Metal Commands: Section "X"

XFER

Type: complex command

XFER direction,protocol,timeout,files,filename$,retvar

 {,mode{,totaltime{,totalsize}}}

XFER 0,2,500,nf,fn$,rtn

XFER 1,prtl,tmout,numf,btch$(1),rtnc,1

The XFER command is used to transfer files between the Metal system and the remote user - either a user calling with a term program or a remote network site.

The XFER command requires an extremely large amount of parameters, and all of them must be there (with the exception of the optional mode, totaltime, and totalsize) and of the correct type, or else the XFER command will stop with a system error.

XFER is one of the commands uses externals - XFER requires that the files METAL.PACKG.04, METAL.PACKG.04B, METAL.PACKG.05, and METAL.PACKG.05B be in prefix 0 ("0/"). These externals are the send and receive protocol drivers, for all the supported protocols - Xmodem, Ymodem, Zmodem, and Kermit.

The direction parameter tells Metal which way the transfer is going. If direction is zero (0), then Metal is receiving the file ("uploading from remote user" or just "uploading"); if direction is one (1), then Metal is sending the file ("downloading to remote user" or just "downloading").

The protocol value tells XFER which transfer protocol to use. Metal currently supports all variations of Xmodem and Ymodem, Zmodem, and Kermit (see attached note at the end of this documentation about Zmodem and Kermit support).

The protocol value ranges from 0 to 8, and each number is tied into a particular protocol:

 0: Standard Xmodem

 1: Xmodem-CRC-128byte packets

 2: Xmodem-1K (also does CRC)

 3: Xmodem-4K (also does CRC, sometimes called 4Modem)

 4: Ymodem Batch

 5: Ymodem Batch-4K

 6: Ymodem Batch-G (streaming protocol)

 7: Zmodem

 8: Kermit

Ymodem-G only works if Metal is set up with a 9600 baud or better modem with flow control turned on (ie: you have MODEMPORTLOCK=<YES> in the Metal.Config file). Ymodem-G requires that the connection be at higher than 2400 baud and that the user's end also support flow control (most term programs do not). Ymodem-G will fall back to Ymodem-Batch if it believes that it cannot get a Ymodem-G transmission.

The timeout value is expressed in 1/120ths of a second, and is used to allow the remote user (be it human or a network bbs) time to sync up and process the data going in and out. Due to timing differences on the //gs, the //e, and the //c (especially on the //c and it's Laser 128 clone), this value may differ from one type of computer to the other. A suggested value ranging from 600 to 1200, with 1000 being the best - this will allow the XFER command about 7 to 8 seconds between bytes in the transfer stream before XFER starts to worry and sends out inquiring code to the other end of the connection.

The files variable - and it has to be a variable - is the number of files that is to be sent when sending, and is also used to return the number of files received or successfully sent. If this parameter is not a variable, the XFER command will error out. When receiving, you don't have to equate this value to anything, but when sending, you must.

The filename$ variable is the name of the file to send or receive. This is handled differently between Xmodem and Ymodem/Zmodem. Please see further down as to the relationship between the filename$, files, and the protocols.

The retvar variable (again, must be a variable) is used to return the error code back to the program from the transfer protocol. Currently, the following error codes are possible:

 0 : No error occurred during the transfer.

 1 : Header error - retried too many times trying to send or receive the header for the file.

 2 : Footer error - retried too many times trying to send or receive the AE Pro footer packet for the file (only means something during Xmodem).

 -7 : The remote user dropped carrier while the transfer was underway.

 -6 : The transfer was aborted due to 10 consecutive errors.

 -5 : Aborted by the local sysop pressing ESC on the keyboard.

 -4 : Aborted by the remote user (remote user canceled transfer).

 -3 : Unable to save off workspace memory - transfer was never started.

 -2 : Bad parameters. One or more of the given parameters was out of range (like protocol #10 for example) or a numerical expression was given where a variable was expected (like 1 instead of nfiles).

 -1 : Miscellaneous error. Could be anything, most likely a ProDOS error (bad pathname, disk full, etc).

The optional mode parameter controls what will happen if the receiving file already exists on the disk. It may be used during a send, but will no effect on the transfer.

The mode value ranges from 0 to 4:

mode means

---- -----

 0 Delete the existing file, overwrite with the new one.

 1 Append to the end of the file (for Zmodem only).

 2 Rename the incoming file. This is the default mode.

 3 Skip this file (for Zmodem only).

 4 Abort the transfer totally (for Zmodem only).

The renaming of the file (default mode of 2) is handled thusly: XFER will attach ".00" to the end of the name; if the filename is already 12 characters or more long, it will replace the last characters in the name. If this new filename also exists, it will try with ".01", and then ".02", etc, all the way up to ".99", at which time it will abort with error -1.

The renaming routine does have one serious defect: it will overwrite the last characters of the filename, thus obliterating the "file signature", such as .TXT, .SHK, .DOC, .COM, etc. The routine may be updated by the time you read this.

The relationship between the transfer direction, the protocol, the number of files, and the filename$, is as follows:

Sending (direction equals 1):

The sending protocols are "smart" - they check what the receiver is sending back over the modem and will auto-shift into the needed protocol (like from Xmodem-Standard to Xmodem-CRC-4K or Ymodem-G to Ymodem-Batch). However, they will not shift from one protocol set to the other - in other words, they will not shift from Xmodem to Ymodem or Zmodem to Xmodem, etc.

 Xmodem variations (protocol values 0 through 3):

The value of files doesn't really matter, but a value of 1 should be used just to be safe. The filename$ is the name of the file to send, and may be any string variable.

 Ymodem variations, Zmodem, and Kermit (protocol values 4 through 8):

Since Ymodem, Zmodem, and Kermit are "batch" protocols (they can send more than one file in a transfer session), the files variable holds the number of files to be sent. After the transfer, this should hold the number of files that were sent.

The filename$ must be an array variable - such as F$(1). Each array element - F$(1), F$(2), etc - should hold the complete pathname of the file to send. Thus if you are sending three files, you should equate, "fn" to 3, and F$(1) to "1/games.shk", F$(2) to "/hd4/sound", and F$(3) to "5/netdata". This array will not be modified after the transfer is complete.

Receiving (direction equals 0):

The receiving protocols are "dumb" and will not auto-shift into another protocol if the sender asks it to. The blindly expect to use whatever protocol you select, otherwise they will error out with a timeout error (return code of -6), since the sending and receiving ends could not agree as to a common ground and kept sending garbage back and forth.

 Xmodem variations (protocol values 0 through 3):

The value of files doesn't matter, as it will be overwritten with a value of 1 after a successful transfer. The filename$ should the file to receive to, and may be any string variable.

 Ymodem variations, Zmodem, and Kermit (protocol values 4 through 7):

Since Ymodem, Zmodem, and Kermit are "batch" protocols (they can receive more than one file in a transfer session), the files variable holds the number of files that were received. After the transfer, this will hold the number of files that were successfully received, or zero for no files (in which case the retvar will probably be some error code).

If both files and retvar are non-zero, that means that files files were received correctly, but there was a problem during the last file.

All files received will be placed in the current ProDOS prefix (set by the Prefix$ command).

The filename$ must be an array variable, such as F$(1). After the receive, the arrays will be the filenames of the files. For example, the remote user sent ATEST.SHK and GAMESLIST; F$(1) will be ATEST.SHK, F$(2) will be GAMESLIST, and the files variable will be 2, showing that 2 files were received.

Note for Zmodem and Kermit:

At the time of this writing, both Zmodem and Kermit are disabled in the public release of the protocol packages (Metal.Packg.04/04B/05/05B). This is due to problems in getting them to work correctly in a true interrupt-driven environment. However, by simply replacing the files when they are released, you will be able to use these protocols.

See also: EXT, document WRITING.EXTRNLS
