Metal Commands: Section "C"

CALL

Type: complex command

CALL address{,options}

CALL shell$,bitpointer,stafflevel

CALL memarea(91)

CALL xay,name$

CALL "VOLS",bit,staff

The CALL command is used in two ways: the first is to make an in-line call to a machine language external that is loaded into some memarea location (CALL cannot be used to run "normal" externals or packages).

The second way (and the one used the most) is for it to call (run) "shell commands" - that is, special externals that are stored in 0/COMMANDS that can be run from the Metal Command Shell line.

Using the first format assumes that you have a custom-written machine language program loaded into address. The first instruction of this program should be the opcode "CLD" (clear decimal mode) - Apple uses this for most of their ProDOS drivers, and it's a simple way of validating the program.

These "mini-externals" are written the same way as the real ones, they are just loaded in a different way (you have to do the loading yourself using Bload), and run out of a different location of memory.

options, if any, depend on the program being called.

The "shell" command format requires that you pass it the bitpointer and stafflevel values. The bitpointer is a 16-bit (2 byte) value pointing the to the user's "bit access flags" record - the shell command may check these to make sure the user has the required access level to use this command.

stafflevel is used for some shell commands to make sure that potentially hazardous commands - such as Quit or Term - are only being used by users with enough "staff" access. Under FV, staff access levels range from 0 to 3, with 0 being "normal" users, and 3 being the main system sysop (Metal passes staff level 4 - super local sysop - to shell commands when being run from the Shell Command line).

See also: BLOAD, EXT, Writing Externals, Shell Commands

CHR$

Type: string function

char$=CHR$(number)

bk$=CHR$(8)

if CHR$(13)=key$ goto hit.return

CHR$ returns a 1-character-long string based on the number given. Not surprisingly, the character returned is the ascii character for the number; thus, if 32 is used, a space is returned, and if 65 is used, then an upper-case "A" is returned.

See also: BITSTR$, CNGCASE$, FILEINFO$, HEXSTR$, LEFT$, MID$, REPEAT$, RIGHT$, STR$

CLEAR

Type: complex command

CLEAR {extenders}

CLEAR

CLEAR VID

CLEAR INPUT

The CLEAR command is used to reset various and sundry things. Normally, CLEAR is used just to reset the Variable Memory to blank, deleting all of your variables - including those that were PUSHVAR'd onto the stack.

CLEAR may also be followed by a single extender command - using one of the following extenders after a CLEAR will not clear your Variable Memory, but do whatever the explanation says:

 Extender Does

 -------- ----

 RETURN Clears the Gosub/Return stack.

 INPUT Clears the KeyBuff buffer that buffers input from the modem/keyboard.

 FOR Clears the For/Next stack.

 ABORT$ This is directly equivalent to ABORT$="".

 VID Using CLEAR VID sends a control-L to both the modem and the local screens. This is directly equivalent to a PRINTchr$(12);.

 DO This clears the Do/Until stack.

 WHILE This clears the While/EndWhile stack.

 IF This clears the If/LongIf/EndIf stack. Not normally needed.

 LONG {IF} Same as CLEAR IF. Either this or CLEAR IF will function exactly the same.

 TRAP Clears all of the current TRAPs.

 ^ Resets everything - all Hides are lost, all user prefixes are wiped, the screen is reset, everything is as if the system was reset.

 array1 to This will erase an array list - the syntax is array(start) TO

 array2 array(end).

 -none- Clears the VMH memory, the Gosub/Return stack, the For/Next stack, the Abort$ value, the Do/Until stack, the While/Endwhile stack, the If/LongIf/EndIf stack. Does not clear the video or the input buffer.

See also: POP, TRAP

CLOCK

Type: complex system command/variable

CLOCK(timer)

CLOCK(timer,option)=value

result=CLOCK(timer,option)

CLOCK(1)

CLOCK(2,1)=60*mins

sleft=CLOCK(4,2)

The CLOCK set of commands is used primarily to set, reset, and read the five timers that Metal has built into it. It also has a little-used extension that allows the program to force an update of the "ticker" in the upper-right hand corner of the screen (normally this is updated every time the video driver handles a carriage return character).

In order to force the Video Driver to update the "ticker" display, the command CLOCK(0) should be used:

 CLOCK(0)

Note that this value cannot be read, as it does nothing more than force a normally occurring Metal System Event.

All five timers are handled in the same fashion and manner as each other - there is no special syntax for timer number 4 as opposed to timer number 1. Simply use the value of 4 instead of 1 for the timer value.

There are three operations for each timer. The first operation, where the option is missing, will reset a timer. This is used by simply doing a CLOCK(timer) command, without any options following the timer value. This value cannot be equated to (followed by an equals sign) or read (used in an expression). Resetting a clock timer will zero out the time remaining for the countdown, the time elapsed since the reset to zero, etc. At this point, the time elapsed counter will begin to increment once each second.

In order to read how long it was since the clock timer was reset, you must use the CLOCK(timer,1) syntax. Reading this will return how long, in seconds, it was since the clock timer was reset. This operation cannot be changed by equating it to a new value, since this would reset the time remaining counter. This is called a "count up" timer.

The third and final operation is a read and write value, and is used to set or check the time remaining in the counter. This value is reset to zero (turned off) when the CLOCK(timer) command is used. This is called the "count down" timer.

In order to set the number of seconds to count down from, you must equate the CLOCK(timer,2) to some value. Doing this will set the "count down" value, but not affect the "time since reset" value. You may not currently perform the == (double equals) operation on this command.

 CLOCK(timer,2)=3600 (60 minutes count down)

 CLOCK(timer,2)=CLOCK(timer,2)+60 (add 1 minute to count down)

When you read the CLOCK(timer,2) value, you are reading the number of seconds remaining in this counter since it was equated to a value. Each time you set the "count down" value to some number, you are resetting the count down - you are not changing when the clock was reset nor how long it was reset.

Once the count down value reaches zero, it stays there - it doesn't go into a negative number.

The fifth clock is used only during a INPUT or GET from the keyboard. It is handled just like the others, but you reference to it by using 5 as the value of timer. Clock #5 is reset each time the system goes looking for a key from the user - thus the only usable portion of Clock #5 is the countdown value, which should be set to the number of seconds the user has to press a key.

To trap for a "key timeout", you should use TRAP CLOCK(5) GOTO KEYTIMEOUT. You never have to reset Clock #5 by yourself.

Note 1: The CLOCK command is based upon the defined CLOCK=<clock_driver> command in the Metal.Config script file. If the clock driver is the ProDOS clock or one that does not support seconds, then the CLOCK functions will only return values that are in even multiplies of 60 - ie: the values will only change once every 60 seconds or 1 minute.

Note 2: The TRAP CLOCK(timer) function is based upon the CLOCK(timer,2) value - if the TRAP function is executed prior to setting the count-down value, then the TRAP is negated and is not placed in the Trap Table.

Note 3: If the clock timer(s) "cross days" (ie: go from some time prior to midnight to some time past midnight), the timers will automatically correct themselves and will result in a correct timing value. Thus if CLOCK(1) was reset at 23:50:02, and was read next at 00:20:12, the CLOCK(1,2) function will return a value of 30 minutes and 10 seconds (or 1810).

Note 4: All the timers work on and return values based in seconds - thus, one minute equals 60 seconds, one hour equals 3600 seconds, and one day equals 86400 seconds. However, since the clocks cannot process values over one day long (if you are timing something this long, you need a Cray, not an Apple), the realistic value limit of the clocks is from 0 to 86399.

Note 5: Adding time to existing time remaining.

 The way to do this is as follows: take the time the count-down was initialized to and then add the extra time to it. Remember, the clocks base their counting downs from when they were reset.

 Another way to do this is to take the time remaining, add it to the time spent, and then add the additional time to give.

See Also: DATE$, DAYNUM, TIME$, TRAP

CLOSE

Type: command

CLOSE {#file}

CLOSE

CLOSE #2

CLOSE is the reverse of Open - for each and every Open, you must have a CLOSE in order for ProDOS to update the file on the disk.

If you don't follow close with a #file value, then CLOSE defaults into the current Device value that you have set up.

The value for file may be from 0 to 4, inclusive. If the file value is zero, then all Open'd files are closed off.

If, on the other hand, you specify a value of 1 to 4, then only that file number is closed off.

If no file is Open that corresponds to the file value, then the Close has no effect.

CLOSE will generate an error if the given #file value is less than zero or greater than four ("Device Range Error").

See also: APPEND, BLOAD, BSAVE, CREATE, DELETE, DEVICE, DOSERR, FCOPY, FILEAUXTYPE, FILEINFO$, FILEMARK, FILESIZE, FILETYPE, FLUSH, INPUT, ONLINE$, OPEN, POSITION, PREFIX$, PRINT, RENAME, RECNUM, RUN, RUNSUB, TCOPY

CNGCASE$

Type: string function

result$=CNGCASE$(string$,mode)

up$=CNGCASE$(name$,0)

ias$=CNGCASE$(name$,3)

weird$=CNGCASE$(iea$,4)

CNGCASE$ (ChaNGe CASE of string) is a string function that takes the given string$ value and performs an operation based on mode to it, returning that modified string into result$.

Depending on mode, you perform one of five operations on a string:

 mode value result example

 ---------- ------ -------

 0 Entire string is "Wilson" becomes "WILSON"

 shifted to upper

 case

 1 Entire string is "Wilson" becomes "wilson"

 shifted to lower

 case

 2 The first character "WILSON" becomes "Wilson"

 of the string is in

 upper case, the rest

 is in lower case

 3 Performs "Name" case "TC WILSON" becomes "Tc Wilson"

 shift on string

 4 Flips the case of "Wilson" becomes "wILSON"

 each character

CNGCASE$ is most useful in "prettying up" text prior to being printed. For example, if you have a data base that consists of names, all in upper case, you could either simply print the upper case names out (like "TC WILSON" and "BILL ROBERTS"), or perform a CNGCASE$, like the following example shows:

 open #1,"names"

 loop

 input #1,a$

 if a$="" goto end.loop

 print CNGCASE$(a$,3) ! do "name" conversion

 goto loop

 end.loop

 close #1

 return

Since you would have to print out the value of a$ in order to display the names, you can use the CNGCASE$ function to pre-process a$ and print out "Tc Wilson" and "Bill Roberts".

Note that prior case of the characters of the string are not taken into account when CNGCASE$ operates - it shifts the case to what is needed.

Special note on mode 3 (name shift):

Mode 3 shifts the entire string to lower case and then scans through it, looking for certain characters - these characters are: the space, a dash, or a double-quote mark. Once one of these are found, the character following it (provided it is an alphabetic character) is shifted to upper case. This means the following will happen:

 arc-angel becomes Arc-Angel

 arc angel becomes Arc Angel

 arcangel becomes Arcangel

 "arc" angel becomes "Arc" Angel

See also: BITSTR$, CHR$, FILEINFO$, HEXSTR$, LEFT$, MID$, REPEAT$, RIGHT$, STR$

COMPILE

Type: command

COMPILE filename$ {MODE(function)}

COMPILE a$

COMPILE "1/main" MODE(1)

The COMPILE command is used to force Metal to compile a module without actually running it. All the normal compile "error reports" are displayed, but the system does not run the compiled module - it returns to the original module, much like a Gosub/Return.

The filename$ parameter is, of course, the file to compile. If the source file does not exist, the COMPILE command will crash with a system error.

Normally, COMPILE is used to pre-compile a possibly changed module. In this regard, COMPILE acts just like the normal Run command - it checks if the source file has been changed, the object code file is missing, or if the object code file is bad. If any of these conditions exist, COMPILE will automatically "pre-compile" the module.

If you follow the COMPILE filename$ with the optional MODE(function) parameter, where function is any non-zero value (in other words, MODE(1)), then COMPILE will force the system to re-compile the module, no matter if the thing needs to or not.

A good example of using the COMPILE command can be found in viewing the PRECOMPILE.S source file, which batch-compiles the entire BBS upon startup.

See also: RUN, RUNSUB

CR or \

Type: buried command

print CR{(repeat)}

input CR variable CR variable ...

print CR(2) "Line 1" CR "Line 2"

input CR "Prompt:" a$ CR b$

CR (Carriage Return) is a buried command - it is never executed by Metal, but the Print and Input commands both allow the CR command to be used within them.

When using CR in a Print statement, CR will output a control-M character at least one time, or for as many as the optional repeat value has. This is useful when displaying lines of text without having to resort to extra Print commands.

When using CR in an Input statement, CR may be used prior to the prompt string to print a return out. If so, unlike the Print, Input will not allow you use the optional repeat value.

Generally, CR is used as a separator in Input statements where more than one variable value is being gathered - in this function, CR works as a "place holder", telling Metal to look for a control-M between the variables.

See also: INPUT, PRINT

CR$ or \$

Type: string function

print CR$

a$=CR$

if i$=CR$ goto exit

The CR$ command will simply return a 1-character string that is nothing but the carriage return character (ascii code 13, or chr$(13)). The only reason for this command is to allow the BBS program to run slightly faster, and to make your programs smaller.

See also: DATE$, ESC$, FILE$, SYSINFO$, TIME$,

CREATE

Type: command

CREATE filename${,filetype{,auxtype}}

CREATE subdir$

CREATE text$,4

CREATE dhr$,6,8192

CREATE is the command you must use in order to make a new file on the disk. Once this file is created, you may begin to write to it and fill it with data - reading from a newly created file will result in no data being gather (none was stored off).

By default, CREATE creates "sub-directory" files on the disk. Sub-Dir files are very useful for storing data files away from the main directory - considering that ProDOS only allows 51 files on the main directory, this is not a bad idea at all!

If you give CREATE the optional filetype, you are telling Metal not to create a sub-directory file, but to create a new file of some other type. Generally, you will most likely be using one of the following three filetype values:

 filetype means

 -------- -----

 0 "Typeless" ("NON") file.

 4 "Text" ("TXT") file - what you're reading.

 6 "Binary" ("BIN") file - pictures, routines, etc.

After you give the optional filetype, you may also give the optional auxtype, which your program can then later access or Metal can use to perform various things. If you don't give this value, Metal will use a default value of zero.

The auxtype ("Auxiliary Filetype") is not used by ProDOS per say, but it is used by some programs to get additional information about a file without having to actually open and read it. For example:

 TXT (Text) files: the auxtype is the size of each random access record, in bytes or characters. If this value is zero or one, then the file is consider sequential (ie: a text or documentation file).

 BIN (Binary) files: Basic.System defines the auxtype of a binary file as the "default load address". For example, hi-res pictures generally have an auxtype of 8192 or 16384.

Metal makes little use of auxtype value, with the exception of the POSITION and RECNUM values, which use the value as the size of the random access record (remember this fact, it's important in the "R" section).

Metal will not use the auxtype value when creating new sub-directory files - it always uses a value of zero, as per Apple Standards.

When attempting to create a file, Metal will check and see if the pathname given actually exists - if not, Metal will attempt to create the missing sub-dirs in the pathname, making it legal. For example, say you have a newly formatted disk called "/BLANK", and wish to create a binary file called "/BLANK/DIR1/DIR2/BINFILE" - Metal, since it cannot find the DIR1 directory, creates it; it then has to create the DIR2 directory, and finally the BINFILE file. This operation is totally automatic, and you never have to worry about doing this yourself.

Note: Metal does not format disks with the CREATE command - if you need to make a blank disk or erase an existing one, you must use a filing/disk utility program.

See also: APPEND, BLOAD, BSAVE, CLOSE, DELETE, DEVICE, DOSERR, FCOPY, FILEAUXTYPE, FILEINFO$, FILEMARK, FILESIZE, FILETYPE, FLUSH, INPUT, ONLINE$, OPEN, POSITION, PREFIX$, PRINT, RENAME, RECNUM, RUN, RUNSUB, TCOPY
