This is the technical documentation for FILEID.S, a segment for METAL BBS

systems which identifies files by their contents. There is also a list of file

type information in this file which may be useful to program similar

identifiers in other languages.

File types identified from contents are:

AppleDouble, AppleSingle, BinSCII, BMP (Windows), Darvex Archived Volume, EXE

(IBM), ICO (Windows Icon), Lotus (WK1), MacBinary (I & II), PCX, Rich Text

Format (RTF), Shrinkit - NuFX, Tagged Image File Format (TIF, TIFF), Windows

Meta File (WMF), ZIP (IBM PKZip).

This list is currently being expanded if you have more information, let me

know.

FileID.S - Technical Information

==

FileID.S segment has not been completed at this time.

File Types

==

The following descriptions provide a strategy for identifying files from their

contents. This information is not complete in that it does not give all

information necessary to extract files or file lists from archives etc.

GENERAL FILE TYPE INFORMATION

File Suffix

The file name suffix may help as one step in providing information about a file

to the user. However, the uploader may have incorrectly named the file, or the

suffix may have been altered due to Ymodem name conversion (due to names from a

foreign type operating system.) The suffx, usually 1 to 4 characters preceded

by a period "." should be used in a lookup table to expand the suffix meaning.

Then an analysis of the file contents should proceed.

FileID.S currently expands the following suffixes:

AI ACU AAF ARC ARJ ASC BAK BAT BAS BIN BMP BSC BSE BSQ BQY BNX C CDA CDEV COM

CFG CGM CPT DAT DIB DIC DIF DFX DLL DOC DOT DRV DRW ENV EPS EXE FON FONT GEM

GIF GRP H HLP HQX I ICO IMG INI JAS JPEG JPG LIB LHA LZH MAC MDB MID MSP NDA O

OBJ OVL PAK PCT PICT PCX PIC PIT PRN QQ RAS RLE RIF RIFF RTF S SDK SDX SEA SHK

SHAR SIT SRC SYS TT TAR TIF TIFF TGA TMP TXT UU WAV WK1 WMF WPG WRI XLS XLM XLC

Z ZIP ZOO

BINARY versus TEXT

This distinction is exclusive of all other file types, and a test for it should

probably be done as the first step in file identification. It provides

information that may help make a distinction about a file in later tests, as

well as giving you an idea if it can be displayed like text. Note that on an

Apple II or Macintosh series computer, the file type may be TXT even though it

is binary information and should be type BIN.

Several things can be done:

(1) Search the first a section of a file for bytes that are not text in order

to identify it as binary. Any bytes with high bit set ($80 to $FF) would

indicate a binary file. This may be fooled by extended character sets.

(2) If a large number of bytes in the file were zero, then it is probably

binary.

SPECIFIC FILE TYPE INFORMATION

Following is a list of file types, methods to identify them, and data that may

be simply extracted from the file headers. Those marked as "(incomplete)" have

been generated by observation of a number of files of that type. Information

will be expanded once the file structure documentation can be found.

AppleDouble File (incomplete - string)

See the Apple File Type Notes for more information.

offset test info

+0 to +3 match $00 $05 $10 $07 or

 chr$(0) chr$(5) chr$(16) chr$(7)

+7 to 22 (data) string holding name of home file system

+24,25 (data) (word#) number of entries

Procedure: Match the first four bytes.

AppleSingle File (incomplete - string)

See the Apple File Type Notes for more information.

offset test info

+0 to +3 match $00 $05 $10 $00 or

 chr$(0) chr$(5) chr$(16) chr$(0)

+7 to 22 (data) string holding name of home file system

+24,25 (data) (word#) number of entries

Procedure: Match the first four bytes.

Binary II

The binary II header preserves Apple II file types. It is also used to hold

other operating system files. The initial file header is 128 bytes. At offset

+128 starts the file itself. Once a file is identified as a Binary II, you can

try to identify the first file in the Binary II wrap by starting your search at

offset +128. Note that Shrinkit archives will often have a Binary II wrap (BXY

etc.). See the Apple File Type Note for more information.

offset test info

+0 to +2 match $0A $47 $4C (three ID bytes)

+3 (data) ProDOS access byte

+4 (data) ProDOS file type

+5,6 (data) (word#) ProDOS aux file type

+7 (data) ProDOS storage type value

+8,9 non zero (word#) size of file in 512-byte blocks

+18 match $02 (fourth ID byte)

+19 reserved =0 should be set to 0, may change w/versions

+23 (data) Pascal string; filename 1-64 chars

+88 reserved =0 21 bytes set to 0, may change w/versions

+121 (data) native operating system

 $00 ProDOS or SOS

 $01 DOS 3.3

 $02 Reserved

 $03 DOS 3.2 or DOS 3.1

 $04 Apple II Pascal

 $05 Macintosh MFS

 $06 Macintosh HFS

 $07 Lisa Filing System

 $08 Apple CP/M

 $09 Reserved (returned by the GS/OS

 Character FST)

 $0A MS-DOS

 $0B High Sierra (CD-ROM)

 $0C ISO 9660 (CD-ROM)

 $0D AppleShare

+125 (data) data flags

 Bit 0: 1=sparse file

 Bit 1-5: reserved

 Bit 6: encrypted

 Bit 7: file is compressed

+126 (data) Binary II version number

+127 (data) number of files to follow (total files - 1)

+128 start of first file

Procedure: Check the three ID bytes at +0 and the fourth at +18 to be correct.

This is probably sufficient, but you could check byte at offset +23 to be in

the range of 1 to 64. (Since this is a Pascal string the first byte is the

length.) You then can print out any of the listed data items, or print out

even more information as described in the Apple Inc. Binary II file type note.

A next step would be to identify the file itself at offset +128. Typically

this will be a NuFX archive, but could be something else.

BinSCII

Binscii files are single files which have been converted over to text-only.

They can be identified by the header string "FiLeStArTfIlEsTaRt" which may be

located in any arbitrary position of the file but will be usually located

somewhere at the beginning. The actually file information is located after

this header string. This information also contains a string of the upper and

lower case alphabet, numbers 0 to 9, and "BINSCII".

Procedure: If a file is identified as text, then a search could be performed on

thefirst portion of the file for the "FiLe..." string above.

BMP (Windows Bitmap) (incomplete)

A graphics file.

offset test info

+0 match $42 $4D or "BM"

+2,3,4 (data) complete file size LSByte to MSByte

+5 to +9 =0

+10 match $76 unknown meaning

+11,12,13 =0

+14 match $28

+15 =0

Darvex Archived Volume

See the Apple File Type Notes for more information.

offset test info

+0 to +15 match "<VSTORE [Davex" or

+0 to +15 match $3C $56 $53 $54 $4F $52 $45 $20 etc.

Procedure: Match the first 16 bytes.

ICO (Windows Icon) (incomplete)

A graphics file.

offset test info

+0 match $00 $00 $01 $00 $01 $00 $20 $20 $10

Procedure: Match at offset +0. File is also BINARY.

IBM .EXE files

Executable files for the IBM can be identified by:

offset test info

+0 $4D $5A "MZ"

+2,3 non zero (word#) length of image mod 512

+4,5 non zero (word#) size of file in 512-byte increments

+8,9 non zero (word#) size of header in 16-byte increments

IBM .EXE files can be normal or Windows executable files. Windows executable

files have wording something like "Requires Microsoft Windows to Run" at or

just after $200.

Procedure: The first two bytes are "MZ" and the file is BINARY. Make sure the

three words above (2 bytes each) are non-zero.

Lotus WK1 (incomplete)

An IBM database file.

offset test info

+0 match $00 $00 $02 $06 $04 $06 $00 $08

MacBinary

A Macintosh standard to include directory information with a file so that it

can "survive" storage on a foreign host system. Note that there are two

standards, MacBinary and MacBinary II (MB I & MB II).

offset test info

+0 =0 old version, always 0

+1 1<x<63 length of file name (data for below)

+2 to 64 (data) 1 to 63 chars for file name

+65 (data)<127 4 chars for file type

+69 (data)<127 4 chars for file

+74 =0 must be zero

+82 =0 must be zero

+83 to 86 long word, Data Fork length in bytes

+87 to 90 long word, Resource Fork length in bytes

+122 (data) version number of MB II generating file

+123 (data) version number of MB II need to read file

+124,125 (data) (word#) CRC of previous 124 bytes

Note that MacBinary I has zeros from +99 to +127.

Procedure: Check bytes +0 and +74 to both be zero. If so, then either the CRC

should match which means it is a MB II file or byte +82 is zero which means it

is a MB I file. (Notice that calculating a CRC is too difficult, and should

probably be skipped). Check byte +1 to be in range. The four-byte numbers at

offsets +83 and +87 (length of forks) should be in range $0 to $007F FFFF.

Also, the eight characters at offset +65 should not have the high bit set. If

the file is MB II, the two version numbers at offset +122 and +123 are both

greater or equal to 129; if they are zero it is MB I.

The two four-character values at +65 and +69 should be used in a lookup table

to expand the file type and creator.

PCX (Windows) (incomplete)

A graphics file.

offset test info

+0 to +7 match $0A $05 $01 $01 $00 $00 $00 $00

File name follows at approximately +$0C

Rich Text Format (RTF) (incomplete)

A standard word processor document.

offset test info

+0 match "{\rtf"

Common header of files observed is "{rtf1\ansi \deff0{".

Procedure: Verify a TEXT file with match to the given string.

Shrinkit / NuFX

Shrinkit files have a type $E0 and auxtype $8002. Identification with file

contents only is fairly simple. This information is intended only to minimally

identify the file, not list its contents. See the Apple File Type Note for

more information.

offset test info

+0 to +5 match $4E $F5 $46 $E9 $6C $E5 or

 "N" chr$(245) "F" chr$(233) "l" chr$(229)

+8 to +11 (data) (long#) number of records in this file

+12 to +19 (data) date created (all zeros if unknown)

 +12 second The second, 0 through 59.

 +13 minute The minute, 0 through 59.

 +14 hour The hour, 0 through 23.

 +15 year The current year minus 1900.

 +16 day The day, 0 through 30.

 +17 month The month, 0 through 11 (0 = January).

 +18 filler Reserved, must be zero.

 +19 weekDay The day of the week, 1 through 7 (1 = Sunday).

+28,29 (data) (word#) version of NuFX archive

+30 to +37 reserved reserved now defined as $00000000.

+38,39 (data) (word#) length of NuFX archive in bytes

Procedure: Match the first six bytes. Other information can be displayed

including the number of items in the archive as a long integer (4 bytes), the

date created, the version of the NuFX archive, and the size of the archive in

bytes.

Tagged Image File Format (TIF or TIFF) (incomplete)

A graphics file.

offset test info

+0 match $49 $49 $2A $00 $6C $12 $00 $00 $80

Windows Meta File (WMF) (incomplete)

A graphics file.

offset test info

+0 match $D7 $CD $C6 $9A $00 $00

Creator name is at approximately +$43.

ZIP, PKZip (incomplete)

An IBM type archive.

offset test info

+0 match $50 $4B $03 $04 $0A

 "PK" chr$(3) chr$(4) chr$(10)

