Metal Commands: Section "E"

EDIT

Type: complex command/system variable

EDIT(index)=value

result=EDIT(index)

EDIT(1)=1

lines=EDIT(2)

The EDIT command is used to access and control the built-in Line and FullScreen editors (packages 01 and 02, respectively). You access either editor by the EDIT(1) command:

 EDIT(1)=1 execute the Line Editor

 EDIT(1)=2 execute the FullScreen Editor (currently only PTSE)

You may check what version was accessed last by the following:

 last=EDIT(1) returns 1 for Line, 2 for FullScreen, 0 for neither

And you may re-execute the last Editor type by doing:

 EDIT(1) without the "=x" expression.

The EDIT(2) command is the number of lines that were in the editor's buffer. This is a read only value. Normally, you check this when one of the Editors exits to check how many lines were entered.

 lines_entered=EDIT(2) returns the number of lines entered in the buffer, from 0 (empty) to 65000 (max)

The EDIT(3) command is also a read only value - it returns the "error code" back from the editor:

 editor_err=EDIT(3) 0=no errors, file was saved correctly.

 1=user aborted edit, nothing saved off.

 2=attempt to save empty buffer file.

 3=file was not saved to disk - Edit$(3) value was not set up or was null.

 4=file was not saved to disk correctly - ProDOS error of some sort. The file may exist partially on the disk, or may not. Check the DosErr system value for the error code.

 5-255: future expansion

Both editors have various options that control the default justification, word wrapping (splitting of the text at the edge of the screen), the line number prompting, the "Hot Dot" feature, and the output file control. The are setup through the EDIT(4) to EDIT(16) commands.

When the Editor executes, it uses whatever values are currently present in EDIT(4) through EDIT(7). When the Editor exits (either by Abort or Save), the current values are reflected - thus if the user changes from Hot Dot to normal, then EDIT(5) will be changed.

 EDIT(4) current justify mode. 0=none,1=left,2=right,3=center.

 (Line Editor only, not currently used in FSED)

 EDIT(5) current hot dot mode. 0=off,1=on.

 (Line Editor only, not currently used in FSED)

 EDIT(6) current word break mode. 0=off, 1=on.

 EDIT(7) current prompting mode. 0=off, 1=on.

 (Line Editor only, not currently used in FSED)

When the Editor saves the file, it saves it to EDIT$(3) filename (if set). You can change how the Editor saves this "outfile" with the EDIT(8) command:

 EDIT(8) outfile control.

 0=create w/error, will error if EDIT$(3) file exists.

 1=save normal, will overwrite existing EDIT$(3) file.

 2=append to existing EDIT$(3) (if said file exists)

Special options exist for each editor, which is controlled by the EDIT(9) to EDIT(16) flags. For most usage, these should be set to zero; for users with staff access, these should be set to 1. When the Editor's exit, these will always be reset to zero.

 EDIT(9) If this is one, allows the usage of the Include/Load From/Attach options in the Editors.

 EDIT(10) If this is one, allows the use of the Save As... option. This lets the user save the file as whatever he wants and to continue editing.

 EDIT(11) If this is one, the user has access to the Clipboard functions. In order for this to work, EDIT$(4) must be set up (see EDIT$).

 EDIT(12) If this is one, then the FullScreen Editor will allow the use of Inverse text; otherwise, it prevents it.

 EDIT(13) If this is one, then the FullScreen Editor will allow the use of MouseText (ProTerm Special Emulation); otherwise, it prevents it.

 EDIT(14) reserved.

 EDIT(15) reserved.

 EDIT(16) reserved.

By now, you're wondering "How can I check for the number of characters entered?". Very simple. Since you explicitly give the Editors a pathname to save the text to when they exit (actually, when the user says "Save it"), you can perform a FileSize(Edit$(3)) to return the size of the file. For example:

 ln=filesize(edit$(3))

 print "You entered "ln" characters."

The Editors use Variable Memory as a storage space for the text - these are stored as special variables that your CIB files cannot access. Each line is from 0 to 79 characters long, and there may be from 0 to 65,000 lines stored in memory.

Roughly, each line takes from 10 to 90 bytes of variable memory - during normal editing, this averages out to 80 characters over the long run. Assuming that the maximum number of lines a user uses is 256, this translates into around 20k of variable memory - 18,000 characters (subtracting overhead) of posting. This fits nicely into a 30k variable memory setup.

This "internal buffer" is automatically erased when the Editor exits, and your Free value will read approximately the same as when the Editor started.

See also: EDIT$, EXT, FCOPY, TCOPY

EDIT$

Type: system variable

result$=EDIT$(value)

EDIT$(value)=string$

curtab$=EDIT$(1)

EDIT$(3)=filetosave$

The EDIT$(value) command is used to control some parts of the Editors. These controls range from the default tab line, what file, if any, to load into the Editor, and what file, if any, to save the editor text to.

Note: the EDIT$ is not really a command, it is just a normal variable that Metal has been programmed to handle specially. You can use EDIT$, EDIT$(0), EDIT$(20), EDIT$(5,6), etc - Metal just uses EDIT$(1) to EDIT$(4) for the Editor's uses.

Both Editors use a TabLine - the FSED shows its Tab Line all the time, while the Line Editor only shows it when requested. This tab line defaults to a set value, but it is always returned and may be set when the Editor's are executed:

 lastabline$=EDIT$(1) returns the last tab line used. If this is null or not equal to a string 79 chars long, it was never set.

 EDIT$(1)=newtabline$ sets the tab line to be used next time. If this is not a string that is 79 chars ling, it will not be used, and the default tab line will be used.

You may want to load a file or start fresh with a blank editor. This is handled via the EDIT$(2) value:

 cursource$=EDIT$(2) returns the current filename of the file to load. This file is "broken" into lines that are 79 characters long, and all control characters are either stripped out (Line Editor) or converted (Full Screen).

 EDIT$(2)=filename$ sets the filename of the file to load. Same formatting rules as above. If this is null, then the editor will NOT load in any file, and instead, start fresh with a blank editor.

In order to tell the Editors where to save the file - if at all - you must set the EDIT$(3) up. This is the pathname of the target TXT file. If this string is null, then the file is not saved at all, and any text typed will not be saved off, and will be lost when the Editor exits.

 curfilename$=EDIT$(3) returns the current filename of the file to save to.

 EDIT$(3)=filename$ sets the filename of the file to save to. If null, then the file is not stored to disk, and any entered text will be lost. How this file is saved is determined by the EDIT(8) option.

By setting EDIT(11) to 1, you allow the Editor's to use the Clipboard functions. These require that EDIT$(4) be set up. This is the filename of the Clipboard file. If this string is null, then the Editors will not use the Clipboard function.

 curfilename$=EDIT$(4) returns the current filename of the Clipboard file.

 EDIT$(4)=filename$ sets the filename of the Clipboard file to use when the Editors are "clipping" part of the text out for later use. A value of "$/CLIPBOARD" is suggested. This Clipboard file is not cleared or deleted from Editor session to Editor session.

See also: EDIT, EXT, FCOPY, TCOPY

ELSE

Type: buried command

{long} if math function then do if true commands :ELSE do if false commands

if a=0 then print "Zero":ELSE print "Not Zero"

long if m mod 4=3

 print "From 0 to 2"

 ELSE

 print "It's Three"

end if

The ELSE command is used in conjunction with the If/LongIf/Then command structure. For a complete treatment on the ELSE command, you should refer to the If and Long If explanations.

See also: CLEAR, END, IF, LONG IF, POP, THEN

END

Type: complex command

END {extender}

END

END IF

END WHILE

The END command is used to close off a LongIf statement or a While loop. Using END without either an IF or WHILE extender, the END command tells Metal to stop running the CIB program, and it crashes the system with an End of Program Error (SysErr number 255).

So there are three possible extenders for the END command:

 extender does

 -------- ----

 IF Terminates a LongIf statement

 WHILE Signals the end of a While/EndWhile loop

 -none- Crashes program with End of Program Error

END can generate one of three possible errors:

End of Program Error (SysErr number 255): neither an IF or WHILE command followed the END command.

End If without Long If (SysErr number 183): There is not a Long If statement currently running.

End While without While (SysErr number 185): There is not a While loop currently running.

See also: CLEAR, ELSE, IF, LONG IF, POP, THEN, WHILE

EOR

Type: logic operand

result=operand1 EOR operand2

z=x EOR y

if youdead EOR hedead print "One of you is dead!"

The EOR command word is used to check the preceding (operand1) and following (operand2) values and return either a 0 or 1 value.

EOR stands for Exclusive-OR, and it returns a value of 0 if both operand1 and operand2 are the same logical value (both zero or both non-zero). If the values of operand1 and operand2 differ, then EOR will return a value of 1.

EOR can be thought of as an logical "subtracter":

 0 - 0 = 0

 0 - 1 = 1 (sign is dropped)

 1 - 0 = 1

 1 - 1 = 0

Note that the actual values of operand1 and operand2 don't really affect the outcome of the EOR command - it just cares if the values are either zero or non-zero - non-zero values are treated as a "1" value.

See also: AND, B.AND, B.EOR, B.OR, NAND, NEOR, NOR, NOT, OR

ESC$

Type: string function

if i$=ESC$ goto

a$=ESC$

print ESC$

The ESC$ command simply returns back a single character consisting of ascii code 27 (the escape character). It is normally used to check single-character input from the user to see if he/she has pressed the ESCape key (usually aborting whatever function is occurring).

See also: CR$, GET, INPUT

EXT

Type: complex command

EXT filename$ or #package number {,optionals}

EXT "7/exploder"

EXT #200

EXT #128,0,80,2,15,"GF","Files"

The EXT command is used to load in an run machine language programs - generally, it is used to run custom "packages" that you have placed in your "0/" directory, but you can just as easily run a literal filename.

Depending on what the external is supposed to do, and what (if any) following optionals (or arguments) are there, the external may just print out a string, draw a PTSE window, transfer some files, view a hires picture, or even format your disk.

For more information on how to use a particular external, you should refer to the documentation on that external.

For information on writing externals, you should refer to the document "WRITING.EXTRNLS", which covers the Metal machine language environment and the "package" format.

See also: XFER, document WINDOWING.EXTNL, document WRITING.EXTRNLS

