Metal Commands: Section "P"
PADDLE

Type: math function

result=PADDLE(index)

x=PADDLE(0)

y=PADDLE(1)

if PADDLE(0)>200 print "Sysop not around"

The PADDLE function is used to simply read the connected paddles or joystick. Since the Apple joystick is nothing more than two paddles working together (one for the left-right or X axis, and the other for the up-down or Y axis), the joystick has immense range.

To read the left-right or X axis of the joystick, you need to use PADDLE(0). For the up-down or Y axis, use PADDLE(1).

The PADDLE command is of limited use, but it can be used in different ways to allow the sysop to dynamically interact with the user without having to press a key on the keyboard.

See also: ABS, ASC, BITVAL, HEXVAL, INSTRING, LEN, MEMAREA, MEMSIZE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, RANDOM, ROTL, ROTR, SIGN, SYSINFO, VAL

PEEK

Type: math function

result=PEEK(address)

za=PEEK(hl)

if PEEK(memarea(1)+3)=100 goto EdgeOfMap

The PEEK command is used to "look at" a byte of memory. It is very simple to use, and functions the same as the BASIC command Peek. However, Metal imposes a few limitations on how you may use PEEK:

o You may not PEEK at anything above $8000 hex or 32768 decimal. This was done to prevent you from accessing the Apple's I/O page and possibly crashing the system.

o You may not PEEK at anything from $100 to $1FFF hex or 256 to 8191 decimal. This was done to prevent you from accessing the stack, vectors, video screen, etc.

o If you try to PEEK at a memory location from $2000 to $7FFF hex or 8192 to 32767 decimal, that location must have been previously Allocated.

Generally, you will be PEEKing at a zero page location (0 to 255 decimal, $000 to $0FF hex) or off of some reference to an Allocated memory area - Memarea(x), Byte, Bit, etc.

PEEK always returns a value from 0 to 255; thus it is considered a byte peek of memory. The command PEEKBYTE and PEEK are one and the same and are translated by the compiler into the same opcode.

See also: ABS, ASC, BITVAL, HEXVAL, INSTRING, LEN, MEMAREA, MEMSIZE, PADDLE, PEEKADDR, PEEKBYTE, PEEKWORD, RANDOM, ROTL, ROTR, SIGN, SYSINFO, VAL

PEEKADDR

Type: math function

result=PEEKADDR(address)

za=PEEKADDR(hl)

if PEEKADDR(memarea(3)+12)<0 goto Negative

The PEEKADDR command is used to "look at" three bytes of memory. It is very simple to use, and functions the same, as the command Peek. Like Peek, PEEKADDR imposes the same rules on how you may use it.

PEEKADDR returns a 3-byte value ranging from -8meg to +8meg - this means that it looks at the data at address, the data at address+1, and the data at address+2.

Like the Addr command, PEEKADDR will return the full 24-bit integer value that Metal can use.

See also: ABS, ASC, BITVAL, HEXVAL, INSTRING, LEN, MEMAREA, MEMSIZE, PADDLE, PEEK, PEEKBYTE, PEEKWORD, RANDOM, ROTL, ROTR, SIGN, SYSINFO, VAL

PEEKBYTE

Type: math function

result=PEEKBYTE(address)

za=PEEKBYTE(hl)

if PEEKBYTE(memarea(2))=21 goto Blackjack

PEEKBYTE is the same as PEEK - you should refer to PEEK for information on this command.

See also: ABS, ASC, BITVAL, HEXVAL, INSTRING, LEN, MEMAREA, MEMSIZE, PADDLE, PEEK, PEEKADDR, PEEKWORD, RANDOM, ROTL, ROTR, SIGN, SYSINFO, VAL

PEEKWORD

Type: math function

result=PEEKWORD(address)

za=PEEKWORD(hl)

if PEEKWORD(memarea(9))>1000 goto TooMuch

The PEEKWORD command is used to "look at" two bytes of memory. It is very simple to use, and functions the same, as the command Peek. Like Peek, PEEKWORD imposes the same rules on how you may use it.

PEEKWORD returns a 2-byte value ranging from 0 to 65535 - this means that it looks at the data at address and the data at address+1.

See also: ABS, ASC, BITVAL, HEXVAL, INSTRING, LEN, MEMAREA, MEMSIZE, PADDLE, PEEK, PEEKADDR, PEEKBYTE, RANDOM, ROTL, ROTR, SIGN, SYSINFO, VAL

PERCENTAGE

Type: math function

result=PERCENTAGE(index,total)

x=PERCENTAGE(filemark(1),filesize(1))

print "I am "PERCENTAGE(ix,tl)"% done"

The PERCENTAGE command is a built-in function that can be used in place of the command "calculate a percentage" routine. The math formula for such a routine is as follows:

 result = index * 100 / total

PERCENTAGE has three advantages over doing the routine yourself:

1) It's smaller.

2) It's faster.

3) It handles values that would cause your routine to "go wild" correctly.

The third advantage is the most important: Metal can only handle 23-bit math (the 24th bit is the pos/neg sign), so if you multiply a number larger than 83,886 by 100, Metal will get confused and think you want to do something with the sign bit. The PERCENTAGE command will check for that condition, and if it exists, will "auto-range" the values given so that it can work on them.

See also: DAYNUM, MAKEWORKFILE, QUIT, RANDOM, SMF command, SWAPVAR

PLAYTONE

Type: command

PLAYTONE (duration,pitch{,toneadd})

PLAYTONE (50,100)

PLAYTONE (83,j,-1)

PLAYTONE will generate either a single tone or a sliding tone on the local end (your computer). It does not send out any special control codes over the modem.

The PLAYTONE routine is a very simple one, and is not really suited to generating quality music - it doesn't take advantage of the GS's sound capabilities, for example - it uses the "standard" Apple II speaker.

The PLAYTONE parameters are broken into two parts - the duration (how long to play the tone), and the pitch. The smaller the value of pitch, the higher the sound of the tone - and the shorter it plays. Conversely, the larger the value of pitch, the lower the sound of the tone, and the longer it plays.

The duration is how many times the routine will repeat the pitch value - thus is you specify a duration of 60, then the PLAYTONE routine will play the pitch 60 times - you will not notice it doing so, as it comes out as one continuous tone.

The optional toneadd value is added to the pitch each time it is played - thus if you give a value of -1 for toneadd, then each time through the duration, the pitch will rise.

For example, if you give the following:

 PLAYTONE (60,100,-1)

The first time the tone is played, it is played at a pitch of 100. The next time, it is played at 99, then 98, etc, so the tone will appear to "rise" up the scale.

The limit of the pitch value is 0 to 2047. If the toneadd value causes it to go past the 2047 limit, it wraps around to 0; if it goes below 0, it wraps around to 2047.

See also: QUIT

POKE

Type: command

POKE address,value

POKE hl,za

POKE memarea(8)+2,9

The POKE command is the inverse of the PEEK command - instead of looking at a byte of memory, you change a byte of memory. It is simple to use, and functions the same as the BASIC command Poke. However, Metal imposes a few limitations on how you may use POKE:

o You may not POKE anything above $8000 hex or 32768 decimal. This was done to prevent you from accessing the Apple's I/O page and possibly crashing the system.

o You may not POKE anything from $000 to $1FFF hex or 0 to 8191 decimal. This was done to prevent you from accessing the stack, vectors, video screen, etc.

o If you try to POKE a memory location from $2000 to $7FFF hex or 8192 to 32767 decimal, that location must have been previously Allocated.

Generally, you will be POKEing a reference to an Allocated memory area - Memarea(x), Byte, Bit, etc.

POKE always operates on a single byte of memory; thus the value parameter is treated as a value ranging from 0 to 255. Anything above 255 (or less than 0) is handled as if it was given a B.AND 255 prior to usage.

The command POKEBYTE and POKE are one and the same and are translated by the compiler into the same opcode.

See also: ADDR, ALLOCATE, BIT, BLOAD, BSAVE, BYTE, DEALLOCATE, MCLEAR, MCOPY, MEMAREA, MEMSIZE, MEMSTRING$, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKEADDR, POKEBYTE, POKEWORD, WORD
POKEADDR

Type: command

POKEADDR address,value

POKEADDR hl,za

POKEADDR memarea(12),men

The POKEADDR command is used to change three bytes of memory. It is very simple to use, and functions the same, as the command Poke. Like Poke, POKEADDR imposes the same rules on how you may use it.

POKEADDR uses a 3-byte value ranging from -8meg to +8meg - this means that it changes the data at address, the data at address+1, and the data at address+2.

Like the Addr command, POKEADDR can handle the full 24-bit integer value that Metal can use.

See also: ADDR, ALLOCATE, BIT, BLOAD, BSAVE, BYTE, DEALLOCATE, MCLEAR, MCOPY, MEMAREA, MEMSIZE, MEMSTRING$, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEBYTE, POKEWORD, WORD

POKEBYTE

Type: command

POKEBYTE address,value

POKEBYTE hl,za

POKEBYTE memarea(8)+2,9

POKEBYTE is the same as POKE - you should refer to POKE for information on this command.

See also: ADDR, ALLOCATE, BIT, BLOAD, BSAVE, BYTE, DEALLOCATE, MCLEAR, MCOPY, MEMAREA, MEMSIZE, MEMSTRING$, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEADDR, POKEWORD, WORD

POKEWORD

Type: math function

POKEWORD address,value

POKEWORD hl,za

POKEWORD memarea(83)+12,a*x

The POKEWORD command is used to change two bytes of memory. It is very simple to use, and functions the same, as the command Peek. Like Peek, POKEWORD imposes the same rules on how you may use it.

POKEWORD uses a 2-byte value ranging from 0 to 65535 - this means that it changes the data at address and the data at address+1.

See also: ADDR, ALLOCATE, BIT, BLOAD, BSAVE, BYTE, DEALLOCATE, MCLEAR, MCOPY, MEMAREA, MEMSIZE, MEMSTRING$, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEADDR, POKEBYTE, WORD

POP

Type: complex flow command

POP {extender}

POP

POP IF

POP LONG IF

POP FOR

POP NEXT

POP RETURN

POP DO

POP WHILE

The POP command is normally used to remove the last GOSUB from the stack. However, it has six other optional extenders that all you to remove almost anything from the internal "looping stacks":

POP This is the default, and removes the current GOSUB.

POP RETURN This is an optional syntax for the default.

POP IF Removes the current IF/LONG IF from the IF-THEN stack. Useful only in a Long-If condition.

POP LONG IF Optional syntax for POP IF.

POP DO Removes the current Do-Until loop.

POP WHILE Removes the current While-EndWhile loop.

POP FOR Removes the current For-Next loop.

POP NEXT Optional syntax for POP FOR.

Note that if a POP tries to remove the given "loop" and there are none active (say, no For-Next loops going on), then nothing will happen.

See also: CLEAR, DO, END, FOR, GOSUB, IF, LONG IF, NEXT, RETURN, UNTIL, WHILE

POSITION

Type: command

POSITION {#device,} recnum{,reclen{,byteoffset}}

POSITION #1,r,64

POSITION #1,x,64,p*4

POSITION #1,9

POSITION a*10,8,xq+1

The POSITION command is used to change the Filemark of a currently open file.

Functionally, the POSITION command is nothing more than a straight-forward math expression. It can be though of (and is directly equivalent) as the following:

 Filemark(device)= recnum * reclen + byteoffset

Simple, yes, but let's talk about the format for the syntax of POSITION and what the parameters mean.

The recnum is the record number that you wish to access. Generally, this will be some variable value, say, "A" or "USER*10", etc.

The reclen is the record length of each record. Since each record must be the same length (say, 1024 bytes per each record, or 64 bytes, etc) throughout the file, it is easy to figure out where the record starts at - take the given record number (recnum) and multiply it by the record length (reclen).

The optional byteoffset is the number of bytes into the record that you wish to skip over to. If you don't use this parameter, then it defaults into zero - the first byte of the record. But if you want to skip, say, the first 10 bytes of the record, you supply a "10" for byteoffset.

Finally, there is a little-used but supported option. If you omit the reclen and the byteoffset values, then POSITION will use the open file's Auxiliary File Type as the record length (see the Create and Recnum commands for more information about Aux File Types).

Like the Filemark command, if you attempt to go past the end of the file (exceed the length of the file), then Metal will automatically "extend" the size of the file out. Note that ProDOS-8 does not do this for you, this is a function of Metal.

See also: APPEND, BLOAD, BSAVE, CREATE, CLOSE, DEVICE, DOSERR, FCOPY, FILEAUXTYPE, FILEMARK, FILESIZE, FLUSH, INPUT, OPEN, PRINT, RECNUM, TCOPY

PREFIX$

Type: system variable

PREFIX$=string$

result$=PREFIX${(pathnum)}

PREFIX$=new$

cur$=PREFIX$

p1$=PREFIX$(1)

ram5$=PREFIX$(9)

The PREFIX$ is used to read the current default ProDOS prefix or to set up a new one.

Unlike Create, which will create missing sub-directories, PREFIX$ will not build a "path" to a prefix if one or more of the sub-directories are missing.

To change the current default prefix to a new one, you simply equate PREFIX$ to a given string.

To read the current default prefix, you just read PREFIX$ like any other variable. In this regard, PREFIX$ is nothing more than a variable.

If you wish to check where one of the ten defined pathnumbers (set through the Metal.Config file), you use the optional (pathnum) syntax, where pathnum is a value ranging from 0 to 9.

Remember, setting the PREFIX$ allows you to use the pathnumbers as the first character of the string, but reading PREFIX$ returns the physical or real pathname - "expanded" out, so to speak. For example, let's say you have path number 7 set to "/HD1/BBS/MY.FILES/" and you did the following:

 PREFIX$="7/"

 a$=PREFIX$

The value of A$ will be "/HD1/BBS/MY.FILES/", not "7/" as you would expect.

See also: CREATE, DELETE, DOSERR, FCOPY, FILEAUXTYPE, FILEINFO$, FILEMARK, FILESIZE, FILETYPE, OPEN, RENAME, RUN, RUNSUB, TCOPY

PRINT

Type: complex command

PRINT {#device{,}} {AT (x,y)} {string$expression} {numericalexpression} {"literaltext"} {literalnumber} {variable} {TO{,} variable2} {CR{(times}} {TAB(to_pos{,char$})} {REPEAT$(string$,times)} {,} {;}

PRINT "You'll be using this on a lot!"

PRINT At(p1*8,p2+2) Repeat$("*",z);

PRINT #1,usr$(0) To usr$(15)

If you thought Input was a nightmare, now consider PRINT - Input only had 10 optional parameter; PRINT has 13.

The PRINT command is by and far the most heavily used command in Metal - in order to get something out to the screen, you must use the PRINT command.

As you can see, PRINT allows you to print anything and everything - it also allows you a fair amount of control of how it is output, and where.

One at a time, here are the optional parameters. Note that for the most part, the actual order of the parameters in the program is not a factor.

Parameter Does

--------- ----

#device By using this, you are telling the PRINT command to output the text some place other than the default Device value (normally, this is zero, but you can change this if you wish). You may or may not follow the #device with a comma - it is suggested that you do so, just to make your program code clearer to others.

AT(x,y) The AT optional changes where the following text output is to take place at on the screen. If the Metal.Config "AutoPos" is turned on, then Print will send out the needed control codes over the modem to have the terminal program re-position it's cursor. The x value ranges from 0 to 79, with 0 being the left column and 79 being the right, and y ranging from 0 to 23. Note, however, most emulations treat a y value of 0 and 1 as the same.

string$ expression This is nothing more than something like LEFT$, MID$, etc, etc.

numerical expression This is nothing more than something like ABS, x EOR y, etc, etc.

"literal text" The literal text can be anything from a null string ("") to a whole 45k chunk of text. The string delimiters can be any of the legal five delimiters (" ' | ` << >>). Any text can be placed within the delimiters, including control characters.

literal number This is something like 1991 or 65, etc, etc.

variable A$, X, USR$(9), etc, etc. Single variable.

TO{,} varaible2 The syntax using TO variable2 is used to print out an array of variables. The correct syntax is variable TO variable2, where both variable and variable2 are the same "root" variable, with just the array numbers different. For example, USR$(1) TO USR$(9) will print out USR$(1) then USR$(2), etc, to USR$(9). A carriage return is printed out after each array, unless you use the optional comma after the TO.

CR{(times)} CR prints out a carriage return. It is used primarily between two things to print out in the same PRINT command. If you follow CR with the optional (times) value, then the PRINT command will print out the given number of carriage returns.

TAB(to_pos{,char$}) TAB is used to move the cursor over to a given column number. If no char$ is given, then TAB will use a space to print out. Be careful and do not use a control character in place of char$ - doing so will "lock" the PRINT TAB command up!

REPEAT$(string${,times}) The REPEAT$ option may seem redundant - after all, it's legal string expression. However, there are times when you want to repeat more than 255 characters worth. Since the PRINT command is not building a string, the REPEAT$ option can repeat up to 65535 characters.

, Placing a comma in the list to print will cause a comma to be printed. Simple, eh?

; A semi-colon is generally used to separate a print list out into easy-to-visualize chunks. However, it is more commonly used at the end of the print list to force the PRINT to not print a carriage return at the end.

Note that PRINTing to the screen (device #0) can be stopped by pressing one of the keys defined in the Abort$. Pressing one of those keys (if any are active) will abort output, but will leave Abort$ active.

See also: ABORT$, CLEAR, CR, DEVICE, GET, INPUT, REPEAT$, SYSINFO, TAB

PRINTER

Type: buried command

#PRINTER

print #PRINTER,"This is to the printer"

The PRINTER command an optional syntax of #6 - device #6 is the PRINTER. Note that this is for output only, and thus is only useful with the PRINT command.

See also: MODEM, PRINT, VID

PULLVAR

Type: command

PULLVAR variable{,variable2{,variable3...}}

PULLVAR name$,rank,serialnumber,eyecolor$

The PULLVAR command is used in conjunction with the PUSHVAR command. It retrieves the "pushed" value of variables that PUSHVAR placed onto the stack.

Since it is a "stack", like a stack of dishes, it's a "last on first off" deal. This means that if you did the following:

 PUSHVAR a,b,c,d

You would have to do the following:

 PULLVAR d,c,b,a

If you erred and did PULLVAR a,b,c,d... well, A would be equal to D, B would be equal to C, C would be equal to B, and D would be equal to A.

See also: PUSHVAR

PUSH

Type: flow command

PUSH label

PUSH MainCommand

The PUSH command works with the Return command change where the program is going to (not where it is currently at). This is an important difference.

The PUSH command puts the address of the given label into the Gosub/Return stack. If you remember from the docs on Gosub, when a Return is encountered, it will take the last address from this stack and go to it - "returning" to the code after the Gosub. But with PUSH, it returns to the given label.

This can be handy in many instances. For example:

MainCommand

 push MainCommand

 print "Main Level, what is your choice? ";

MainComm1

 get mode(1) a$

 if a$="?" goto MainHelp

 if a$="X" goto EnterXfers

 {some more if-gotos like this}

 goto MainComm1

MainHelp1

 tcopy "main.help":return

EnterXfers

 input mode("U") "Enter the transfers?" i$

 if i$<>"Y" return

 run "1/xfers"

The commands underlined are the ones you should notice - after the main.help file is displayed, it returns to MainCommand.

The following is the same code, but using GOTO MainCommand instead of the returns:

MainCommand

 print "Main Level, what is your choice? ";

MainComm1

 get mode(1) a$

 if a$="?" goto MainHelp

 if a$="X" goto EnterXfers

 {some more if-gotos like this}

 goto MainComm1

MainHelp1

 tcopy "main.help":goto MainCommand

EnterXfers

 input mode("U") "Enter the transfers?" i$

 if i$<>"Y" goto MainCommand

 run "1/xfers"

Now, if you notice a few things, you'll realize something: if you use the PUSH MainCommand example, you only have to type the label MainCommand twice - once when you define it, the second where to PUSH it. Then you just Return to it. However, the Goto MainCommand has to be typed each and every time you need to go back - increasing the chance for errors and wasting good typing time.

(Plus you can then use the routines such as MainHelp1 and EnterXfers as sub-routines from other sections of code).

See also: FOR, IF, GOSUB, GOTO, LONG IF, ON, NEXT, RETURN, THEN, TRAP, UNTIL, WHILE

PUSHVAR

Type: command

PUSHVAR variable{,variable2{,variable3...}}

PUSHVAR hi,ho,it$,off,2,work,we,go

The PUSHVAR command places variable values on the stack (note the "2"?), not the actual variable. This means you can place expressions on the stack and then retrieve them back.

Let's talk about how the stack works. First off, there are actually two PUSH/PULLVAR stacks - one for numbers, one for strings. The operate the same way, but are totally independent of each other.

When a value is pushed onto the stack, it becomes the "top" value, or the next one off. Sort of like placing a plate on top of a stack of them - you normally take one from the top rather than trying to slide one out from under the rest of them.

Let's visualize how this stack is set up, so you can get a better feel for it. Pushing the following numbers onto the stack....

 PUSHVAR 1991,1900,501,386,65816

 #1 65816

 #2 386

 #3 501

 #4 1900

 #5 1991

Then we do so more stuff, and push a little more onto the stack:

 PUSHVAR age,weight

 #1 value of "weight"

 #2 value of "age"

 #3 65816

 #4 386

 #5 501

 #6 1900

 #7 1991

Notice how the stack "moved" down? Now, if we pulled a variable off this stack, we'd get back the value of weight, then age, then 65816, etc, etc.

See also: PULLVAR
