Metal Commands: Section "D"

DATE$

Type: system value

result$=DATE$

td$=DATE$

print "Today's date: "DATE$

The DATE$ command simply returns the current date from the installed ProDOS clock, in the standard mm/dd/yy (Month/Day/Year) format. If no clock is installed in ProDOS, then DATE$ will return a string consisting of "00/00/00".

The returned string is always eight (8) characters long.

See also: CLOCK, DAYNUM, TIME$

DAYNUM

Type: system value

result=DAYNUM{(date${,flag)}

d=DAYNUM

day$=days$(DAYNUM)

day=DAYNUM(t$)

print "Today is the "DAYNUM"th day of the week."

print "Today is the "DAYNUM(Date$)"th day of the week."

print "Today is the "DAYNUM(Date$,1)"th day since 1900."

DAYNUM is used to return the "day number", based on the installed Clock Driver (not the ProDOS clock driver, but the Metal clock driver, setup from the Metal.Config file). The result is always within the 0 to 7 range. The following is a list of the eight possible result values and what they mean:

 result means

 ------ -----

 0 unable to figure out day number

 1 SUNDAY

 2 MONDAY

 3 TUESDAY

 4 WENSDAY

 5 THURSDAY

 6 FRIDAY

 7 SATURDAY

You are probably wondering "Well, why don't you just return the string instead of a number?". The answer is simple: your BBS program can handle a number instead of a word much easier, plus you can change the what the text output can be quickly, instead of going through a lot of If-Then statements - just use an array, like the above example.

If you use the optional (date$) parameter with DAYNUM, Metal will calculate the current day of the week based upon the date$ given. This string can be any date in history, from January 1st, 1900 to December 31st, 1999. You can use this instead of the normal DAYNUM function to figure out the current day of the week by passing the DATE$ system value to DAYNUM, as the second Print example shows (Both of the first two Print examples will return the exact same value).

Giving DAYNUM the optional flag set to 1 will cause DAYNUM to calculate the given date$ value and return a number ranging from 1 to 36524. This number is the number of days since January 1st, 1900. Thus "01/01/00" will return 1 (the first day), and "12/31/99" will return 36524 (the last day). DAYNUM will take care of the leap years and correctly adjust the value.

Using DAYNUM in this manner is handy to write routines to figure how long ago something was. For example:

 lcd$=last_call_date

 x=DAYNUM(Date$,1)-DAYNUM(lcd$,1)

 print "You were last on "x" days ago."

See also: CLOCK, DATE$, TIME$

DEALLOCATE

Type: command

DEALLOCATE(area_num)

DEALLOCATE(5)

DEALLOCATE(0)

DEALLOCATE is used in conjunction with the Allocate command, so naturally, it affects the Cib Cache Buffer. What DEALLOCATE does is free up the memory pages marked with Allocate so that the Cib Cache Buffer has more room to work with.

The area_num passed can be one of three types:

 A value of 0: this removes all Allocated pages from use, and resets the Cib Cache Buffer to it's original 24k size.

 A value of 1 to 127: this just removes that single memory area Allocated, leaving any others still in use. If no such area was Allocated, then nothing really happens.

See also: ALLOCATE, ADDR, BIT, BLOAD, BSAVE, BYTE, MCLEAR, MCOPY, MEMAREA, MEMSIZE, MEMSTRING$, NIBBLE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEADDR, POKEBYTE, POKEWORD, WORD

DELETE

Type: command

DELETE filename$

DELETE "/hard1/basic.system"

DELETE a$

DELETE, quite simply, removes the passed filename$ from the disk. It operates just the same like the Basic.System command "Delete".

DELETE will not do the following:

 (a) Delete a "locked" file.

 (b) Delete a file that is currently open.

 (c) Delete a sub-directory that has one or more files within it.

 (d) Delete all the files within a sub-directory (at least, not at this point in time, but this will be an option with future a Metal version)

Note: Metal does not delete or "erase" disks using the DELETE command. If you need to format a blank disk or erase an existing one, you must use a filing/disk utility program.

See also: CREATE, CLOSE, DOSERR, FCOPY, FILEAUXTYPE, FILEINFO$, FILESIZE, FILETYPE, ONLINE$, OPEN, PREFIX$, RENAME, RUN, RUNSUB, TCOPY

DEVICE

Type: system variable

result=DEVICE

DEVICE=new_device

pushvar DEVICE

DEVICE=6

DEVICE is used to reset the default input/output (i/o) device. Normally, this "default device" is set to zero - which is the local video along with the modem. However, there are times when re-setting the default device can be useful.

For example, if you set the DEVICE equal to "6", which is the printer (and is output only, by the way), then any further Print's that don't explicitly say "print to this device" will go to device number 6 - the printer:

 print "This is to the screen (device #0)"

 DEVICE=6

 print "And this is on the printer! (device #6)"

 print #0,"Hey, back the screen, but by choice this time!"

DEVICE also works with the Input command, and is generally used with devices 1 through 4 (the file channels). The following two Input's are directly equivalent:

 open #1,"file"

 DEVICE=1

 input a$

 input #1,b$

 close #1

Both A$ and B$ will be taken from device #1, the open file.

Note that DEVICE will stay at whatever you set it until:

 (a) the system is rebooted.

 (b) the system resets, either by a program error and a auto or manual <R>estart.

 (c) you press control-Reset to get into the Reset prompt line and then do a <R>estart.

DEVICE is not affected by a Clear.

It is always a good idea to reset the DEVICE to zero after you are finished with it. If you wish, you may use the following programming lines to save and restore the default device:

 pushvar DEVICE

 ...your code...

 pullvar wxyz

 DEVICE=wxyz

Note that you cannot (currently) do a PullVar using the DEVICE command word.

See also: APPEND, BLOAD, BSAVE, CLOSE, CREATE, DELETE, DOSERR, FCOPY, FILEAUXTYPE, FILEINFO$, FILEMARK, FILESIZE, FILETYPE, FLUSH, INPUT, ONLINE$, OPEN, POSITION, PREFIX$, PRINT, RENAME, RECNUM, RUN, RUNSUB, TCOPY

DO

Type: looping command

DO

...command(s)...

UNTIL condition_is_true

DO

print "Hit a key!";

get i$

UNTIL i$="E"

print "Exited!"

The DO command is one of Metal's special "looping commands" - the others are FOR-NEXT and WHILE-ENDWHILE.

DO-UNTIL will continue to loop until the set condition becomes a non-zero (true) value. Basically, using the DO-UNTIL loop is equal to a IF-THEN-GOTO setup, but without the labels. So, the following two examples will perform exactly the same:

 a=0 a=0

 DO label

 print "A is equal to ";a print "A is equal to ";a

 a==+1 a==+1

 UNTIL A=20 if a<>20 goto label

So each version of the loop will run until A reaches the value of 20. The reason for using a DO instead of an If-Then-Goto is that the DO command:

 (a) runs faster than an If-Then

 (b) doesn't require a label.

However, there are times when using a DO-UNTIL is not applicable - Exiting from the middle of a DO-UNTIL is a bit difficult (you have to use a POP DO to get out of it prior to a GOTO), and you may only have up to eight DO-UNTIL loops running at any given time (ie: you may only nest the DO 8 levels deep)

Note that the DO-UNTIL loop will execute at least once, no matter if the condition value is true prior to the start of the loop.

See also: CLEAR, ELSE, END, IF, LONG IF, FOR, GOTO, GOSUB, NEXT, POP, STEP, THEN, UNTIL, WHILE

DOSERR

Type: system value

result=DOSERR

print "The last ProDOS error was: "DOSERR

open #1,f$:x=DOSERR:close #1:if x goto FileError

DOSERR is simply a command that does a peek of memory location $BF0F (the last ProDOS error number). The value of DOSERR changes each and every time a DOS command is used (such as Open, Close, Create, or Filesize). Thus, the second example above had to save off the possible DOSERR reported when the file was opened, since Close will change it.

Error Text Number (Hex) Number (Dec)

-------------------------------------- ------------- -------------

No Error $00 0

Invalid MLI Function $01 1

Invalid Parameter Count $04 4

Interrupt Table Full $25 37

I/O Error on Disk Media $27 39

No Device Connected to Slot/Drive $28 40

Disk is Write Protected $2B 43

Volume(s) have been Switched $2E 46

Device is Offline $2F 47

Invalid Pathname Syntax (Bad Pathname) $40 64

Too Many Files Open at Once $42 66

Invalid Reference Number $43 67

Nonexistent Path in Pathname $44 68

Volume not Online $45 69

File Not Found in Pathname $46 70

Duplicate Filename (RENAME Error) $47 71

Disk Media is Full $48 72

Volume Master Directory Full $49 73

Incompatible ProDOS Version $4A 74

Unsupported File Storage Type $4B 75

End Of File $4C 76

Position past End Of File $4D 77

Access Error (File is Locked) $4E 78

File Already Open $50 80

File Count Bad in Directory $51 81

Not a ProDOS Disk $52 82

Bad Parameter $53 83

Volume Count Buffer Overflow $55 85

Bad Buffer Address $56 86

Duplicate Volume Online $57 87

Bad Volume BitMap $58 88

See also: APPEND, BLOAD, BSAVE, CREATE, CLOSE, DELETE, DEVICE, FCOPY, FILEAUXTYPE, FILEINFO$, FILEMARK, FILESIZE, FILETYPE, FLUSH, INPUT, ONLINE$, OPEN, POSITION, PREFIX$, PRINT, RENAME, RECNUM, RUN, RUNSUB, TCOPY

