Metal Commands: Section "F"

FCOPY

Type: command

FCOPY sourcefile$ or #sourcedevice TO targetfile$ or #targetdevice {MODE(option)} {LEN(length)}

FCOPY f$ to #3

FCOPY a7$ TO "/ram5" MODE(4)

FCOPY #1 TO "7/FILE" MODE(0) LEN(800)

FCOPY (File COPY) is like Tcopy, but instead of dealing with text, it deals with anything - it's also much faster, since it copies the file in 8k chunks instead of 1 byte at a time like Tcopy. Also note that Tcopy doesn't like handling non-text data (using Tcopy to copy your ProDOS file would result in a mess).

sourcefile$ is the file to copy - it is a complete filename. If there is no path in the filename, then the current prefix value is used. Note that this file must be a non-DIR file, so using "/RAM5" or something similar for sourcefile$ will result in a major mess.

You may optional use #sourcedevice instead of sourcefile$ - in this case, source data is taken from the currently open sourcedevice. Data is read starting at the current filemark into the file.

targetfile$ is either the target filename or the target directory - this depends on the value of option.

Again, you may use #targetdevice instead of targetfile$ - in this instance, the target data is written out to the currently open targetdevice. Data is written starting at the current filemark into the file.

FCOPY uses a default mode option of 0. If you supply a Mode(option), FCOPY will use the option value as a bit-pattern; this means FCOPY can have multiple options at any given time:

 bit 0: if this is 1, then the data in sourcefile$ is appended to targetfile$

 bit 1: if this is 1, then after the copy, sourcefile$ is deleted. Not used nor checked when using #sourcedevice is used.

 bit 2: if this is 1, then targetfile$ is sub-directory, and the filename portion of sourcefile$ is pulled off and used as the filename for targetfile$. Not used nor checked when using #targetdevice is used.

 bit 7: if this is 1, and the length value (either given or used from the size of the file to be copied) is over 32k, then FCOPY will display a "percentage done" report as it copies the file. This is nice to use, since it lets you (or your users) see how far along the FCOPY is and gives them a feel that the system is doing something and not ignoring them. Using or not using this optional flag has no effect on how the copy is done or how fast it is.

 bits number does...

 ---- ------ -------

 %000 0 normal copy, over-writes targetfile$

 %001 1 appends data to end of targetfile$

 %010 2 deletes sourcefile$ when copy is done

 %011 3 appends data to targetfile$, deletes sourcefile$

 %100 4 same as 0, but targetfile$ is a sub-directory

 %101 5 same as 1, but targetfile$ is a sub-directory

 %110 6 same as 2, but targetfile$ is a sub-directory

 %111 7 same as 3, but targetfile$ is a sub-directory

Normally, FCOPY copies the entire file (or what is left of it to be read after it is opened), but you can override this by using the optional LEN(length) parameter. Using this will force FCOPY to copy length number of bytes. Note that this value can be larger than the size of the file to be copied, in which case FCOPY will just use zeros to fill out what was missing. Note that FCOPY also does this when you have it copy a "sparse" file.

Here are eight examples to fully explain what FCOPY does for each of the options:

 FCOPY "/hd1/prodos" TO "/new.disk/prodos.copy" MODE(0)

 In this example, both the source and target pathnames are complete - each one holds a filename (source is the file "prodos", target is the file "prodos.copy"). The file "prodos.copy" will be overwritten (if it exists), and the original file is intact after the copy.

 FCOPY "/hd1/prodos" TO "/new.disk/prodos.copy" MODE(1)

 This example is the same as the one using MODE(0), but the data from the source ("/hd1/prodos") will be appended to the target file. If the target file doesn't exist, then this FCOPY example functions the same as if MODE(0) was used.

 FCOPY "/hd1/prodos" TO "/new.disk/prodos.copy" MODE(2)

 Again, this functions the same as the MODE(0) example, but after the copy, the source file ("/hd1/prodos") will be deleted.

 FCOPY "/hd1/prodos" TO "/new.disk/prodos.copy" MODE(3)

 This combines both MODE(1) and MODE(2) - the data from the source file ("/hd1/prodos") is appended to the target file ("/new.disk/prodos.copy"), and after the copy, the source file is deleted.

 FCOPY "/hd1/prodos" TO "/new.disk" MODE(4)

 In this example, FCOPY is being told to pull the file - "prodos" from the source filename and use it as the target file - thus, the real target filename is "/new.disk/prodos". If the target file exists, then it will be overwritten.

 FCOPY "/hd1/prodos" TO "/new.disk" MODE(5)

 This functions the same as MODE(4), but if the file "prodos" already exists on the "/new.disk" volume, then the data from the source file will be appended to it.

 FCOPY "/hd1/prodos" TO "/new.disk" MODE(6)

 Again, same as MODE(4), but after the copy, the "/hd1/prodos" file will be deleted.

 FCOPY "/hd1/prodos" TO "/new.disk" MODE(7)

 Combines MODE(4), MODE(5), and MODE(6) together in one.

FCOPY copies everything about the file - the filetype, the auxtype, and the access bits. Thus, if the source file is a locked, invisible system file, then the target file will also be locked, invisible, and a system file.

Note: at the time of this writing, FCOPY doesn't handle ProDOS errors very well, nor will it copy entire directories/entire directories.

Note: If FCOPY cannot find 8k of free variable memory for the copy buffer, it will instead use a 256-byte buffer. This means that FCOPY will function slower, but it will still work.

See also: APPEND, BLOAD, BSAVE, CREATE, CLOSE, DELETE, DOSERR, FILEAUXTYPE, FILEINFO$, FILEMARK, FILESIZE, FILETYPE, ONLINE$, OPEN, PREFIX$, RENAME, TCOPY

FILEACCESS

Type: system variable

result=FILEACCESS(filename$ or file device)

FILEACCESS(filename$ or file device)=value

a=FILEACCESS("/hd1/prodos")

if FILEACCESS(2)=1 goto FileLocked

FILEACCESS(f$)=$C3

FILEACCESS(1)== b.or 4

The FILEACCESS command is used to read or change the "access flags" that ProDOS uses for a file. Generally, it is used to lock (deny write/delete/rename access) or unlock (allow everything) files, but it can be used to also set the "invisible" bit in the access flags, or the "backup bit" in a file.

Apple has defined the access bits in a file's information to take up one byte on the disk per each file. This access byte is arranged as follows:

 bit 7 (128/$80) Deleting allowed if 1

 bit 6 (64/$40) Renaming allowed if 1

 bit 5 (32/$20) If this is 1, the file needs backed up (file has changed)

 bit 4 (16/$10) Not used, leave alone

 bit 3 (8/$08) Not used, leave alone

 bit 2 (4/$04) If this is 1, the file is considered "invisible"

 bit 1 (2/$02) Writing to this file allowed if 1

 bit 0 (1/$01) Reading from this file allowed if 1 (always leave alone)

Note that FILEACCESS will always set bit 0 to a value of 1; thus Metal will not allow you to set a file to non-reading access.

Bit 2, the invisible bit, is a carry over from GS/OS; it is not used in most Apple II applications. Under GS/OS and Metal, the invisible bit refers to if the file is listed when a Catalog of some sort is performed. If the bit is on, then the catalog will not list the file (you can override this in Metal if you wish).

Bit 5 is the backup bit, which basically means that the file has changed and needs to be backed up. Some drive backup programs will clear this bit out when they back the file up, but ProDOS will always set this bit once a file is changed in some way. Metal uses this bit in the source files for the modules to tell if the file has been changed or not recently (since saving a new source file will always set this, Metal will see that, and perform a compile on the file).

Clearing bit 5 is a difficult task, in that ProDOS will always set bit 5 even after you cleared it (hey, the file just got changed, better set the backup bit).

"Locking" a file is setting Write, Delete, and Rename bits to zero, effectively telling ProDOS that the file cannot be changed.

An "unlocked" file is one that has "full access", that is, one that allows Reads, Writes, Deleting, and Renaming.

Locking a file can be done as follows:

 FILEACCESS(filename$ or channel)=1

This will allow only read-access on the file, but the fill will now be visible. If you don't want to change the invisible bit, the following will lock the file:

 FILEACCESS(filename$ or channel)==b.and 4

This will filter out the current values of the invisible bit. Since Metal always sets the Read bit on, you don't need to set that explicitly.

Unlocking a file can be done by telling FILEACCESS to turn on Read, Write, Delete, and Rename:

 FILEACCESS(filename$ or channel)==b.or $C3

This will turn on the bits, and leave the invisible bit intact.

See also: FILENAME$, FILEAUXTYPE, FILEINFO$, FILETYPE, FILESIZE, RUN, RUNSUB,

FILEAUXTYPE

Type: system variable

result=FILEAUXTYPE(filename$ or file device)

FILEAUXTYPE(filename$ or file device)=value

a=FILEAUXTYPE("/hd1/selector.system")

if FILEAUXTYPE(2)=8192 goto WrongAux

FILEAUXTYPE(f$)=540

FILEAUXTYPE(1)=q*9

The FILEAUXTYPE command is used to read or change the auxiliary file type of any ProDOS file (with the exception of a Directory file). This auxiliary file type (hereafter referred to as "auxtype") is used differently by different ProDOS applications, and is an extension to the real "file type". For example, here are some of the more common uses for auxtypes:

 AppleWorks files: the auxtype contains information about the upper and lower case values of the filename.

 Binary files: the auxtype contains the default load address when Basic.System does a BLOAD or BRUN.

 Text files: the auxtype contains the record size and is used as a flag for sequential or random-access files.

The only use that Metal makes of the auxtype is the same that most programs use for Text files - that is, the auxtype is the length of the record size and is used by the Recnum and Position commands to figure out where in the file Metal should be at for each record.

The value of a file's auxtype ranges from 0 to 65535 - in a ProDOS or Metal catalog, this is shown in it's hexadecimal value, so the value would be shown ranging from $0000 to $FFFF.

Note that Metal will never allow you to change the auxtype of a Directory file - you may read this value, but unless some other program has changed the auxtype of a Directory file (which Apple frowns on), the returned value will always be zero.

Every time you use FILEAUXTYPE, you may either supply a filename$ or a filedevice number. Note that FILEAUXTYPE doesn't use the "default" Device value - if you wish to use this, you have to do the following:

 result=FILEAUXTYPE(Device)

In order to use a file device, the file must currently be open. Using a filename$ can be used whether the file is currently open or not.

See also: CREATE, CLOSE, DELETE, DEVICE, DOSERR, FCOPY, FILEINFO$, FILEMARK, FILESIZE, FILETYPE, FLUSH, INPUT, ONLINE$, OPEN, POSITION, PREFIX$, PRINT, RENAME, RECNUM

FILEINFO$

Type: system value

result$=FILEINFO$(filename$)

i$=FILEINFO$("/hd1/prodos")

print FILEINFO$(f$)

FILEINFO$ is used to gather information about the filename$ supplied. It returns either a null string or 79-character long string, which may then be operated upon or Printed out.

If the filename$ value passed to FILEINFO$ doesn't actually exist, FILEINFO$ will return a null string back.

This result$ looks exactly like the Basic.System ProDOS catalog line.

 1 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890123456789

*PRODOSSYS3211/10/8901:1511/05/8917:4615485$0000

CIBSDIR212/20/9006:4511/16/9014:161024$0000

*BBSDIR101500/00/0000:0011/16/9014:162048$0640

The first character of the result$ is either a space or an asterisk ("*"). An asterisk stands for a "locked" file (one that cannot be rename, deleted, or written to), and a space stands for a unlocked (one you can mangle) file.

 locked=left$(FILEINFO$(file$),1)="*"

 [locked will be either zero (unlocked) or one (locked)]

Characters 2 through 16 (15 characters long) is the filename portion stripped from the filename$ value. It is always returned in upper case.

 filename$=mid$(FILEINFO$(file$),2,15)

Characters 19 through 21 are the three-character "filetype" representation of the file. Metal has about 50 filetype strings built in, most of which are GS-specific. If Metal cannot find a "match" (say, for filetype $EE), then it will return the filetype in hex ($EE or $B9, etc).

 type$=mid$(FILEINFO$(file$),19,3)

Characters 24 through 28 is the number of blocks that the file uses. Spaces preceded this, but the Val command doesn't care - it will ignore leading spaces. This value will be from 0 to 65535 (65535 blocks is 32megs)

 blocks=val(mid$(FILEINFO$(file$),24,5))

Characters 31 through 38 is the date the file was last modified in some way (data written to it, renamed, etc). If no date is available for this, then "00/00/00" is returned.

 lastmoddate$=mid$(FILEINFO$(file$),31,8)

Characters 40 through 44 is the time that the file was last modified in some way. If no time is available for this, then "00:00" is returned (this is actual a legal time, but the chances of this being the real value are one in 1,440).

 lastmodtime$=mid$(FILEINFO$(file$),40,5)

Characters 48 through 55 is the date the file was created. If no date is available for this, then "00/00/00" is returned.

 createddate$=mid$(FILEINFO$(file$),48,8)

Characters 57 through 61 is the time that the file was created. If no time is available for this, then "00:00" is returned.

 createdtime$=mid$(FILEINFO$(file$),57,5)

Characters 65 through 72 is the length of the file - like the number of blocks, this is preceded with spaces. Note that this length is always positive, even if the length goes past the +8meg limit Metal has built in. Of course, the chances of a file actually being over 8megs long are slim - or else you have a very large archive file.

 filelength=val(mid$(FILEINFO$(file$),65,8))

Characters 75 through 79 is the auxiliary filetype for this file, represented in hexadecimal value.

 auxtype$=mid$(FILEINFO$(file$),75,5)

 auxtype=hexval(mid$(FILEINFO$(file$),75,5))

And finally, characters 17, 18, 22, 23, 29, 30, 39, 45, 46, 47, 56, 62, 63, 64, 73, and 74 are spaces.

There is one vital difference between using FILEINFO$ on a filename and a disk volume - in our third example, "BBS" is actually a 3.5" disk volume. When this is done, the blocks used field is how many used blocks on the disk, and the auxiliary file type is the hex value of the total number of blocks. By using this, you have an interesting way to determine how big the device is, how many blocks are in use, and how many blocks are free:

 a$=FILEINFO$("/bbs")

 totalblocks=hexval(mid$(FILEINFO$(file$),75,5))

 blocksused=val(mid$(FILEINFO$(file$),24,5))

 blocksfree=totalblocks-blocksused

See also: CREATE, DELETE, DOSERR, FCOPY, FILEAUXTYPE, FILEMARK, FILESIZE, FILETYPE, INPUT, ONLINE$, OPEN, PREFIX$, RENAME

FILEMARK

Type: system variable

result=FILEMARK(file device)

FILEMARK(file device)=value

m=FILEMARK(1)

FILEMARK(3)=z*10

if FILEMARK(1)=>filesize(1) then FILEMARK(1)=0

The FILEMARK command allows the program to either check where ProDOS is at within a file and/or change that position - or "marker". Commonly, FILEMARK is used with the FileSize, Position, and Recnum commands.

The value that FILEMARK returns to result or uses from value is a full 24-bit integer value, thus the possible range is from -8meg to +8meg - however, most of the time you will be using the 0 to +8meg value.

Notice that if you set the FILEMARK value of a file past the length of the file (FileSize), then Metal will automatically change the length of the file - thus, you can inadvertently create a "sparse" file that most copy programs will have problems copying.

Using FILEMARK requires that you currently have a the file device opened with the Open command.

The value of FILEMARK that ProDOS uses is where in the file that ProDOS will either get input from or place output to next - thus, every time a file is freshly Opened, the value of FILEMARK is set to zero, which means that ProDOS will begin reading or writing to the file starting at the beginning of that file.

If you set FILEMARK to the end of the file (by equating it to FileSize) or past the end of the file, then ProDOS will, if some form of output is done, place data at the end of the file. If you remember the documentation on the Append command, the following two lines are directly equivalent:

 FILEMARK(1)=FileSize(1)

 Append #1

See also: APPEND, BLOAD, BSAVE, CREATE, CLOSE, DELETE, DEVICE, DOSERR, FCOPY, FILEAUXTYPE, FILESIZE, FILETYPE, FLUSH, INPUT, ONLINE$, OPEN, POSITION, PREFIX$, PRINT, RENAME, RECNUM, RUN, RUNSUB, TCOPY

FILENAME$

Type: system value

result$=FILE$(file device or string$)

a$=FILENAME$(2)

print "File channel 3 is using "FILENAME$(3)

r$=FILENAME$("1/STARTUP.S")

print "The full filename of "x$" is "FILENAME$(x$)

The FILENAME$ variable is set by Metal to the filename of the file whenever a file is opened. This means that if you opened "2/user.data" on channel 3, FILENAME$(3) will contain "2/user.data" (actually, it will contain the fully expanded ProDOS filename; it will look more like "/HD1/FV/SYSTEM/USER.DATA").

If you give FILENAME$ a string$ to operate on, Metal will "expand" the filename to it's full ProDOS pathname. Thus if you give FILENAME$ "1/I/ACCESS.SUBS", FILENAME$ will return you "/HD2/FV/IEBS/I/ACCESS.SUBS".

You can also give FILENAME$ the ".." command, and find out what the previous directory was. For example, assume Prefix$ is set to "/RAM5/WORKDIR/TEMPDIR", and you issue FILENAME$(".."): Metal will return "/RAM5/WORKDIR" as the result, since the ".." command will "peel" off the last directory in the name (see "Metal and Filenames").

Note: FILENAME$(4) through FILENAME$(8) reflect the "system channels" that are used internally. You should not need to read these values, as Metal dynamically allocates those file channels as the program runs; these will not be the same from any one read of FILENAME$ to the next.

See also: COMPILE, EDIT$, EXT, FCOPY, FILEACCESS, FILEAUXTYPE, FILEINFO$, FILETYPE, FILESIZE, OPEN, RUN, RUNSUB, TCOPY, XFER

FILESIZE

Type: system variable

result=FILESIZE(filename$ or file device)

FILESIZE(filename$ or file device)=value

length=FILESIZE(z$)

FILESIZE(z$)=val(i$)*10

if FILESIZE(1)>256 goto MoreThanAPage

FILESIZE(1)==-91

FILESIZE is used to either check the length of the file or to actually change the length of the file. Like FileMark, the value FILESIZE returns or uses is 24-bits long, so it can go past the +8meg Metal integer limit and "wrap" around to a negative number.

FILESIZE is used generally to figure out how long it will take to do something with a file, or to calculate the number of blocks a file will take.

Notice that when you change the size of a file, you are doing one of two things:

 If you're extending the length, then you run the risk of creating a "sparse" file.

 If you're shortening the length, then you are telling ProDOS to possible free up one or more blocks that the file previously used. ProDOS takes a certain amount of time to do this.

Neither Metal nor ProDOS will allow you to change the length of a Directory file. You may still read the length, however.

See also: APPEND, BLOAD, BSAVE, CREATE, CLOSE, DELETE, DEVICE, DOSERR, FCOPY, FILEAUXTYPE, FILEINFO$, FILEMARK, FILETYPE, FLUSH, INPUT, ONLINE$, OPEN, POSITION, PREFIX$, PRINT, RENAME, RECNUM, RUN, RUNSUB, TCOPY

FILETYPE

Type: system variable

result=FILETYPE(filename$ or file device)

FILETYPE(filename$ or file device)=value

a=FILETYPE("/hd1/selector.system")

if FILETYPE(2)=255 goto ItsAsystemFile

FILETYPE(f$)=0

FILETYPE(1)=4

The FILETYPE command is used to read or change the "primary" file type of any ProDOS file (with the exception of a Directory file). This file type is used differently by different ProDOS applications - Metal doesn't care about the file type of a file, with the exception of Directory files.

The value of a file's type ranges from 0 to 255 - in a ProDOS or Metal catalog, this is shown in it's ProDOS three-character identifier.

Note that Metal will never allow you to change the file type of a Directory file - you may read this value freely, but not change it. Nor can you change a file into a Directory file - the actual "file structure" of Directory files are incompatible with non-Directory files

Every time you use FILETYPE, you may either supply a filename$ or a filedevice number. Note that FILETYPE doesn't use the "default" Device value - if you wish to use this, you have to do the following:

 result=FILETYPE(Device)

In order to use a file device, the file must currently be open. Using a filename$ can be used whether the file is currently open or not.

See also: CREATE, CLOSE, DELETE, DEVICE, DOSERR, FCOPY, FILEAUXTYPE, FILEINFO$, FILEMARK, FILESIZE, FLUSH, INPUT, ONLINE$, OPEN, PREFIX$, PRINT, RENAME

FLUSH

Type: command

FLUSH {#file}

FLUSH

FLUSH #2

FLUSH is similar to a Close command in that it forces ProDOS to write out any data that may be left in a file's "outgoing buffer". However, unlike Close, FLUSH leaves the file still open. FLUSH is useful if you plan to leave a file open for long periods of time and don't want to risk a possible power failure to leave the file "undone".

If you follow FLUSH with a #file value, then FLUSH will just Flush that file only. If you don't use #file, then the current value of Device is used in place.

If FLUSH #0, or FLUSH with Device being set to 0 is used, then files 1 through 4 are Flushed.

FLUSH will generate an error if the given #file value is less than zero or greater than four ("Device Range Error").

See also: APPEND, BLOAD, BSAVE, CLOSE, DEVICE, DOSERR, FILEAUXTYPE, FILEMARK, FILESIZE, FILETYPE, INPUT, OPEN, POSITION, PRINT, RECNUM, TCOPY

FOR

Type: looping command

FOR variable = start TO stop {STEP stepval}

FOR j = 1 TO 10

FOR k = a TO -z*2 STEP -1

FOR is a very common command - it is possibly one that you will be using over and over again.

When you use FOR, you must supply at least three pieces of information:

variable: this is the variable that is used to "track" the loop. You must supply a numerical variable like J or A10 - if you try to use a string variable like A$ or NAME$, Metal will get rather upset.

start: this is the starting value for the loop. The variable is equated to this value, and the loop starts with variable being equal to this value.

stop: this is the ending value for the loop. Once the variable value goes past this value, the loop terminates.

If you don't supply the optional STEP stepval, the FOR loop will use a default "stepping" (the value that is added to the value of variable each time through the loop) of 1. Notice that you must supply a stepval if you are going backwards - ie: if the value of stop is less than the value of start.

To close off a FOR loop, you use the command NEXT.

Each time through the loop, the value of the variable used changes by the value of stepval.

Examples:

 FOR j = 1 to 10

 print j [will display the numbers 1 through 10]

 NEXT

 FOR j = 10 to 1 STEP -2

 print j [will display the numbers 10,8, 6, etc,

 NEXT to 2]

 FOR za = 0 to 100 STEP 10

 print za [will display the numbers 0, 10, 20, etc

 NEXT up to 100]

Remember, when the loop terminates at the end (right after the NEXT command), the value of the variable will be past the stopval.

In the first example, the value of J will be 11.

In the second, the value of J will be 0.

In the third, the value of J will be 110.

See also: CLEAR, DO, ELSE, END, IF, GOTO, GOSUB, LONG IF, NEXT, POP, THEN, UNTIL, WHILE

FREE

Type: command/system value

FREE

result=FREE{(slot,drive) or (filename$)}

FREE

memfree=FREE

blocksfree=FREE(7,1)

blocksfree=FREE("0/")

FREE can be used as either a command or a system value. Normally, FREE is used to force Metal to perform a "garbage collection" on Variable Memory, removing null strings and zero value numbers from memory - this has the result of compacting memory and allowing more variables to be used. Notice that Metal will do this on it's own from time to time, especially when the Line Editor or Full Screen Editor is used.

When FREE is used as a system value, you can pull two types of numbers from it: either the current amount of free Variable Memory, or the number of blocks free on a disk volume.

Checking the amount of free Variable Memory is accomplished by using the result=FREE syntax without the (slot,drive) optional:

 z=FREE

 print "There are "FREE" bytes left in memory"

 if FREE<1024 print "Hmmm, running low!"

By using the (slot,drive) optional, you can have Metal calculate and return the number of free blocks on a disk volume. Of course, this requires you to know where a certain volume is at, but that's not a major problem.

 c=FREE(7,1)

 print "Slot 7, drive 1 has "FREE(7,1)" blocks free"

 if FREE(7,1)<64 print "Less than 32k free left on the disk!"

By using the (filename$) optional, you can check how much room there is on the device that the filename$ resides, without having to give Metal the slot and drive value for that device. This is handy, since you may not know in advance, plus with some devices (like cartridges or tape units), you don't know whta slot and drive they will pop up in.

If you use the filename$ optional, and Metal cannot find the volume given in the string, then FREE will return a value of zero (since the volume is not online, you can't store anything to it anyways).

When FREE returns a value based on Variable Memory, that value is expressed in bytes - thus you need to divide it by 1024 to find out how many K-bytes are left. When FREE returns a value based on a slot/drive volume, that value is expressed in blocks, so you need to divide that number by 2 (each block is 512 bytes long) to find out how many K-bytes are left.

See also: DATE$, DAYNUM, DOSERR, MEMAREA, MEMSIZE, SYSERR, SYSINFO, TIME$

