Metal Commands: Section "R"

RANDOM

Type: math function

result=RANDOM(value)

x=RANDOM(80)

if RANDOM(100)<50 goto YouLost

The RANDOM command returns a random number based on the passed value. The number returned will always be in the range of zero (0) to value-1. Thus if you ask RANDOM(80), you will get a number ranging from 0 to 79.

RANDOM is mostly used in online games and to "clever up" your program with random messages sprinkled throughout. For example:

 x=RANDOM(5)

 if x=0 print "Have a nice day!"

 if x=1 print "Break a leg!"

 if x=2 print "Get outta my sight!"

 if x=3 print "Don't drive too fast!"

 if x=4 print "Take a long walk off a short pier!"

See also: ABS, ASC, BITVAL, HEXVAL, INSTRING, LEN, MEMAREA, MEMSIZE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, PADDLE, ROTL, ROTR, SIGN, SYSINFO, VAL

RECNUM

Type: system variable

RECNUM(device)=record

record=RECNUM(device)

RECNUM(2)=user

crec=RECNUM(4)

The RECNUM (RECord NUMber) is very similar to the Position and Filemark commands. Like Filemark, it allows you to read whereabouts in the file you are at, and like Position, it lets you move to a certain record number.

RECNUM is normally used with reading directory files (usually within a file transfer program, such as FV Xfer or Moses). However, it can also be used in place of the Filemark and Position commands when being used with non-directory files.

Since RECNUM is a system variable, this means you can read what current record number you are at, and set which record number you wish to use.

Since, under ProDOS-8, there are two "file structures" (directory files and non-directory files), RECNUM handles both slightly different.

The most common use of RECNUM, as mentioned, is using it to position to an entry number (the record) in a directory file. This is really simple to accomplish - equate RECNUM(device) to the entry (starting at the first entry - 1 - and going to whatever), and Metal will find the entry you want.

For example, the following code is similar to what Moses uses to display a directory listing:

 open #1,"/HD1/XFERS/VOLUME.5"

 r=1

Loop

 RECNUM(1)=r

 input #1,a$

 if a$="" goto NoMoreFiles

 print a$

 r=r+1

 goto Loop

NoMoreFiles

 close #1

 return

Simple, eh? Very simple, yes. But why bother with that routine when a simple input #1,a$ without the RECNUM command would do the exact same job? Well, let's modify the code a little bit:

 open #1,"/HD1/XFERS/VOLUME.5"

 r=1

Loop

 RECNUM(1)=r

 input #1,a$

 if a$="" goto NoMoreFiles

 print a$

 if sysinfo(1)=13 clear input:r=r+10:else r=r+1

 goto Loop

NoMoreFiles

 close #1

 return

Note the extra line with the SYSINFO(1) command (which reads the keyboard/modem buffer). If the user presses the Return key, then the routine will skip forward 10 lines instead of just to the next one - thus the user can "jump" through a directory quickly and easily.

In this regard, writing a routine to display a scrolling "list" of files in a transfer volume would depend on nothing more than a little loop of RECNUM's.

Now, the other part of RECNUM: using it with non-directory (standard) files.

Every time Metal opens a file, it remembers the auxiliary file type of the file. Generally, this only has a few uses:

1) Binary files: where to load and run the file at.

2) AppleWorks files: the "case" of the filename (not really critical).

3) Text files: size of each record for random-access files.

The one that we care about is #3 - size of each record. When you read or set RECNUM when using a standard file, Metal will use the auxiliary filetype of that file as the record length.

For example, say you open a file that has a auxiliary file type of 512 - this means that the record length of the file is 512 bytes per each record. Thus, the following two lines will accomplish the same thing for this file:

 RECNUM(1)=z

 POSITION #1,z,512

However, a true "equivalent" to setting RECNUM is as follows:

 RECNUM(1)=z POSITION #1,z,FILEAUXTYPE(1)

Now, when you read RECNUM for a standard file, it does the reverse: it takes the current Filemark value and divides it by the auxiliary file type, giving you which record number you at.

So, reading RECNUM can be thought of as smaller version of:

 z=RECNUM(1) z=FILEMARK(1)/FILEAUXTYPE(1)

There are two very critical differences (other than the obvious) in the way RECNUM handles directory and non-directory files:

Directories:

 o RECNUM does not allow you to access record number zero. IE: RECNUM(1)=0 is a no-no.

 o RECNUM will not extend the size of a directory file if you set RECNUM past the total possible size of the file. It will simple advance to the end and stop.

Non-directories:

 o RECNUM does allow you to access record number zero.

 o RECNUM does extend the size of the file if you set RECNUM past the end of the file.

See also: APPEND, BLOAD, BSAVE, CREATE, CLOSE, DEVICE, DOSERR, FCOPY, FILEAUXTYPE, FILEMARK, FILESIZE, FLUSH, INPUT, OPEN, POSITION, PRINT, TCOPY

RENAME

Type: command

RENAME filename$,newname$

RENAME filename$ TO newname$

RENAME "2/list","2/list.copy"

RENAME f$ to z$

The RENAME command does just that - it renames the given filename$ to the given newname$. This is simple and easy to do, but ProDOS (not Metal) puts some limitations on this:

1) There must not be a file using newname$ already on the disk.

2) The filename$ and newname$ files must be in the same directory, and you must give the same prefix to both - thus you must use RENAME "2/file" TO "2/renamed", not RENAME "2/file" TO "renamed".

3) ProDOS will not allow you to try and "move" the file from one directory to the other.

4) ProDOS may, in certain cases, allow you to rename disk volumes. Be wary of this.

See also: DELETE, DOSERR, FCOPY, FILEAUXTYPE, FILEINFO$, FILESIZE, FILETYPE, ONLINE$, OPEN, PREFIX$, RUN, RUNSUB, TCOPY

REPEAT$

Type: string function

result$=REPEAT$(string$,times)

print REPEAT$(string$,times)

The REPEAT$ command is used to save you typing time and allow more flexibility in your code. All it does is take the given string$, and put it times into the result$. Thus, if you do the following:

 a$=REPEAT$("TCQ",5)

Then a$ will be equal to "TCQTCQTCQTCQTCQ" (minus the quotes of course).

REPEAT$ will complain with a String Overflow Error if you try to make a result$ that is larger than 255 characters (this is real easy to accomplish).

The Print version of REPEAT$ doesn't have this problem, as it doesn't care if the result is 1 or 1000 characters - it just prints it out.

See also: BITSTR$, CHR$, CNGCASE$, FILEINFO$, HEXSTR$, LEFT$, MID$, RIGHT$, STR$

RETURN

Type: flow control

RETURN

The RETURN command is simple to use - by simply executing it, Metal will return to where the last Gosub was executed.

Examples:

 Gosub GetKey

 GetKey

 get a$

 RETURN

 trap syserr gosub SystemErr

 SystemErr

 print "Whoops!"

 RETURN

 on x Gosub Rout1,Rout2,Rout3,Rout4

 print "Returns to here"

 Rout1

 RETURN

See also: FOR, IF, GOSUB, GOTO, LONG IF, ON, PUSH, NEXT, THEN, TRAP, UNTIL, WHILE, Local Variables

RIGHT$

Type: string function

result$=RIGHT$(string$,length)

a$=RIGHT$(a$,9)

print RIGHT$(" "+str$(x),5);

RIGHT$ is part of the Left/Right/Mid string "package" of commands. Like the Left$ and Mid$ commands, RIGHT$ takes the given string$ value and returns part of it. What part? Why, the right-hand side of it.

Examples:

 a$=RIGHT$("Wilson Wares",5)

a$ will be equal to Wares

 a$=RIGHT$(name$,len(name$),-1)

Say that name$ is "Apple IIGS" (which is 10 characters long). a$ will be equal to "pple IIGS" (since we wanted everything but the first character - the length of the name$ minus 1).

If you use a value of zero for length, then RIGHT$ will return a null string.

See also: BITSTR$, CHR$, CNGCASE$, FILEINFO$, HEXSTR$, LEFT$, MID$, REPEAT$, STR$

ROTL

Type: math function

result=ROTL(value)

x=ROTL(z)

ROTL (ROTate Left) is a bit-wise function - it treats the given value as a 24-bit "string" and shifts it down, bringing the left-most bit over and around to the right.

Visually, it looks like this:

 Before: ABCDEFGHIJKLMNOPQRSTUVWX

 After: BCDEFGHIJKLMNOPQRSTUVWXA

What use it this? Not much, but it has it's place in certain applications. (actually, this command was requested by a user but was never taken advantage of).

See also: B.AND, B.EOR, B.OR, BITVAL, ROTR, SYSINFO

ROTR

Type: math function

result=ROTR(value)

x=ROTR(z)

ROTR (ROTate Right) is a bit-wise function - it treats the given value as a 24-bit "string" and shifts it down, bringing the right-most bit over and around to the left.

Visually, it looks like this:

 Before: ABCDEFGHIJKLMNOPQRSTUVWX

 After: XABCDEFGHIJKLMNOPQRSTUVW

See also: B.AND, B.EOR, B.OR, BITVAL, ROTL, SYSINFO

RUN

Type: program flow command

RUN filename${,global$}

RUN "1/MAIN.LEVEL"

RUN "1/CONQUEST","Fight"

RUN i$,g$

The RUN command is the only way that you have to switch from one program to another. Actually, all the programs that your system will be using are consider a sub-set of each other (they all can run each other at any point and time, without losing any variables), but it makes things cleaner (and much less mind-boggling) to keep all the file transfers in the file transfer program, etc.

The filename$ parameter is the source program to run. All Metal source files end with the ".S" suffix, so a directory of your programs would look like this:

 IEBS

 STARTUP.S

 MAINT1.S

 XFERS.S

 MSG.BASE.S

 NET.MAINT.S

 NET.MAINT2

 GLOBAL.WAR.S

If this source file is missing, Metal will crash with an System Error - Unable to Run Module.

Normally, RUN is used to exit out of one program and enter into another one at the beginning. This is accomplished by not using the global$ optional.

However, there are many times you don't wish to enter at the start of the program - more than likely, you want to start somewhere else. A good example of this is having your message base program enter into the user logoff routine in your main level program. This is accomplished by passing the name of the label you wish to enter into via the global$ optional.

In order for the global$ to work, Metal must be told that the label is considered "global" or "available for other programs to enter into it". This is done by placing "GLOBAL" after the label when you define it:

NotAGlobal

 print "This label cannot be run by another program"

Term0A global

 print "This label is global, and can be run by another program"

If the given global$ label doesn't exist in the program to run, Metal will crash (with a non-trappable) System Error - Global Label Not Found.

When you RUN a program, Metal checks if the program needs to be "compiled". It does this by checking if the "object code" file exists and if the source file has been modified. Metal also checks to see if the "object code" was compiled under an older version of Metal - if so, it re-compiles the program.

Once Metal get the "object code" file found and ready to be used, it clears out certain things. Metal, on a RUN, remove all Traps and the Gosub/Return stack. It leaves all Pushvar values on the stack, and all variable data intact.

See also: CREATE, DELETE, DOSERR, FCOPY, FILEAUXTYPE, FILEINFO$, FILESIZE, FILETYPE, OPEN, PREFIX$, RENAME, RUNSUB, TCOPY

RUNSUB

Type: program flow command

RUNSUB filename${,global$}

RUNSUB "1/R/GETKEY"

RUNSUB "1/GAMEROUTS","Fight"

RUNSUB rf$,rg$

The RUNSUB command is a combination of the Gosub and Run commands. It allows you to run a routine out of another program without having to constantly reset the traps and worry about loosing the Gosub/Return stack.

In all respects, RUNSUB works exactly like a RUN, but with the following exceptions:

o RUNSUB stacks off the Traps and the Gosub/Return stack so that they may be recovered later.

o RUNSUB is exited by RUNRETURN, which returns to where the RUNSUB command was executed.

See also: CREATE, DELETE, DOSERR, FCOPY, FILEAUXTYPE, FILEINFO$, FILESIZE, FILETYPE, OPEN, PREFIX$, RENAME, RUN, RUNRETURN, TCOPY

RUNRETURN

Type: program flow command

RUNRETURN

The RUNRETURN command is used in conjunction with the RUNSUB command. It is used to return from a RUNSUB, just like a Return is used to return from a Gosub.

See also: RUNSUB
