Metal Commands: Section "M"

MAKEWORKFILE(return${,dir$})

MAKEWORKFILE(f$)

MAKEWORKFILE(a$,"4/PRIVATESPOOL")

MAKEWORKFILE(xq$,fn$)

MAKEWORKFILE is a built-in "procedure", similar to the SMF commands. What MAKEWORKFILE does is creates a new, blank, typeless (filetype of 0, auxtype of 0) in either the 9/ directory (if the dir$ optional is missing) or in the directory given in dir$.

If the string given for dir$ actually points to an existing non-directory file (say, for example, you give it as 0/METAL.SYSTEM), MAKEWORKFILE will make the new workfile in that directory - thus it will return the workfile in return$ as "0/WKF.1234568".

MAKEWORKFILE always returns back the full, expanded filename of the file created - thus it will return back "/RAM5/WORKDIR/WKF.00004191", not "9/WKF.00004191".

See also: CREATE, DELETE, OPEN, SMF commands

MCLEAR

Type: command

MCLEAR start TO value FOR length

MCLEAR byte1 TO 0 for 256

MCLEAR memarea(10) TO $80 FOR memsize(10)

MCLEAR (Memory CLEAR) simply lets you wipe a given range of memory to a certain value. It is very simple to use: the start value is the memory address to start wiping at (byte1 or memarea(10) for examples), value is the 0-255 number to erase the range to (normally, 0 is used for this), and length is how many bytes to erase.

Notice that MCLEAR treats the value as if it is 0-255, no matter if it is -1 or 1982 or whatever. Also, the length value is the total number of bytes of memory to erase, not from start to start+length - the actual area wiped is start to start+length-1 - the following math explains this more clearly:

 length=5, start=8192, End=8192+5=8197.

 Wrong. You're clearing the following:

 8192 8193 8194 8195 8196 8197 - 6 bytes, not 5.

 length=5, start=8192, End=8192+5-1=8196

 Correct. You're clearing the following:

 8192 8193 8194 8195 8196 - 5 bytes.

See also: ADDR, ALLOCATE, BIT, BLOAD, BSAVE, BYTE, DEALLOCATE, MCOPY, MEMAREA, MEMSIZE, MEMSTRING$, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEADDR, POKEBYTE, POKEWORD, WORD

MCOPY

Type: command

MCOPY source TO target FOR length

MCOPY memarea(12) TO temp FOR 256

MCOPY msg(msg,2)*16 TO ram9 FOR 1600+filesize(2)

MCOPY (Memory COPY) is a built-in command that lets you copy (duplicate) a range of memory into another range of memory. The MCOPY command can be consider the same as the following program fragment:

 for j = 0 to length-1 step 1

 poke source+j,peek(target+j)

 next

MCOPY can be useful if you're into doing elaborate programs where you have to duplicate, say, the current user's profile into a working area. MCOPY will copy all bytes in the range, regardless of what is there.

A programming note here: if the given source and target address are set up in the correct order, it is possible to screw things up nicely - instead of copying data as you would wish, you will get the first, say, four bytes of data repeated over and over again. The following fragment shows this:

 MCOPY 8192 to 8193 for 256

What happens here is that the byte at location 8192 is copied to 8193, and then the byte at location 8193 is copied to 8194, etc - thus, you have nothing but the original value of the byte at 8192 repeated over and over again!

See also: ADDR, ALLOCATE, BIT, BLOAD, BSAVE, BYTE, DEALLOCATE, MCLEAR, MEMAREA, MEMSIZE, MEMSTRING$, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEADDR, POKEBYTE, POKEWORD, WORD

MEMAREA

Type: system value

result=MEMAREA(value)

x=MEMAREA(7)

mclear MEMAREA(msg) to 0 for 16

The MEMAREA command ties directly in with the Allocate command - Allocate finds and assigns a memory area, and MEMAREA retrieves the starting location of that area.

Using MEMAREA is simple - you simply give it the area number (value) that you wish to find out about, and it returns a memory address, ranging from 8192 to 32767.

If MEMAREA returns a zero value, then that particular area number isn't Allocated. The following program listing gives a routine that will list all the current Allocated memory areas:

 for j = 1 to 127

 if MEMAREA(j)<>0 print "Area "j" starts at "MEMAREA(j)

 next

MEMAREA will only crash with an Range Error if the value given is not within the range of 1 to 127.

See also: ADDR, ALLOCATE, BIT, BLOAD, BSAVE, BYTE, DEALLOCATE, MCLEAR, MCOPY, MEMSIZE, MEMSTRING$, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEADDR, POKEBYTE, POKEWORD, WORD

MEMSIZE

Type: system value

result=MEMSIZE(value)

x=MEMSIZE(7)

mclear memarea(msg) to 0 for MEMSIZE(msg)

The other half of Memarea is the MEMSIZE command - whereas Memarea returns the starting location of a particular memory area, MEMSIZE returns the number of bytes that the memory area uses.

When you use the Allocate command to parcel out memory for a memory area, you gave it a parameter that told Allocate how many bytes that you wanted. For the most part, you will always know how big that area is, but there will be times when you are doing radical programming that will require the size of the Allocated area to shrink and grow. This is where MEMSIZE comes into play.

Like Memarea, using MEMSIZE is simple - you simply give it the area number (value) that you wish to find out about, and it returns the length of that area, ranging from 0 to 24576 bytes.

If MEMSIZE returns a zero value, then that particular area number isn't Allocated. The following modified program listing of the above routine will list all the current Allocated memory areas, and the sizes of each:

 for j = 1 to 127

 long if memarea(j)<>0

 print "Area "j" starts at "memarea(j)" and is "MEMSIZE(j)" bytes long."

 next

MEMSIZE will only crash with an Range Error if the value given is not within the range of 1 to 127.

See also: ADDR, ALLOCATE, BIT, BLOAD, BSAVE, BYTE, DEALLOCATE, MCLEAR, MCOPY, MEMAREA, MEMSTRING$, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEADDR, POKEBYTE, POKEWORD, WORD

MEMSTRING$

Type: command/string function

result$=MEMSTRING(address{,length})

MEMSTRING$(address{,length})=string$

MEMSTRING$(temp)=name$

MEMSTRING$(uf,32)=hand$

print "Your name is "MEMSTRING$(temp)

print "Your handle is "MEMSTRING$(uf,32)

MEMSTRING$ is used to place a given string or string expression into a memory location, or to read a previously placed string out of memory.

MEMSTRING$ is set up to allow you two slightly different storage formats: the first format, used when the ,length optional is not given, places the length of the string into memory, followed by the string itself. This is the normal storage format that ProDOS and GSOS use to store their filenames.

The second storage format is used when you give the ,length optional - you are telling MEMSTRING$ that the string is so-and-so characters long, and to not use the first byte as the length. This is useful if you want to limit the size of a string to 32 characters.

The following examples clearly illustrate the effects of each storage format:

 MEMSTRING$(8192)="Tc Wilson"

 8192: 009 9 characters long

 8193: 084 "T"

 8194: 099 "c"

 8195: 032 " "

 8196: 087 "W"

 8197: 105 "i"

 8198: 108 "l"

 8199: 115 "s"

 8200: 111 "o"

 8201: 110 "n"

 a$=MEMSTRING$(8192)

 A$ will be 9 characters long: "Tc Wilson"

 MEMSTRING$(8192,4)="Tc Wilson"

 8192: 084 "T"

 8193: 099 "c"

 8194: 032 " "

 8195: 087 "W"

 a$=MEMSTRING$(8192,4)

 A$ will be 4 characters long: "Tc W"

 MEMSTRING$(8192,4)="Tc"

 8192: 084 "T"

 8193: 099 "c"

 8194: 000 extras padded to nulls

 8195: 000 extras padded to nulls

 a$=MEMSTRING$(8192,4)

 A$ will be 2 characters long: "Tc"

 a$=MEMSTRING$(8192) [whoops?]

 A$ will be 1 character long: "c"

The last example was given to show what would happen if you accidentally mixed the wrong retrieval with the wrong storage: since you explicitly told MEMSTRING$ to not store off the length of the string into memory, the retrieval must also use this - however, you told it to use the first character of the memory as the length of the string that follows - in other words, expect a string that is 84 characters long to follow. However, since you tried to store a 2-character string into a 4-byte area, MEMSTRING$ padded out the last 2 bytes to zeros - and MEMSTRING$ balked at trying to read that back out.

See also: ADDR, ALLOCATE, BIT, BLOAD, BSAVE, BYTE, DEALLOCATE, MCLEAR, MCOPY, MEMAREA, MEMSIZE, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEADDR, POKEBYTE, POKEWORD, WORD

MID$

Type: string function

result$=MID$(string$,index{,length})

a$=MID$(i$,4,1)

if left$(z$,1)=" " then z$=MID$(z$,2)

if val(MID$(date$,7,2)<>91 goto Not1991

The MID$ function is used to report back characters within the given string$. This can be used in myriad ways, from checking the 3rd character over to stripping the first character out of a string.

Normally, the length optional is used - it is rare that it is not used.

The way MID$ functions is rather straightforward: you give it two or three parameters - the string$ to look at, the character index into the string, and how many characters back (the length) that you want.

For example, let's take a look at the following program fragment:

 a$=MID$("Tc Wilson",1,2)

The string$ to be operated on is Tc Wilson, and the index value is 1 - the first character of the string, and we want a length of 2 characters back. Thus, A$ will be equal to Tc - the first 2 characters of the string.

 a$=MID$("Tc Wilson",4,4)

Here, we are still looking at Tc Wilson, but we want to start looking at the 4th character into the string - "W" - and we only want 4 characters output. Thus A$ will be equal to Wils.

 a$=MID$("Tc Wilson",4,20)

Notice in this example that the length is 20 characters long - but the entire string is only 9 characters long! This is the same as the 4,4 example directly above - but what will A$ be equal to? It will be equal to Wilson - that's all.

Why is this? Well, MID$ got the length value, and saw that you wanted to start accessing the Tc Wilson string at the 4th character (the "W", remember?). Since the rest of the string - Wilson - is only 6 characters long, it only used 6 characters, not 20!

Now let's see some examples that don't use the length optional:

 a$=MID$("Tc Wilson",4)

A$ will be equal to Wilson - the same as the previous two examples. Why is this? Well, if MID$ doesn't get the length operation, it assumes that you want the string starting at the index character to the end of the string.

Rules for usage of MID$:

o If the index value is larger than the string$ is (say you want the 50th character, and the string is only 20 characters long), then MID$ will return a "null" string.

o If the length optional is absent, then MID$ will return the string starting at index to the end.

o If the length optional is larger than the possible resulting string (say you asked for 50 characters from a 60 character string, but you started at the 40th character), then MID$ will only return as much of the string as it can.

o If the index value is zero, then MID$ will always return a "null" string.

See also: BITSTR$, CNGCASE$, CHR$, FILEINFO$, HEXSTR$, LEFT$, REPEAT$, RIGHT$, STR$

MOD

Type: math operand

result = dividend MOD divisor

x=b1 MOD 7

if (j MOD 4)=0 print ".";

The MOD math operand stands for Modulo - what this high-sounding word really means is that MOD computes the remainder of the two values given.

If you remember your basic math from school, you'll remember that two integer numbers, when divided, always wind up with two results: the result and the remainder. The math operand / handles the result (5/2 will equal 2), while MOD handles the remainder (5 MOD 2 will equal 1).

 result R remainder

 \

 divisor / dividend

For example, let's use the 5 MOD 2 above in the little diagram:

 2 R 1

 \

 2 / 5

 4

 1

The remainder or result of a MOD operation will always be less than the divisor.

See also: B.AND, B.EOR, B.OR, EOR, NAND, NEOR, NOR, NOT, OR, +, -, *, /

MODE

Type: buried command

The MODE command is used in the INPUT, FCOPY, and GET commands, and may also be used in several external packages. The MODE command may not be executed as a normal Metal command - it is always a "buried" command to flag certain optional parameters.

See also: INPUT, FCOPY, GET

MODEM$

Type: command

MODEM$=i$

MODEM$="ATDT5551212"

MODEM$="AT"+x$

The MODEM$ command is used to send commands directly to the modem driver - such as a dial-out for a networking routine or a term program, or maybe to tell the modem to turn the speaker on.

Normally, this command is done to tell the system to dial out and connect up with another computer in order to "network" electronic mail back and forth, but it can be used in whatever fashion you wish.

If the string given to MODEM$ results in the modem connecting with another system, then the MODEM(1) value will go to a "5" value, indicating that a connection has been established.

You should consult your modem's particular documentation for more information on this subject.

See also: MODEM

MODEM

Type: complex system variable

result=MODEM(function)

MODEM(function)=value

baud=MODEM(2)

MODEM(1)=4

The MODEM command is used to set things up with the modem or read what is going on.

The following table lists out each of the possible six function values, what the "name" of each is, and wether or not the function can be read or written:

 function name r/w

 -------- ----------------- ---

 1 Modem State r/w

 2 Baud Rate r

 3 Nulls Sent r/w

 4 LF added to CR r/w

 5 Modem Carrier r

 6 Modem Result r

MODEM(1): Modem State

The Modem State function is used to either set the modem up in some "state" of operations - such as auto-answer, off hook, reset, etc. It may be read to see if the modem has connected or lost carrier.

 MODEM(1)=0 This function will reset the modem, using the string defined in the Metal.Config Script command MODEMINIT.

 MODEM(1)=1 This will hang the phone up and disconnect the modem. It uses the Script command MODEMHANGUP.

 MODEM(1)=2 This will set the modem up for an auto-answer on the next call. It uses the Script command MODEMAUTO.

 MODEM(1)=3 This will tell the modem to try and generate a carrier - basically, go from a voice chat into the modems talking with each other. Uses the Script command MODEMGENCAR.

 MODEM(1)=4 This will take the modem "off the hook" and have the phone companies lady yell at you. Uses the Script command MODEMOFFHOOK.

 Result of MODEM(1):

 MODEM(1)=0 through 4: last State executed.

 MODEM(1)=5: The modem has gotten a good connection and is now online. Read the MODEM(2) value for the baud rate that the system is connected at.

 MODEM(1)=6: The modem has "lost carrier" (read: the user has disconnected by shutting his modem off). This can also be synthesized by pressing the OpenApple-D control to force the system to think that the user has done that.

 MODEM(1)=-1: The modem driver is busy.

Generally, you only need to check if MODEM(1) has gone to a value of 5.

MODEM(2): Baud Rate

This value (which you may only read) returns back the current baud rate of the connection. If there is no connection, then this will return a value of 0; otherwise, it returns the baud rate. The following is a list of valid baud rates:

 0 = 0 baud

 300 = 300 baud

 1200 = 1200 baud

 2400 = 2400 baud

 4800 = 4800 baud

 9600 = 9600 baud

 19200 = 19200 baud

 38400 = 38400 baud

 57600 = 57600 baud

Note: 4800 is displayed locally on the screen as "2400arq" and should be used to distinguish between a standard 2400-baud connect and one that is using one of the MNP-level data corrections. The "arq" comes from standard modem terminology, and refers to "Automatic Repeat Request", and gives rise to the term "error-correcting modem".

MODEM(3): Number of Nulls (chr$0's) sent with each CR (chr$13's)

The function will allow you to read or set the number of "nulls" that the system sends out each time a carriage return character (chr$13) is printed out over the modem. Normally, this should be zero, as using a non-zero value will affect how fast the system works.

This is generally used for term programs that have timing problems when they have to process the carriage returns - by adding null characters each time a carriage return is printed, it lets the BBS, in effect, "slow down" to match the user's term speed.

MODEM(4): Add line feeds (chr$10) when printing CR's (chr$13's)

This is a "flag" value - thus is can only be a value of 0 (off, no line feeds sent) or 1 (line feeds sent). When this is 1, each time the system prints out a carriage return, it also sends out a line feed. Most term programs require a line feed with returns, because carriage returns only move the horizontal tab to the left column, and the line feed will have to be used in order to move the cursor down to the next line.

MODEM(5): Carrier signal check

This is a read-only value, and is used just for your own amusement. It simple returns the current carrier state of the modem, returning a 0 if the modem is not connected to another modem, and 1 if the modem is connected with another modem. Some modems will also bring this value to 1 when they are in the process of getting a carrier; this can be used in dialing routines to check if the modem is in the process of getting connected - the program can then go into a very fast check-loop.

MODEM(6): Modem Result Code

This is also a read-only value. This function returns the current modem result code (say, 0 for OK, 10 for CONNECT 2400) from the low-level Modem Driver. Note that some modems may return different things - you should consult your modem's manual for a list of result codes.

This function is useful if you are networking and need to know if the remote system is "busy" or not answering.

See also: MODEM$, TRAP, Script Commands

