Metal Commands: Section "L"

LEFT$

Type: string function

result$=LEFT$(string$,length)

q$=LEFT$(a$,15)

name$=LEFT$(name$,mx)

if LEFT$(i$,1)="Q" goto QuitBack

The LEFT$ function allows you to "trim" a given string down to so-and-so many characters. This is useful for several things - such as limiting a string to say, 15 characters, or checking just the first character of a string for some sort of match.

What LEFT$ does is take the given string$ parameter and use the first length number of characters (from the left, as it seems). For example:

 Wilson [6 characters long]

 LEFT$("Wilson",3) [take the first or "left" 3 characters]

 Wil [the result is this]

However, there is a special clause to the LEFT$ operation: if the length is greater than the total number of characters in the string$ to be used, then LEFT$ can only return the original string$! The following example shows this:

 Tc Wilson [9 characters long]

 LEFT$("Tc Wilson",20) [want the first 20 characters....]

 Tc Wilson [but 20>9, so we can only use the original string]

See also: BITSTR$, CHR$, CNGCASE$, FILEINFO$, HEXSTR$, MID$, REPEAT$, RIGHT$, STR$

LEN

**Type: math function based on string data

result=LEN(string${,option})

x=LEN(a$)

if LEN(q$)=0 print "You've gotta enter something!"

r=LEN(i$,1)

The LEN (short for LENgth) returns the number of characters (the length) of the given string$. If the given string$ is null, then LEN will return a value of zero. Any other value from 1 to 255 means that the string is so-and-so many characters long.

If you give LEN a value of 1 for option, LEN will ignore control characters in the string; this is useful when printing strings that have buried control codes in them and you need to know how many printing characters will actually be shown.

See also: ABS, ASC, BITVAL, HEXVAL, INSTRING, MEMAREA, MEMSIZE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, PADDLE, RANDOM, ROTL, ROTR, SIGN, SYSINFO, VAL

LONG IF

Type: logical flow command

LONG IF condition_is_true

 commands_if_true

 {ELSE

 commands if false}

END IF

LONG IF name$="Tc Wilson"

 print "Welcome sir, to our wonderful system!"

 tl=0:byte2(9)=1:sysf=1

 print "You have massive access this call!"

 ELSE

 print "Welcome, "name$", to our system!"

 tl=byte1(1)*60:byte2(9)=0:sysf=0

 print "You have "tl" minutes this call!"

END IF

LONG IF is an extension of the standard If-Then command. Like If-Then, LONGIF executes commands based on the result of the condition_is_true expression.

Unlike the If-Then command, LONG IF allows you to place more than a single line into the commands to do - this is handy when you have a large condition_is_true expression, or when you have a lot of commands to processes based upon that result.

LONG IF's syntax is very simple and is a logical extension of the If-Then command. What you do is place the expression to be checked after the LONG IF (or LONGIF or LONG IF - spacing is unimportant, but they must follow each other - LONG OR IF won't work, for example), start a new line, and place the commands you want executed, as many as you want, as many lines as you want. You can even place labels within this "block" of code, and have things such as For-Next loops, If-Then-Goto loops, Do-While, While-EndWhile, etc, all within this block of code. You can even nest multiple LONG IF's together, up to about 6 levels deep.

After your block of code, you must tell Metal where the LONG IF ends at - unlike the normal If-Then, where the end of the line implied the end of the If-Then, the LONG IF requires that you place an END IF at the end of the block of code.

The ELSE command if fully optional, and should be on a line by itself, as the above example showed.

Remember, GOTO's are handled specially under LONG IF's - the LONG IF is still "active", and you must tell Metal not to think it's running under an LONG IF conditional any more. Handle this minor problem as follows:

 LONG IF a=0

 print "Yoiks!":pop if:goto DeadMeat

 END IF

The reason for this is the above-mentioned "loop-back" coding, as the following example shows:

 LONG IF page=2

 label

 print "Press the RETURN key:";

 get a$

 if a$<>chr$(13) goto label

 END IF

If Metal were to clear out the current LONG IF whenever a Goto was encountered, it would make coding such a thing as the above impossible. So the trade-off to allow this requires you to place a Pop If before a Goto that prematurely exits the LONG IF-END IF coding.

See also: CLEAR, ELSE, END, FOR, GOTO, GOSUB, IF, NEXT, POP, STEP, THEN, UNTIL, WHILE

