Metal Commands: Section "W"

WHILE

Type: flow control command

WHILE condition

WHILE x<>5

WHILE sysinfo(1)=0

The WHILE commands starts out a While-EndWhile loop. This kind of loop is similar to a Do-Until, but it checks the condition before the loop is actually taken, whereas a Do-Until checks the condition after the loop is taken.

The While-EndWhile loop continues to run until the condition given becomes false. In the first example, WHILE x<>5, the loop will continue to run until the variable X equals five - then the loop exits at the EndWhile point.

The two major differences between While-EndWhile and Do-Until are:

o A Do-Until will do the loop at least once - While-EndWhile checks before the loop starts, where Do-Until checks just before the loop repeats.

o A Do-Until will loop as long as the Until condition is false (that is, the condition given has not been reached yet); a While-EndWhile will continue to loop as long as the condition given is true.

Thus, in both ways, the Do-Until and While-EndWhile are inverses of each other.

See also: DO, END, UNTIL

WORD

Type: complex system variable/memory storage

WORD{area}{(index)}=value or starting_base

result or current_base=WORD{area}{(index)}

WORD=memarea(9)+82

WORD3=memarea(2)

print WORD2

WORD1(3)=blks

lngh=WORD(20)/word2(7)

WORD is another very specialized command that is used to manipulate memory areas in various ways.

WORD "data chunks" are each 16 bits - or two bytes - long. Unlike Addr, which can store off the entire value of a variable, WORD can only handle a range of 0 to 65535.

Like Bit, Byte, etc, WORD may be given one of ten distinct and separate memory "area" to work out of. These are the {area} optionals.

The {area}, if given, is a single digit, ranging from 0 to 9. If no {area} is given, then it defaults into zero. Thus, the following are equal:

 WORD=memarea(2)+82

 WORD0=memarea(2)+82

The {area} must immediately follow the WORD command word, otherwise you will cause rather odd things to happen in your code, depending on where you made the mistake - the results could range from a Syntax Error to simply having wrong numbers being printed out. There must be no spaces between the WORD and the {area}.

The {(index)} optional tells Metal wether or not to set or retrieve the "starting base" for that WORD area, or to set or retrieve a value in that area. This breaks the WORD command down into two distinct and very separate parts:

(a) If the {(index)} optional is missing, Metal assumes that you wish to manipulate the starting base for the WORD's area. By setting (ie: equating WORD{area} to some value) you are telling Metal where that WORD is living at and where to store or look for data at. The value given will be assumed to be a 16-bit memory address. Likewise, reading the WORD{area} will retrieve the last set value for that WORD:

 WORD=memarea(2)+82 this example sets up where WORD area 0 (the default, remember?) is going to start at. The "memarea(2)" value was previously setup using an Allocate command.

 print WORD this example displays where WORD area 0 is currently coming from.

(b) If the {(index)} is given, Metal assumes that you wish to manipulate the data inside of that WORD area. Remember, each data element - the "index" - is 2 bytes long. The value of the index may range from 0 - the first element in the WORD area - to approx 15,000.

 WORD(2)=87 this example sets WORD area 0 (the default), element number 2 to the value of 87.

 WORD3(0)=912 this example sets WORD area 3, element number 0 to the value of 912.

 WORD1(82)=-812 this example sets WORD area 1, element number 82 to the value of 64724 - remember, WORD can only handle 16 bits, not the full Metal range of 24 bits.

 print WORD(9) displays the value of WORD area 0, element number 9.

As previously mentioned, WORD elements occupy 2 bytes per element. Metal automatically calculates where the element is at in the starting base for that area, so you don't need to mess with calculations. WORD is a very quick and easy "shorthand" way of doing a long POKEWORD/PEEKWORD. For example, the following is equivalent:

 WORD use: PEEKWORD/POKEWORD use:

 -------- ----------------------

 WORD0=memarea(2) a0=memarea(2)

 WORD0(1)=5 POKEWORD((1*2)+a0),5

 x=WORD0(9) x=PEEKWORD((9*2)+a0)

The nice thing about using WORD rather than POKE/PEEKWORD is that you don't have to continuously type in long expressions, and in the case of setting the starting base ("a0" in our example), you don't have to use a variable. Add to the fact that using WORD runs faster than a long POKE/PEEKWORD expression makes WORD very powerful indeed!

See also: ADDR, ALLOCATE, BIT, BYTE, DEALLOCATE, MEMAREA, MEMSIZE, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEADDR, POKEBYTE, POKEWORD

