Metal Commands: Section "T"

TAB

Type: buried command

print TAB(to_pos{,char$})

print TAB(50)"Over here!"

print name$;TAB(40,".");score

TAB is used to move the cursor over to a given column number. If no char$ is given, then TAB will use a space to print out. TAB can only be used with the Print command.

See also: PRINT

TCOPY

Type: complex command

TCOPY filename$ or #device {TO filename$ or #device} {FOR lines} {UNTIL match$} {LEN chars}

TCOPY news$

TCOPY #1 to #printer

TCOPY #msg For 23

TCOPY (Text COPY) is used to print a text file out from the disk to somewhere else - normally, the screen, but you can send the output to the printer or to another file.

In it's simplest form, without any of the optionals, TCOPY will simply dump the file to the screen until it reaches the end of the file or a ascii code of zero (a control-@, called the "eof byte") is hit. Then it stops.

However, you can change how much TCOPY will dump and to where it will dump.

In order to use a file, you must either give TCOPY the filename of the file (for example, news$ or "2/welcome.message") or the file channel to be used. This is considered the "source" file, and is always the first parameter in the TCOPY list.

If you supply the source filename$, then TCOPY will open the file, and start dump from the first byte of the file. If, instead, you supply the #device, then TCOPY will assume that you have already Open'd the file, and will begin dumping starting at the current filemark of the file (handy if you have random-access files with messages buried in them).

If you wish to re-direct output somewhere other than the default device (normally, device #0), then you must supply the TO filename$ or TO #device optional.

Using TO filename$ will cause TCOPY to create the "target" file if it doesn't already exist. It then opens the file, and output will go there, starting at the first byte, overwriting anything that may already be in that file.

Using TO #device allows TCOPY to dump to the printer (#printer) or anywhere else. If a file channel (#1 through #4) is used, then TCOPY will use that open file, starting output at the current filemark of that file, overwriting anything that may be at that point.

Changing how much TCOPY will output is accomplished by using the FOR, LEN, and UNTIL optionals.

The FOR lines optional allows you to change how many lines of text TCOPY will output. Normally, this defaults to zero (dump it all), but you may change this to limit the output to say, 20 lines or whatever. The valid range for this is 0 to 255.

LEN chars allows you to limit the number of characters output (this includes control characters). Normally, this defaults to zero (no limit), but you may only want up to, say, 4000 characters dumped out (for whatever reason). Once that limit has been reached, output stops.

UNTIL match$ will cause TCOPY to take a look at the characters being printed out and see if they match this string (case is important). If they do, output is stopped. Thus, if you use UNTIL "-EOF-", TCOPY will stop if it sees "-EOF-" somewhere in the flow. This can be buried - for example, say the source file had "Suddenly, the screen flashed -EOF- and everything stopped." in it, and you were looking for "-EOF-". TCOPY would stop right after it had printed "...flashed -EOF-" - anything else afterwards would be ignored.

See also: APPEND, BLOAD, BSAVE, CLOSE, CREATE, DEVICE, DOSERR, FCOPY, FILEMARK, FILESIZE, FLUSH, INPUT, OPEN, POSITION, PREFIX$, PRINT

TEXT

Type: command

TEXT

The command TEXT is used to reset the local video display to a known state. It resets the screen to 80 columns and 23 lines, normal text, with the top status bar in place. The screen is cleared and the cursor is in the upper-left corner.

It has no effect on the remote user and affects no other aspects of the system.

See also: CLEAR, PRINT, VID

THEN

Type: buried command

If expression THEN code

if x=1 THEN goto xisone

The THEN command is used with the If-Then-Else syntax of coding. Please note that Metal really doesn't care if THEN is in the If-Then or not - the language is "smart" enough to handle programming with or without the THEN.

See also: IF, ELSE

TIME$

Type: system value

result$=TIME${(value)}

print "It is "TIME$

x$=TIME$(clock(1,2)):print "You have spent "x$" online."

The TIME$ command is used to either read the current time or to build a time-like string based on a number (generally passed from a Clock command).

Reading the current time is simple - simply read TIME$ without the optional (value).

If you wish TIME$ to convert a time value - like what the Clock commands pass back - give it the optional (value). The value must be expressed in total seconds.

This means value is equal to: Hours * 3600 + Minutes * 60 + Seconds.

See also: CLOCK, DATE$, DAYNUM

TO

Type: buried command

for j = 1 TO 50

print a$(1) TO a$(9)

tcopy #1 TO #printer

fcopy f1$ TO f2$ mode(0)

The TO command is used in several other commands as a place holder, separating parts of the command syntax into easy to use pieces. It is never used on its own, and will generate a syntax error if you try to use it as a command or as part of a math expression.

See also: FCOPY, FOR, NEXT, PRINT, TCOPY

TRAP

**Type: flow control command

TRAP condition link label

TRAP syserr goto Crash

TRAP clock(5) goto TooLong

TRAP doserr gosub DiskHit

The TRAP command is used to allow the program to catch certain conditions, ranging from the serious (a system error) to the not-so-serious (loss of carrier). You can have multiple TRAPs and multiple levels of each trap at any given time.

The condition parameter consists of a single command or a set sequence of commands. They are as follows:

condition means

--------- -----

CLOCK(1) Clock timer number 1 runs out to zero

CLOCK(2) Clock timer number 2 runs out to zero

CLOCK(3) Clock timer number 3 runs out to zero

CLOCK(4) Clock timer number 4 runs out to zero

CLOCK(5) Clock timer number 5 (keytimer clock) runs out to zero

DOSERR (almost) any ProDOS error

DOSERR=value If Doserr equals this certain value, trap

MODEM Change (gain or loss) of the carrier

MODEM=5 Gain of carrier (system gets connected)

MODEM=6 Loss of carrier (user drops carrier)

SYSERR Any system error

SYSERR=value If the system error is this certain value

XFER If remote system starts Zmodem, trap.

With Syserr and Doserr, you may TRAP for certain values or any value. If you trap for a certain value, Metal will check for that value when the trap "activates" before going with the "any value" option.

Clocks 1 through 4 run all the time, and are checked as needed. Clock 5 is only used and check when the system is waiting for a keypress (such as with Get or Input).

The Xfer trap is used for when the remote system starts up its Zmodem Send protocol. Zmodem sends out a series of characters (usually *rz[cr] or rz[cr]) to tell the other computer it's sending files. By using TRAP XFER GOTO Zmodem you would have Metal automatically go to a routine that starts a Zmodem receive. This trap is handled whenever the keyboard is being read (when the cursor is blinking).

Traps are checked once each time a "line" of program code is run, and whenever the system is waiting for a keypress.

Once a TRAP activates (say, on a system error), that particular trap is removed from the list - the other ones are still in effect, though. File channels that were open are still open, the Gosub/Return stack is still in effect, etc, etc. Your "Trap Handler" routines may need to close the open files off.

After you give the TRAP command the condition, you must give it a link command word - either a Goto, a Gosub, or a Push. Each one is handled differently.

A Goto will unconditionally run the routine when the TRAP activates. There is no way for your Trap Handling routine to know where the TRAP happened at.

A Gosub will fake a Gosub to the Trap Handler - a Return out of the Handler will resume the program from where the TRAP happened at.

A Push will push the routine into the Gosub/Return stack, and the next Return will run the Handler. This can be used to modify existing flow control is esoteric programs.

And finally, the given label is the name of the routine that is to handle that particular TRAP when it happens - this is the Trap Handler routine.

See also: FOR, IF, GOTO, GOSUB, LONG IF, ON, PUSH, NEXT, THEN, UNTIL, WHILE
