Metal Commands: Section "B"

B.AND

Type: boolean math operand

result=operand1 B.AND operand2

z=x B.AND y

if peek($C062) B.AND 128 goto ClosedApple

B.AND is similar to the AND command word, but it does a logical, or "binary AND" (hence the "B.") instead of a simple test of the data.

What this means is that under certain conditions, AND and B.AND will not function the same. For example:

 1 AND 2 this returns a "1" or "True" value, because both 1 and 2 are not equal to zero

 1 B.AND 2 this returns a zero - the bits in the "1" and the "2" don't match up.

 3 B.AND 2 this returns a "2" - only that bit matched up.

In other words, B.AND is a specialized command that is used with given binary data, instead of logical data.

B.AND is generally used to test flags from the Apple's hardware or certain memory locations that are set up for some other reason. For example, memory location $C062 is where Apple has placed a hardware flag for the Apple's Solid Apple or "Option" key. By checking bit 7 (which is equal to a value of 128), we can tell if it's down or not:

 if peek($C062) B.AND 128 print "Solid Apple Down"

The way B.AND works can be visualized by the following diagram:

 operand1 bit value

 0 1

 operand1 ------------------

 bit 0 | 0 0

 value 1 | 0 1

In other words, the result will only be 1 if both values are 1 - otherwise, the result will be zero.

The B.AND command - bit wise - can be thought of as multiplying the bit values with each other:

 0*0 = 0

 0*1 = 0

 1*0 = 0

 1*1 = 1

See also: AND, B.EOR, B.OR, EOR, NAND, NEOR, NOR, NOT, OR

B.EOR

Type: boolean math operand

result=operand1 B.EOR operand2

z=x B.EOR y

b6i=b6i B.EOR 64

B.EOR is generally used to reverse or "flip" the values of bits within a number. It is of little use, as the EOR and NOT commands are more functional, but it does have its place.

For example, say we had a variable called "b6i" and we need to reverse the values of bits 0 and 8. We can't use the EOR command, as that will just result in a value of 0 or 1 - we need to have a value greater than one, if possible.

Say that "b6i" is currently equal to 85. So we simply do the following:

 b6i = b6i B.EOR 1+256 ! 1=bit0, 256=bit8

Let's break this down:

 85 is equal to the following bit pattern:

 85 = %001010101

 And 1+256 or 257 is equal to the following bit pattern:

 257 = %100000001

 So we perform a little digital magic:

 %001010101 (85)

 b.eor %100000001 (257)

 equal %101010100 (340)

As you can see, bit 8 - which was zero from the 85 value - has become 1, and bit 0 - which was one in both values - has become zero.

The way B.EOR works can be visualized by the following diagram:

 operand1 bit value

 0 1

 operand1 ------------------

 bit 0 | 0 1

 value 1 | 1 0

In other words, the result is 1 only if the values of the bits are different; If they are both the same value - both 0 or both 1 - then the result will be 0.

The B.EOR command - bit wise - can be thought of as subtracting the bit values from each other, and ignoring the sign of the result:

 0-0 = 0

 0-1 = 1 (ignore the -, remember?)

 1-0 = 1

 1-1 = 0

See also: AND, B.AND, B.OR, EOR, NAND, NEOR, NOR, NOT, OR

B.OR

Type: boolean math operand

result=operand1 B.OR operand2

bl = cyu B.OR len(a$)

if (mn B.OR tp)=8 then goto crash.ship

B.OR functions similarly to the previous B.And and B.Eor in that it works with data on the "bit level", but instead of flipping or zeroing bits in the result, it sort of "adds" them together.

If either bit in operand1 or operand2 is a 1 value, than that bit in result will also be 1. The only time the bit in result will be 0 is when both bits in operand1 or operand2 are zero.

The way B.OR works can be visualized by the following diagram:

 operand1 bit value

 0 1

 operand1 ------------------

 bit 0 | 0 1

 value 1 | 1 1

Unlike the OR command word, which operates on operand values, B.OR operates on operand bits.

The B.OR command - bit wise - can be thought of as adding the bit values with each other:

 0+0 = 0

 0+1 = 1

 1+0 = 1

 1+1 = 1

See also: AND, B.AND, B.EOR, EOR, NAND, NEOR, NOR, NOT, OR

BIT

Type: complex system variable/memory storage

BIT{area}{(index)}=value or starting_base

result or current_base=BIT{area}{(index)}

BIT=memarea(9)+82

BIT3=memarea(2)

print BIT2

BIT1(3)=true

flag=BIT(20)

BIT is a yet another specialized command that is used to manipulate memory areas in various ways.

BIT's "data pieces" are each 1 bit long - thus, they can only hold one of two values - a zero or a one. Generally, 1 is considered a "true" value, so for the most part, BIT is used as control flags.

Since eight bits can fit inside of one single byte, the BIT command is very efficient. By using a small area of memory - usually 32 bytes - you can get a large amount of BITs or control flags for your program out of it. In fact, 32 bytes will give you 256 BITs to play with. And the upper limit is 65536 flags - just 8k of memory. Not bad, eh?

Like Addr, Byte, etc, BIT may be given one of ten distinct and separate memory "area" to work out of. These are the {area} optionals.

The {area}, if given, is a single digit, ranging from 0 to 9. If no {area} is given, then it defaults into zero. Thus, the following are equal:

 BIT=memarea(2)+82

 BIT0=memarea(2)+82

The {area} must immediately follow the BIT command word, otherwise you will cause rather odd things to happen in your code, depending on where you made the mistake - the results could range from a Syntax Error to simply having wrong numbers being printed out. There must be no spaces between the BIT and the {area}.

The {(index)} optional tells Metal wether or not to set or retrieve the "starting base" for that BIT area, or to set or retrieve a value in that area. This breaks the BIT command down into two distinct and very separate parts:

 (a) If the {(index)} optional is missing, Metal assumes that you wish to manipulate the starting base for the BIT's area. By setting (ie: equating BIT{area} to some value) you are telling Metal where that BIT is living at and where to store or look for data at. The value given will be assumed to be a 16-bit memory address. Likewise, reading the BIT{area} will retrieve the last set value for that BIT:

 BIT=memarea(2)+82 this example sets up where BIT area 0 (the default, remember?) is going to start at. The "memarea(2)" value was previously set up using an Allocate command.

 print BIT this example displays where BIT area 0 is currently coming from.

 (b) If the {(index)} is given, Metal assumes that you wish to manipulate the data inside of that BIT area. Remember, up to eight BITs can reside inside a single byte of memory, so the first eight BIT indexes - numbered "(0)" to "(7)" - start at the first byte of the "Bit Base", and the next eight BITs are in the second byte, etc.

 BIT(2)=0 this example sets BIT area 0, element number 2 to the value of 0.

 BIT3(0)=1 this example sets BIT area 3, element number 0 to the value of 1.

 BIT2(98)=7 this example sets BIT area 2, element number 98 to the value of 1 - see below!

 print BIT(9) displays the value of BIT area 0, element number 9, either 0 or 1, nothing else.

When you set a BIT(index) value to some number, Metal will set it to zero only if that operand is zero; otherwise, it will set it to 1 - since it is impossible to store a number greater than 1 in a BIT, Metal assumes that you just want to "set the flag", and does so.

See also: ADDR, ALLOCATE, BYTE, DEALLOCATE, MEMAREA, MEMSIZE, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEADDR, POKEBYTE, POKEWORD, WORD

BITSTR$

Type: string function

result$=BITSTR$(value{,len{,flag}})

b$=BITSTR$(access)

print "1990 binary is "BITSTR$(1990)

BITSTR$ (Bit String) is a string function designed to operate in conjunction with the BITVAL operation. What BITSTR$ does is take the value given and turns it into a 25-character-long string of 1's and 0's.

The first character of the string will always be the "%" character - this is what Metal uses as a standard "binary string flag" in it's CIB files. The rest of the string - 24 characters - is the binary equivalent of value.

From left to right (or the 2nd character to the 25th), the value of the string is bit 23, then bit 22, bit 21, etc, down to bit 0 (the 25th character).

For example, let's say we display the value of the above example:

 x$=BITSTR$(1990)

 x$ will be "%000000000000011111000110"

If you supply the optional ,len value, then you are telling BITSTR$ to use something other than the default 24 bit display - if you give BITSTR$ a value of 5 for len, then it will use 5 characters plus the "%" lead-in.

If you want to remove this "%" lead-in, then give it the third optional (usually a value of 1). Thus, the following two examples will give something different:

 x$=BITSTR$(10,5) %01010 (6 characters)

 x$=BITSTR$(10,5,1) 01010 (5 characters)

See also: CHR$, CNGCASE$, FILEINFO$, HEXSTR$, LEFT$, MID$, REPEAT$, RIGHT$, STR$

BITVAL

Type: math function

result=BITVAL(bitstring$)

access=BITVAL(a$)

print "the value of the string is "BITVAL(x$)

BITVAL is the converse of BITSTR$, of course. What it does is take a bit string (of any length, from 0 to 255 characters long) and convert it into it's numerical equivalent. The leading "%" character that BITSTR$ places on its output string is not required - it may be there or not, BITVAL doesn't care.

BITVAL will stop converting the string when it:

 (a) runs out of characters

 (b) the character is not "0" or "1".

Note: depending on the size of the string that is converted, the result may or may not be negative.

See also: ASC, HEXVAL, INSTRING, LEN, MEMAREA, MEMSIZE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, PADDLE, RANDOM, ROTL, ROTR, SIGN, SYSINFO, VAL

BLOAD

Type: command

BLOAD #device,memloc,length

BLOAD #device TO memloc FOR length

BLOAD #1,8192,32

BLOAD #3,memarea(1),729

BLOAD is just what is appears to be - it is a command that reads in raw binary data from the disk and places it in memory somewhere. BLOAD (currently) can only read in data from an open file. A later version of Metal will have the ability to do a BLOAD from a filename in addition to a file device.

When using BLOAD, you must currently have an open file, and you must give where you want to load it into (memloc) and how many bytes to read in (length). BLOAD will start reading the file at the current "filemark".

If the file length or what remains of the file from the current filemark is less than the number of bytes you want to read in (length), Metal will simply zero out the remaining part of memory that would have normally been loaded - Metal assumes that you wish to "blast" memory.

For example, you attempt to do the following:

 BLOAD #1,$300,200

And the file in device #1 is only 100 bytes long. Metal will read in the first 100 bytes of the file, and finds that it can't get any more - the file simply isn't that big. Therefor, the last 100 bytes of memory are zeroed - as if the file was really 200 bytes long, but the last 100 were blank.

The alternate syntax is to use the TO and FOR commands in place of the commas - BLOAD will function fine with these, as this was done just as a convenience to the programmer.

See also: APPEND, BSAVE, CREATE, CLOSE, DELETE, DEVICE, DOSERR, FCOPY, FILEAUXTYPE, FILEINFO$, FILEMARK, FILESIZE, FILETYPE, FLUSH, INPUT, MEMAREA, ONLINE$, OPEN, POSITION, PREFIX$, PRINT, RENAME, RECNUM, RUN, RUNSUB, TCOPY

BSAVE

Type: command

BSAVE #device,memloc,length

BSAVE #device TO memloc FOR length

BSAVE #2,memarea(20),128

BSAVE is the reverse of Bload - it writes binary data out to a file on the disk. Like Bload, you must give the starting address (memloc) and how many bytes to write (length).

BSAVE will write to that device, starting at the current filemark of the file, and extending the size of the file as needed. When BSAVE ends, the filemark will be where BSAVE stopped writing data.

The alternate syntax is to use the TO and FOR commands in place of the commas - BSAVE will function fine with these, as this was done just as a convenience to the programmer.

See also: APPEND, BLOAD, CREATE, CLOSE, DELETE, DEVICE, DOSERR, FCOPY, FILEAUXTYPE, FILEINFO$, FILEMARK, FILESIZE, FILETYPE, FLUSH, INPUT, MEMAREA, ONLINE$, OPEN, POSITION, PREFIX$, PRINT, RENAME, RECNUM, RUN, RUNSUB, TCOPY

BYTE

Type: complex system variable/memory storage

BYTE{area}{(index)}=value or starting_base

result or current_base=BYTE{area}{(index)}

BYTE=memarea(9)+82

BYTE3=memarea(2)

print BYTE2

BYTE1(3)=blks

lngh=BYTE(20)/word2(7)

BYTE is another specialized command that is used to manipulate memory areas in various ways.

BYTE "data chunks" are each 1 byte long. Unlike Addr, which can store off the entire value of a variable, BYTE can only handle a range of 0 to 255.

Like Bit, Word, etc, BYTE may be given one of ten distinct and separate memory "area" to work out of. These are the {area} optionals.

The {area}, if given, is a single digit, ranging from 0 to 9. If no {area} is given, then it defaults into zero. Thus, the following are equal:

 BYTE=memarea(2)+82

 BYTE0=memarea(2)+82

The {area} must immediately follow the BYTE command word, otherwise you will cause rather odd things to happen in your code, depending on where you made the mistake - the results could range from a Syntax Error to simply having wrong numbers being printed out. There must be no spaces between the BYTE and the {area}.

The {(index)} optional tells Metal wether or not to set or retrieve the "starting base" for that BYTE area, or to set or retrieve a value in that area. This breaks the BYTE command down into two distinct and very separate parts:

 (a) If the {(index)} optional is missing, Metal assumes that you wish to manipulate the starting base for the BYTE's area. By setting (ie: equating BYTE{area} to some value) you are telling Metal where that BYTE is living at and where to store or look for data at. The value given will be assumed to be a 16-bit memory address. Likewise, reading the BYTE{area} will retrieve the last set value for that BYTE:

 BYTE=memarea(2)+82 this example sets up where BYTE area 0 (the default, remember?) is going to start at. The "memarea(2)" value was previously setup using an Allocate command.

 print BYTE this example displays where BYTE area 0 is currently coming from.

 (b) If the {(index)} is given, Metal assumes that you wish to manipulate the data inside of that BYTE area. Remember, each data element - the "index" - is 1 byte long; thus, each index is really the "byte number" you want from the start of the Byte Base value.

 BYTE(2)=87 this example sets BYTE area 0, element number 2 to the value of 87.

 BYTE1(4082)=0 this example sets BYTE area 1, element number 4082 to the value of 0.

 BYTE3(0)=912 this example sets BYTE area 3, element number 0 to the value of 912, right? WRONG! You are setting this BYTE element to the value of 912 "modulo" (the remainder) 256 - thus, you are setting this to the value of 144 (912/256=3 remain 144)

 print BYTE(9) displays the value of BYTE area 0, element number 9. The result will be from 0 to 255.

As previously mentioned, BYTE elements occupy 1 byte per element. Metal automatically calculates where the element is at in the starting base for that area, so you don't need to mess with calculations. BYTE is a very quick and easy "shorthand" way of doing a long POKEBYTE/PEEKBYTE. For example, the following is equivalent:

 BYTE use: PEEKBYTE/POKEBYTE use:

 -------- ----------------------

 BYTE0=memarea(5) b0=memarea(5)

 BYTE0(1)=5 POKEBYTE(1+b0),5

 x=BYTE0(9) x=PEEKBYTE(9+b0)

The nice thing about using BYTE rather than POKE/PEEKBYTE is that you don't have to continuously type in long expressions, and in the case of setting the starting base ("b0" in our example), you don't have to use a variable. Add to the fact that using BYTE runs faster than a long POKE/PEEKBYTE expression makes BYTE very useful indeed!

See also: ADDR, ALLOCATE, BIT, DEALLOCATE, MEMAREA, MEMSIZE, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEADDR, POKEBYTE, POKEWORD, WORD

