Metal Commands: Section "V"

VAL

Type: math function

result=VAL(string$)

x=VAL(i$)

if VAL(zx$)>20 goto TooHigh

The VAL command is simply used to turn a given string of numbers into a number so that you can perform some math operation on it. VAL will work through the string and build the number until it runs out of characters or it finds a character that is not a number (0 through 9).

If the first character of the string$ is not a number or is not the minus sign ("-"), then VAL will return a result of zero.

VAL is considered the reverse command of STR$.

See also: ABS, ASC, BITVAL, HEXVAL, INSTRING, LEN, MEMAREA, MEMSIZE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, PADDLE, RANDOM, ROTL, ROTR, SIGN, STR$, SYSINFO

VID$

Type: system variable

result$=VID$

VID$=filename$

VID$(1)=prompt$

x$=VID$

VID$=""

VID$="*/VT100.MAP"

VID$(1)="<Press a Key>"

VID$ is used to either see what Emulation Mapper is currently loaded, change the Emulation Mapper driver, or to set the Page Pause String.

Reading VID$ will return a string that is stored inside the currently loaded Emulation Mapper driver - normally, this will return something like "PTSE" or "ProTerm Special Emulation", which means the system is not processing ProTerm Special Emulation codes and is passing them directly over the modem.

Setting VID$ to a null string will reset the Emulation Mapper to nothing - the default condition. In this state, Metal will not process or "Map" ProTerm Special Emulation control codes to any other terminal emulation - it will pass them directly to the modem.

Setting VID$ to a non-null string will cause Metal to attempt to load in the given filename into memory. Metal checks a few bytes of the loaded driver to make sure that it is a real Mapper driver, and then sets things up so that all ProTerm Special Emulation control codes are sent to that Mapper instead of to the modem. The Mapper will check convert these codes into what the emulation it is supposed to be working with can handle.

Setting VID$(1) to a string will set up the Page Pause Prompt string that will be display if VID(15) is set to 1 and VID(16) is set to some value. This string will be display each time the screen gets "full" between keywaits (Get and Input). The given prompt$ can have control codes in it to highlight the prompt.

See also: EXT, VID, Emulation Mapping

VID

Type: complex system variable

result=VID(number)

VID(number)=result

x=VID(7)

VID(13)=0

if VID(14) print "Sysop already being paged."

The VID command is used to change the way the local video emulation and some of the remote text output. Through this, you can change the size of the screen, the cursor character, the page pausing, etc.

There are sixteen possible values for the number parameter. Here is what each one does:

number does

------ ----

VID(1) This is the width of the screen. Note that for the most part the video driver will ignore this, as most of the Metal system is written for 80 columns. You can change this to whatever you wish, as long as it does not use more than the 80 columns the screen can display.

VID(2) This is the bottom line of the screen plus one. It normally defaults to 24, but you may change this if you need to. The TRACE mode that the local sysop can use changes this in order to "grab" a portion of the screen.

VID(3) This is the left column of the screen. This defaults into zero, but you may change this. Works in conjunction with VID(1). Like VID(1), most of the Metal system ignores this value and uses the entire 80 column screen.

VID(4) This is the top line of the screen. You may change this to limit how much can be displayed at one time. Normally, you change this down a few lines in order to use the top few lines as a "user stats" display. If this is set to zero, then the top "System Bar" (where the time, date, and baud rate are display) goes away.

VID(5) This is the AutoPos flag. If this is 1, then all Print AT(x,y)'s are converted into the needed emulation codes for the remote user. If this is zero, then the At's are not converted. This is initially set by the AUTOPOS=<yes/no> line in the Metal.Config file. You should always leave this at "1".

VID(6) This is the Local Emulation flag. If this is zero, then local (and some remote) emulation is handled as it normally is. If this is 1, then all emulation codes are ignored and "eaten" by the driver (this is called "Ascii Mode"). If this is 2, then all control codes are displayed in inverse video on the local screen, not the remote. This is called "Ascii Inverse Mode".

VID(7) This is the video character of the local cursor. It is initially set by the CURSOR=< > command in Metal.Config. Remember, what is on the screen may not be the exact same ascii code as you will be using. Thus if you set VID(7) to 127 and expect to get a gray square as the cursor, you will get an inverse gray square. You should consult a table listing out the "true" video character values or experiment with this to see which one you like the most.

VID(8) This is the "Scroll Lock" flag. If this is 1, then there will be no local scrolling of the screen.

VID(9) This is the "Cursor Track" flag. If this is 0, then the local cursor is not displayed unless there is a key being waited on (via Get or Input). Turning this off has the effect of marginally speeding up the display but also slightly messing up some of the internal display routines, as they expect the cursor to be on. This defaults to 1.

VID(10) This, believe it or not, is the sound on/off flag. Setting this to 0 will turn all local sound off, including sysop paging and the Playtone command. This defaults to 1.

VID(11) This one affects when the "Tick" (updating of the time in the upper righthand corner) is done. If this is 1, then the Tick is updated each time a carriage return is printed out. This defaults to 1.

VID(12) If this is 1, then the Tick is also updated once every 8th character. Slows down the display a touch, but handy if you're into heavy animated emulation and don't have much if any carriage returns being printed out. Defaults into 0 (off).

VID(13) If this is 1, then the local system will "bleep" and flash the screen (flash on the GS only) once every second (even when a file transfer is taking place). Defaults into zero. Only resets to zero if the system is reset, is set to zero under program control, or the sysop enters and leaves chat mode.

VID(14) If this is 1, then the local status bar will display a "PAGE" message, indicating that the user wishes to chat with the sysop. This operates independently of VID(13). Like VID(13), resets in the same way. Defaults to zero.

VID(15) If this is 1, then the system will handle Auto Page Pausing - pausing with a message every so many lines as set in VID(16) and displaying the message set in VID$(1). Defaults to 0 (no page pausing).

VID(16) This is the number of lines per page between keywaits (Get and Input). This ranges from 1 to 255. Only used if VID(15) is set to 1 (page pausing enabled).

Using VID(15) and VID(16) together, along with Vid$(1), allows the user to have "background" Page Pausing. What this means is that the system will handle, totally without program intervention, all page pausing. What this means is that Metal will check and see if the number of lines set in VID(16) have been printed, and if so, will display the string in Vid$(1) and wait for a keypress. Once a keypress has been received, then the string is erased (correctly handling buried control codes) and output resumes.

Page Pausing is automatically reset each time the system waits for a key ("keywait"). This is done whenever an Get or Input is done, or when the user presses control-S to pause output (since it is assumed the user pressed control-S to pause output on his own).

Page Pausing also correctly handles buried control codes within the output, so that if emulation animation (such as re-positioning of the cursor) is done, it will not screw things up.

See also: GET, INPUT, PRINT, TCOPY, VID$

