Metal Commands: Section "G”

GET

Type: command

GET {#device{,}} {MODE(option{,filter${,cris$}}) {,}} variable

GET a$

GET #1,a$

GET MODE(1) a$

GET MODE(1,"ABC") x$

GET MODE(0,"XAQ","Q") i$

GET MODE("ZXC") r$

GET MODE("LOP","O") b$

GET z

The GET command is normally used with some form of "Hot" or "Quick" key control logic. What happens is that Metal waits, displays a cursor, and when the user presses a key, continues, returning the character or value of the character in the variable.

However, if the default Device value is non-zero, or the #device optional is used, then Metal won't display a cursor - it will just get a single character from that device (provided it is capable of doing so) and return it to the variable. The character is never echoed back to the device or the screen in this case.

The MODE(options) optional is not used if the input device is not the default #0 device, since these "modes" are only useful if input is being taken from a "live" user. Passing a MODE parameter to a non-device 0 will have no effect on how Metal operates.

       MODE(option) values  does...

       -------------------    -------

             MODE(0)          default mode - lower case is converted to upper case, the character is echoed back, control-S and control-Q are filtered and not passed back to caller.

             MODE(1)          lower case is converted to upper case, but the character is not echoed back. Control-S and control-Q are filtered and not passed back to caller.

             MODE(2)          lower case is not converted to upper case, the character is echoed back. Control-S and control-Q are filtered and not passed back to caller. This mode is used if data is being taken from a file device.

             MODE(3)          lower case is not converted, the character is not echoed back. Control-S and control-Q are filtered and not passed back to caller.

             MODE(4)          default mode - lower case is converted to upper case, the character is echoed back, control-S and control-Q are NOT filtered out.

             MODE(5)          lower case is converted to upper case, but the character is not echoed back. Control-S and control-Q are NOT filtered out.

             MODE(6)          lower case is not converted to upper case, the character is echoed back. Control-S and control-Q are NOT filtered out.

             MODE(7)          lower case is not converted, the character is not echoed back. Control-S and control-Q are NOT filtered out.

The filter$ optional is used to allow the GET command to pre-process the keys hit. Using this option allows you to tell GET what keys it may allow to be hit. If the user presses a key that is not in the filter$ list, then nothing is passed back (the GET key never gets out of the loop). If you don't give filter$, then GET will allow all keys.

After the filter$ optional there may be a cris$ character. This is a single character used to tell GET what to return the CR or Enter key back as. Normally, if you set filter$ up, the Enter key is not part of hit, and you'll have some sort of "default" option that takes place when Enter is hit. By passing cris$, you tell GET to return that character when Enter is hit.

Depending on what type of variable is used, GET will force certain constraints on the input:

  string variable (A$, zx$, etc): all keys are allowed.

  number variable (A, zx, etc): only the keys 0 through 9 are allowed.

Here are some examples:

       print "Press a key:";: GET a$:return

          print "Command>";

       loop

          GET MODE(1) a$

          if a$="?" print "Help!":goto ShowHelp

          if a$=chr$(8) print "Left Arrow":goto LeftArrow

          goto Loop

Note that like Input, GET clears the Abort$ value, and it also affects the Input Buffer data.

Also note that the GET command from Device #0 will, unless you explicitly tell it otherwise, filter out the control-S and control-Q keys (these keys are normally used to pause and restart text display). Since it is very often that you don't wish to fiddle around with these control characters, GET will automatically "eat" them - each time one or the other is gathered by GET, the routine will simply ignore the control-S or -Q and loop back looking for more.

If .degmode get X is used in the source of a program, Metal will use the "x" value as the default GET Mode value. Normally, Metal defaults to Mode 0, but most BBS system reset this default on a program-by-program basis to default into Mode 1 (lower to upper, no echo back).

If you wish to use the default GET mode, and still use the filtering and cr=this strings, you may omit the option, from the list. For example:

             GET MODE("YNQ","Y") I$

Will use the current GET Mode default, but will allow the YNQ filter string to be used.

See also: ABORT$, CLEAR, INPUT, PRINT, SYSINFO

GOTO

Type: flow control command

GOTO label

GOTO LogUserOff

if money=0 GOTO OutOfCash

on x GOTO Menu1,Menu2,Menu3

trap syserr GOTO SystemError

The GOTO command will be one of your heaviest used commands under Metal. While it is certainly possible to write a program without using a single GOTO command, doing so would be more an exercise in machismo than one in common sense.

The GOTO command can be used by itself, within an If-Then-Else, from a Trap, or the On-X flow controls. It is most commonly used within an If-Then-Else structure, however.

What the GOTO command does is change where the program is running at - Metal switches from one place and "gotos" another.

Using a GOTO is simple - you just follow the command with the label that you wish to pick execution up at - like LogUserOff, ShowHelpFile, etc, etc. For example:

              GOTO ShowHelpFile

              ...maybe some code that isn't executed...

             ShowHelpFile

              tcopy "help.file"

See also: FOR, IF, GOSUB, LONG IF, ON, PUSH, NEXT, THEN, TRAP, UNTIL, WHILE

GOSUB

Type: flow control command

GOSUB label{(parms)}

GOSUB label{({parms})(returns)}

GOSUB GetInput

if hit=1 GOSUB Ouch

on c GOSUB Display1,Display2,Display3

trap doserr GOSUB ShowDosErr

GOSUB Function(name$)

GOSUB Function(7,s$,val(x$))

GOSUB Function(zx)(ry)

GOSUB Function()(l,a$,r$)

The GOSUB (GOto SUBroutine) command is used in conjunction with the Return command - what GOSUB does is very much like the GOTO command, but it remembers where Metal was at when the command was executed.

You use the GOSUB command much like a GOTO command, but you must remember to "exit" a Subroutine using the Return command, like the following example shows:

              GOSUB ShowName

              Goto SomePlaceElse

             ShowName

              print "Your name is "name$

              Return

By adding the optional parenthesis after the label name, you are letting Metal know that you wish to pass the parms to and/or from the routine.

Please refer to the section on Local Variables for more information on the structure and usage of GOSUB's with parenthesis (function calling).

See also: FOR, IF, GOTO, LONG IF, ON, PUSH, NEXT, RETURN, THEN, TRAP, UNTIL, WHILE, Local Variables

