Metal Commands: Section "N"

NAND

Type: logic operand

result=operand1 NAND operand2

z=x NAND y

if wild NAND crazy goto nuts

The NAND (Negative AND) command word is similar to the AND function - it takes the logical value of operand1 and operand2 and returns a value of 0 if they are both not equal to zero; if either operand is zero, then NAND returns a 1 value.

The NAND operation is functionally equivalent to the following:

 z = x NAND y

 same as:

 z = NOT (x AND y)

While the NAND function is not heavily used as the AND function is, it does have its place, and can come in handy from time to time.

NAND can be thought of as an logical "inverse multiplier":

 1 - (0 x 0) = 1

 1 - (0 x 1) = 1

 1 - (1 x 0) = 1

 1 - (1 x 1) = 0

Note that the actual values of operand1 and operand2 don't really affect the outcome of the NAND command - it just cares if the values are either zero or non-zero - non-zero values are treated as a "1" value.

See also: AND, B.AND, B.EOR, B.OR, EOR, NEOR, NOR, NOT, OR

NEOR

Type: logic operand

result=operand1 NEOR operand2

z=x NEOR y

if youdead NEOR hedead print "You're both dead or both alive!"

The NEOR (Negative EOR) command word is similar to the EOR function - it takes the logical value of operand1 and operand2 and returns a 1 value if they are both the same logical value (both zero or both non-zero); it returns a 0 value if they are different.

The NEOR operation is functionally equivalent to the following:

 z = x NEOR y

 same as:

 z = NOT (x EOR y)

NEOR can be thought of as an logical "inverse subtracter":

 1 - (0 - 0) = 1

 1 - (0 - 1) = 0 (sign is dropped)

 1 - (1 - 0) = 0

 1 - (1 - 1) = 1

Note that the actual values of operand1 and operand2 don't really affect the outcome of the NEOR command - it just cares if the values are either zero or non-zero - non-zero values are treated as a "1" value.

See also: AND, B.AND, B.EOR, B.OR, NAND, NEOR, NOR, NOT, OR

NEXT

Type: looping command

NEXT {variable}

for j = 1 to 10

NEXT

for x9 = low to high

NEXT x9

The NEXT command closes off the FOR-NEXT loop that the For command talked about. For each and every For, you must have a NEXT in order to complete the loop.

If you don't supply the variable optional, the NEXT command will use the current "outside" For-Next loop - in other words, the last-used For command. This makes "nesting" multiple For-Next loops possible without having to consistently type-in the variable to step:

 for j = 1 to 50

 for k = 1 to 60

 print j,k

 NEXT ! uses K

 NEXT ! uses J

As you can see, the first NEXT will use the K loop until the K exceeds the value of 60, at which point the For-Next loop automatically terminates. The second NEXT will use the J loop - at which point, the system does another K loop. This continues, using one For-Next after the other, until J exceeds the value of 50.

If you supply the optional variable, then you are forcing the NEXT command to use that For loop, prematurely terminating any loops that may exist within the loop. Normally, you don't wish to do this, and will just use the current "outside" loop. The following two samples show what happens if each structure is used:

 1) Normal usage, outside loop:

 for j = 1 to 50

 for k = 1 to 50

 print j,k

 next k

 next j

 This example functions the same as the one given above.

 2) Specialized usage, terminate outside loop:

 for j = 1 to 50

 for k = 1 to 50

 print j,k

 next j

 next k

 In this example, the output printed will be nothing more than 1,1 2,1 3,1 4,1, 5,1, 6,1. At this point, because the NEXT J has forced the FOR K to re-execute before it was closed off and removed from use, Metal will crash with a system error - FOR/NEXT STACK OVER 8.

As you can see, using the optional variable can get you into some serious trouble - it is not recommended to use this optional because of this, but if you must, then use caution and plan your moves carefully.

Programming tip: if you must use this form of NEXT, in order to skip over a current loop, then try using POP NEXT or POP FOR in order to remove the current outside loop. Generally, this would be within some heavy if-then logic.

See also: CLEAR, DO, ELSE, END, FOR, IF, GOTO, GOSUB, LONG IF, POP, THEN, UNTIL, WHILE

NIBBLE

Type: complex system variable/memory storage

NIBBLE{area}{(index)}=value or starting_base

result or current_base=NIBBLE{area}{(index)}

NIBBLE=memarea(9)+82

NIBBLE3=memarea(2)

print NIBBLE2

NIBBLE1(3)=blks

lngh=NIBBLE(20)/word2(7)

NIBBLE is a very specialized command that is used to manipulate memory areas in various ways.

NIBBLE "data chunks" are each 4 bits long - thus they can each only hold a value of 0 to 15. If you try to equate a NIBBLE to a value greater than 15 or less than zero, NIBBLE will perform a "modulo 16" operation on it (actually, it does a B.AND 15).

Since NIBBLEs can fit within a single byte of memory (4 bits per each NIBBLE, 8 bits per each byte), NIBBLEs rank just under Bits as efficiency goes. But then again, you can store a larger number - instead of 0 to 1, you can store 0 to 15.

Like Bit, Byte, etc, NIBBLE may be given one of ten distinct and separate memory "area" to work out of. These are the {area} optionals.

The {area}, if given, is a single digit, ranging from 0 to 9. If no {area} is given, then it defaults into zero. Thus, the following are equal:

 NIBBLE=memarea(2)+82

 NIBBLE0=memarea(2)+82

The {area} must immediately follow the NIBBLE command word, otherwise you will cause rather odd things to happen in your code, depending on where you made the mistake - the results could range from a Syntax Error to simply having wrong numbers being printed out. There must be no spaces between the NIBBLE and the {area}.

The {(index)} optional tells Metal wether or not to set or retrieve the "starting base" for that NIBBLE area, or to set or retrieve a value in that area. This breaks the NIBBLE command down into two distinct and very separate parts:

(a) If the {(index)} optional is missing, Metal assumes that you wish to manipulate the starting base for the NIBBLE's area. By setting (ie: equating NIBBLE{area} to some value) you are telling Metal where that NIBBLE is living at and where to store or look for data at. The value given will be assumed to be a 16-bit memory address. Likewise, reading the NIBBLE{area} will retrieve the last set value for that NIBBLE:

 NIBBLE=memarea(2)+82 this example sets up where NIBBLE area 0 (the default, remember?) is going to start at. The "memarea(2)" value was previously setup using an Allocate command.

 print NIBBLE this example displays where NIBBLE area 0 is currently coming from.

(b) If the {(index)} is given, Metal assumes that you wish to manipulate the data inside of that NIBBLE area. Remember, each data element - the "index" - is 1/2 of a byte long. The value of the index may range from 0 - the first element in the NIBBLE area - to approx 49,000.

 NIBBLE(2)=7 this example sets NIBBLE area 0, element number 2 to the value of 7.

 NIBBLE3(0)=1 this example sets NIBBLE area 3, element number 0 to the value of 1.

 print NIBBLE(9) displays the value of NIBBLE area 0, element number 9.

As previously mentioned, NIBBLE elements occupy 1/2 of a byte per element. Metal automatically calculates where the element is at in the starting base for that area, so you don't need to mess with calculations. Again, the only drawback to NIBBLE is that it can only store and retrieve values of 0 to 15.

See also: ADDR, ALLOCATE, BIT, BYTE, DEALLOCATE, MEMAREA, MEMSIZE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, POKE, POKEADDR, POKEBYTE, POKEWORD, WORD

NOR

Type: logic operand

result=operand1 NOR operand2

z=x NOR y

if uploads NOR downloads print "No transfer activity."

The NOR (Negative OR) command word is similar to the OR function - it takes the logical value of operand1 and operand2 and returns a value of 1 if they are both equal to zero; if either operand is non-zero, then NOR returns a 0 value.

The NOR operation is functionally equivalent to the following:

 z = x NOR y

 same as:

 z = NOT (x OR y)

While the NOR function is not heavily used as the OR function is, it does have its place, and can come in handy from time to time.

NOR can be thought of as an logical "inverse adder":

 1 - (0 + 0) = 1

 1 - (0 + 1) = 0

 1 - (1 + 0) = 0

 1 - (1 + 1) = 0 (1+1 is treated as 1)

Note that the actual values of operand1 and operand2 don't really affect the outcome of the NOR command - it just cares if the values are either zero or non-zero - non-zero values are treated as a "1" value.

See also: AND, B.AND, B.EOR, B.OR, EOR, NAND, NEOR, NOT, OR

NOT

Type: logic operand

result=NOT operand

z=NOT x

if NOT staff print "You're not a staff member"

The NOT command (so heavily referred to in the above documentation) basically "flips" the logical value of operand and returns the inverse of it. Thus, if the value of operand was zero, then NOT returns a 1; conversely, if operand equated to a non-zero value, then NOT returns a zero.

NOT is generally used in If-Then logic to check for certain access flags or conditions. In most cases, the use of NOT and the equals/not equals signs can be interchanged with no problems:

 if NOT staff goto normal_user

 if staff=0 goto normal_user

And of course, you can "expand" the NAND/NEOR/NOR functions with the NOT:

 if a NAND b goto label

 if NOT (a and b) goto label

Notice that in this case, you must put parentheses around the "a and b" equation, since the math in Metal is strictly left-to-right. This is done to force Metal to evaluate the "a and b" expression before continuing on with the NOT function.

NOT can be thought of as an logical "inverser":

 1 - x

 1 - 0 = 1

 1 - 1 = 0

See also: AND, B.AND, B.EOR, B.OR, EOR, NAND, NEOR, NOR, OR
