}.

The {(index)} optional tells Metal wether or not to set or retrieve the "starting base" for that ADDR area, or to set or retrieve a value in that area. This breaks the ADDR command down into two distinct and very separate parts:

(a) If the {(index)} optional is missing, Metal assumes that you wish to manipulate the starting base for the ADDR's area. By setting (ie: equating ADDR{area} to some value) you are telling Metal where that ADDR is living at and where to store or look for data at. The value given will be assumed to be a 16-bit memory address. Likewise, reading the ADDR{area} will retrieve the last set value for that ADDR:

 ADDR=memarea(2)+82 Sets up where ADDR area 0 (the default, remember?) is going to start at. The "memarea(2)" value was previously setup using the Allocate command.

 print ADDR Displays where ADDR area 0 is currently coming from.

(b) If the {(index)} is given, Metal assumes that you wish to manipulate the data inside of that ADDR area. Remember, each data element - the "index" - is 3 bytes long. The value of the index may range from 0 - the first element in the ADDR area - to approximately 9,000.

 ADDR(2)=87 Sets ADDR area 0, element number 2 to the value of 87.

 ADDR3(0)=-912 Sets ADDR area 3, element number 0 to the value of -912 - note that ADDR is the only command of the Bit/Nibble/Byte etc group that can save off and recall the sign of the data.

 print ADDR(9) Displays the value of ADDR area 0, element number 9.

As previously mentioned, ADDR elements occupy 3 bytes per element. Metal automatically calculates where the element is at in the starting base for that area, so you don't need to mess with calculations. ADDR is a very quick and easy "shorthand" way of doing a long POKEADDR/PEEKADDR. For example, the following is equivalent:

 ADDR use: PEEKADDR/POKEADDR use:

 -------- ----------------------

 ADDR0=memarea(2) a0=memarea(2)

 ADDR0(1)=5 POKEADDR((1*3)+a0),5

 x=ADDR0(9) x=PEEKADDR((9*3)+a0)

The nice thing about using ADDR rather than POKE/PEEKADDR is that you don't have to continuously type in long expressions, and in the case of setting the starting base ("a0" in our example), you don't have to use a variable. Add to the fact that using ADDR runs faster than a long POKE/PEEKADDR expression makes ADDR very powerful indeed!

See also: ALLOCATE, BIT, BYTE, DEALLOCATE, MEMAREA, MEMSIZE, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEADDR, POKEBYTE, POKEWORD, WORD

ALLOCATE

Type: command/memory control

ALLOCATE (area_num,mem_length{,mem_start})

ALLOCATE (2,1024)

ALLOCATE (9,256,8192)

ALLOCATE is used the tell Metal that you want to reserve some portion(s) of the memory that it uses for "interpreter caching" for your own use. You may reserve from 1 page (256 bytes) to 24k (24756 bytes), and up to 127 "areas", for your own program's uses - like a for binary run files, data files, workspace areas, etc.

The area_num operand is a number or expression ranging from 1 to 127. This is basically a "reference" value for your programs to use in order to find out where the start of the area is at.

The mem_length is a value ranging from 1 to 24756, and it is rounded up to the next even 256 boundary. In other words, if you request 240 bytes, you'll get 256 bytes, and if you request 768 bytes, you get 768 bytes. You don't have to perform the "rounding up" yourself - the system does that for you.

If you supply the mem_start, Metal will attempt to use that value as a location to "steal" memory from. If it finds that it cannot, it WILL NOT.

In order to find out if your request has been carried out - in other words, if enough free, continuous, cache memory is available - you must use the MEMAREA(area_num) function, like in the following example:

 ALLOCATE (7,1024)

 if MEMAREA(7)=0 print "Err- Allocate not carried out":return

 print "MemArea7 starts at "MEMAREA(7):return

You may, if you wish, re-ALLOCATE an area, like in the following:

 ALLOCATE (7,1024)

 ...some code...

 ALLOCATE (7,2048)

What you are doing is telling Metal to "expand" the size of MemArea7 from 1024 bytes to 2048 bytes. Metal will make every attempt to grant your request, but if the cache area is too fragmented, you may find that Metal couldn't carry it out. In such a case, Metal will give you as much memory as it could, which may be less than you wanted, but will always be as much as you have previously.

Now, how do you get rid of an area once you're done with it? Well, there are three ways:

 (a) DEALLOCATE (area_num) simply removes it.

 (b) ALLOCATE (area_num,0) setting the mem_length to zero also removes it.

 (c) DEALLOCATE(0) this removes all of the ALLOCATEd memory areas, and resets the cache buffer back to its original size.

See also: ADDR, BIT, BLOAD, BSAVE, BYTE, DEALLOCATE, MCLEAR, MCOPY, MEMAREA, MEMSIZE, MEMSTRING$, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEADDR, POKEBYTE, POKEWORD, WORD

AND

Type: logic operand

result=operand1 AND operand2

z=x AND y

if hungry AND tired goto sleep

The AND command word is used to check the preceding (operand1) and following (operand2) values and return either a 0 or 1 value.

AND will return a 1 value only if both operand1 and operand2 are non-zero values. Otherwise, it returns 0.

AND can be thought of as an logical "multiplier":

 0 x 0 = 0

 0 x 1 = 0

 1 x 0 = 0

 1 x 1 = 1

Note that the actual values of operand1 and operand2 don't really affect the outcome of the AND command - it just cares if the values are either zero or non-zero - non-zero values are treated as a "1" value.

See also: B.AND, B.EOR, B.OR, EOR, NAND, NEOR, NOR, NOT, OR

APPEND

Type: command

APPEND #device

APPEND #1

APPEND #qp

APPEND is used with a currently open file in one of the File Devices (device numbers 1 to 4). All it does is simply move the file marker (where the next incoming/outgoing data is going to be put) to the end of the file. APPEND is therefor directly equivalent to this:

 FILEMARK(device)=FILESIZE(device)

Note: if you omit the "#device" operand, Metal will use the last specified DEVICE system variable value. Normally, this is set to zero (local/modem), and will generate an error, but setting DEVICE to some value from 1 to 4 and then omitting following "#device" from the APPEND will use the DEVICE value. For example, the following is legitimate:

 DEVICE=1

 ...code...

 APPEND

 In this case, APPEND will use the last DEVICE equalization - in our example, device 1 is being used. Generally, you shouldn't do this, as it makes your code hard to debug, but you may wish to do this in specialized routines.

APPEND will generate an error if the "#device" is less than 1 or greater than 4 ("Range Error")

See also: BLOAD, BSAVE, CREATE, CLOSE, DELETE, DEVICE, DOSERR, FCOPY, FILEAUXTYPE, FILEINFO$, FILEMARK, FILESIZE, FILETYPE, FLUSH, INPUT, ONLINE$, OPEN, POSITION, PREFIX$, PRINT, RENAME, RECNUM, RUN, RUNSUB, TCOPY

ASC

Type: math function

result=ASC(char$)

i=ASC("B")

first=ASC("Wilson")

if ASC(A$)=8 goto left.arrow

ASC returns the ascii (American Standard Code for Information Interchange) value of the first character of the char$ given. Generally speaking, ASC is used in the if-then example given - to check a character for some known value, usually a control character.

If the char$ is null, then ASC will return a value of 0. Otherwise, ASC will return a value ranging from 1 to 127.

See also: ABS, BITVAL, HEXVAL, INSTRING, LEN, MEMAREA, MEMSIZE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, PADDLE, RANDOM, SYSINFO, VAL

AT or @

Type: buried command

print AT(column,line)

print @(column,line)

print AT(0,7) "Hello!"

AT is only used in the Print commands - it is used to re-position the cursor. AT works in two possible modes:

 (a) If the system is in normal ascii text or the AutoPos feature is not turned on, then AT will only affect the local/bbs side of the display.

 (b) If the system is in a form of terminal emulation that supports re-positioning of the cursor, and the AutoPos feature is turned on (it normally is), then AT will send out the required control codes to the terminal program to re-position the cursor on both ends.

Note that you may freely use the "@" ("at" sign) instead of the AT command word.

See also: INPUT, PRINT, VID

