Metal Commands: Section "O"

ON

Type: flow control command

ON value Goto/Gosub/Push label1{,label2{,etc}}

ON x Goto gold,jewels,weapons,armor,monster,trap

ON x Gosub EditUser1,EditUser2,EditUser3

ON x Push PressAkey,PressReturn

The ON command is used in conjunction with the Goto, Gosub, or Push commands to change where the program is at or where it is going to be at.

Between each label, there must be a comma (",") - there may be spaces before and after the comma, but it must be there! Any number of labels may be used in the ON command, from one to 255 (A practical limit is about a dozen, since Metal has a problem with lines longer than 255 characters).

What the ON command does is take the value of value and uses it as an "index" into the list of labels following the Goto, Gosub, or Push command. Depending on what value is equal to, ON will use the first, the second, the third, etc, label in the list, and then use whatever you told it to do - Goto that label, Gosub to that label and return after the list of labels, or Push the label onto the Return stack.

If the ON command cannot get the label "number" that you asked it to - for example, you wanted the 5th label, but only 4 were listed, or you asked for a label number less than 1 (0, for example) - it will do nothing, skipping over the entire block of code.

The following examples using the Goto syntax is shown:

 1: X is equal to 2

 ON x Goto FindHead,FindArm,FindLeg,FindKidney

 Here the FindArm label is used, since it is the 2nd label in the list.

 2: X is equal to 7

 ON x Goto FindHead,FindArm,FindLeg,FindKidney

 Here, the ON-Goto command does nothing, because there is simply no 7th label number - there is only 4.

 3: X is equal to 0

 ON x Goto FindHead,FindArm,FindLeg,FindKidney

 Again, nothing happens, because there is, of course, no "0th label".

And now some examples using the Gosub syntax:

 4: X is equal to 3

 ON x Gosub KillEnemy,KillPartner,KillAlly,KillSelf

 print "is now dead."

 Here, the KillAlly routine is called, and it returns to the Print command.

 5: X is equal to 20

 ON x Gosub KillEnemy,KillPartner,KillAlly,KillSelf

 print "is now dead."

 Remember, there is no 20th label, so none of the listed routines are called - all you will see is the Print "is now dead." routine working. (who's dead? Nobody - none of the KillSomeone routines are called, so nothing really happened).

 6: X is equal to 0

 ON x Gosub KillEnemy,KillPartner,KillAlly,KillSelf

 print "is now dead."

 Again, same as example 5 - nothing happens, but "is now dead." shows up, totally confusing the user.

Many programming languages support the ON-Goto and ON-Gosub syntaxes - AppleSoft being one example. However, Metal has the extension to the "standard" in that is allows you to use the Push command. While the Push syntax is of limited use, it was placed in the program to allow for possible usage by extreme programmers.

See also: FOR, IF, GOSUB, GOTO, LONG IF, NEXT, THEN, TRAP, UNTIL, WHILE

ONLINE$

Type: system value

result$=ONLINE$(slot,drive)

vol$=ONLINE$(7,1)

ram5$=ONLINE(3,2)

print "Volume name is "ONLINE$(s,d)

The ONLINE$ command simply returns the volume name of the passed slot and drive number. Slot may be from 1 to 7, and drive may be either 1 or 2. If there is no device connected, an error occurs while reading the device, or the device has no disk in the drive, ONLINE$ will return a null string.

ONLINE$ always returns a null string (no device online, generally), or a string consisting of 2 to 16 characters. The first character of this string will always be a slash ("/"), followed by the name of the volume or disk.

For example, say you have a hard drive connected to slot 7 of your computer. You only have one partition on this device, so there is only a drive 1 on slot 7 - drive 2 doesn't exist:

 print ONLINE$(7,1) returns /HD1

 print ONLINE$(7,2) returns a null string

This example, of course, assumes that you have named the hard drive "HD1".

See also: CREATE, DELETE, DOSERR, FCOPY, FILEINFO$, ONLINE$, OPEN, PREFIX$, RENAME

OPEN

Type: command

OPEN #filedevice,filename$

OPEN #1,"users"

OPEN #msgs,f$

The OPEN command is used to "open" an existing file and prepare it for input (bload, input) and/or output (bsave, print).

What this means that you are basically readying a file for use - reading a list of names, or writing a random access accounting file, for example.

Once a file has been OPEN'd on a given filedevice, you then refer to it using that filedevice. For example, let's say you OPEN the file "problems" onto file device #2:

 OPEN #2,"problems"

At this point, Metal tries to open the file "problems" into device number 2 (remember, devices 1 through 4 are "file" devices used for OPEN and it's ilk). If all goes well, the file is readied for use, setting several known things up:

 o the Filemark is initialized to zero (the first byte of the file).

 o Doserr will contain a zero (no problems with the last command).

If all does not go well, the Doserr system value will contain the ProDOS error number that occurred (most common results: Bad Buffer Address [device is already in use], File Not Found [doesn't exist], File Already Open [open somewhere else or else you tried to re-OPEN it again]).

Once the file is open, you can then access data inside of it, or put more data into it. For example, let's open our file "problems" and put data into it:

 OPEN #1,"problems"

 print #1,"This is the example."

In this example, the very first part of the file (the first "line") will be the string "This is the example" (without the quotes, of course).

Don't forget, after you have OPEN'd a file, you must Close it off in order for whatever output you did to it last to be saved, and for Metal to know that you are done with the file. If you do not, Metal will blindly leave the file open and in use, and later OPEN's on the same file channel will crash the system with a Syserr of type #80 - File Channel Already In Use.

Note: Metal does not Create a missing file when you try to OPEN it. In order to guarantee that the file will exist when you OPEN it, you must do something along this line:

 Create filename${,filetype,auxtype}

 OPEN #filedevice,filename$

See also: APPEND, BLOAD, BSAVE, CLOSE, CREATE, DELETE, DEVICE, DOSERR, FCOPY, FILEAUXTYPE, FILEINFO$, FILEMARK, FILESIZE, FILETYPE, FLUSH, INPUT, ONLINE$, POSITION, PREFIX$, PRINT, RENAME, RECNUM, RUN, RUNSUB, TCOPY

OR

Type: logic operand

result=operand1 OR operand2

z=x OR y

if wounded OR sick goto doctor

The OR command word is used to check the preceding (operand1) and following (operand2) values and return either a 0 or 1 value.

OR will return a 1 value if either operand1 or operand2 are non-zero values. It returns a zero value only if both operand1 and operand2 are both zero.

OR can be thought of as an logical "adder":

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 1 (anything over 1 is considered a 1)

Note that the actual values of operand1 and operand2 don't really affect the outcome of the OR command - it just cares if the values are either zero or non-zero - non-zero values are treated as a "1" value.

See also: AND, B.AND, B.EOR, B.OR, EOR, NAND, NEOR, NOR, NOT

