Metal Commands: Section "S"

SIGN

Type: math function

result=SIGN(value)

x=SIGN(y-2)

if SIGN(x)=1 goto IsPos

SIGN simply returns a number that is based upon the sign of the value. It only returns three possible values:

o if value is zero, then result is zero.

o if value is less than zero (negative), then result is -1.

o if value is greater than zero (positive), then result is 1.

See also: ABS, ASC, BITVAL, HEXVAL, INSTRING, LEN, MEMAREA, MEMSIZE, PEEK, PEEKADDR, PEEKBYTE, PEEKWORD, PADDLE, RANDOM, ROTL, ROTR, SYSINFO, VAL

SMF_ALLOCATE

Type: command

SMF_ALLOCATE(channel,block,size)

SMF_ALLOCATE(msg,bltn,x)

The SMF_ALLOCATE command is used on a currently opened SMF (Single Message Format, commonly called a Message File) to set aside or "allocate" a given number of bytes (or characters) for a block.

If the given block is already set aside (ie: the size of the block is not zero), the SMF_ALLOCATE will do nothing.

Otherwise, SMF_ALLOCATE will try to locate a range of space in the file that is size bytes long, and set up internal pointers to that space for the block.

After the SMF_ALLOCATE command is finished, the SMF_ATRIB and SMF_USER values for that block are zero, and the current Filemark pointer for the channel specified is set to the start of the newly created block.

Note that SMF_ALLOCATE does not clear out any "old" data that may be in the file at this point - it is assumed that you wish to overwrite the older data with new data.

Also note that each time SMF_ALLOCATE is used, it checks to see if the block being passed is greater than the total number of blocks currently being used by that SMF file; if so, it sets the given block as the highest block in use on the file.

See also: SMF_ATRIB, SMF_CLOSE, SMF_CREATE, SMF_DELETE, SMF_FLUSH, SMF_INFO, SMF_OPEN, SMF_READ, SMF_REMOVE, SMF_SIZE, SMF_USER, SMF_WRITE, Using SMF Routines

SMF_ATRIB

Type: system variable

result=SMF_ATRIB(channel,block)

SMF_ATRIB(channel,block)=value

x=SMF_ATRIB(msg,bltn)

SMF_ATRIB(3,120)=85

Each SMF Block has two program-usable fields: these are the Atrib and User fields of the block.

Whenever a SMF_ALLOCATE is done to create a new block, these fields are set to zero.

Setting SMF_ATRIB is just the same as setting any other numerical variable: the range limit is the full 24-bit integer limit Metal imposes; thus you can set SMF_ATRIB to a value from -8meg to +8meg.

Reading SMF_ATRIB is just the same as reading another numerical variable.

NOTE: Due to the way the SMF routines are coded inside of Metal, you cannot use more than one SMF_xxx routine in the same expression. For example, the following code line will give a false result:

 SMF_ATRIB(3,100)=SMF_ATRIB(4,20)

You will have to save the second SMF_ATRIB off into another variable as a "holder" in order to use it:

 x=SMF_ATRIB(4,20)

 SMF_ATRIB(3,100)=x

See also: SMF_ALLOCATE, SMF_CLOSE, SMF_CREATE, SMF_DELETE, SMF_FLUSH, SMF_INFO, SMF_OPEN, SMF_READ, SMF_REMOVE, SMF_SIZE, SMF_USER, SMF_WRITE, Using SMF Routines

SMF_CLOSE

Type: command

SMF_CLOSE(channel)

SMF_CLOSE(msg)

The SMF_CLOSE command is used to close the currently open SMF file on the channel channel number. Doing so writes out any change SMF info and closes the file, freeing the channel for future use.

Each SMF_OPEN must be followed (somewhere) by a SMF_CLOSE command.

See also: SMF_ALLOCATE, SMF_ATRIB, SMF_CREATE, SMF_DELETE, SMF_FLUSH, SMF_INFO, SMF_OPEN, SMF_READ, SMF_REMOVE, SMF_SIZE, SMF_USER, SMF_WRITE, Using SMF Routines

SMF_CREATE

Type: command

SMF_CREATE(filename$,max_blocks)

SMF_CREATE(brds$,256)

SMF_CREATE("9/my.smf",max)

The SMF_CREATE command is used to set up a new, blank SMF file. You pass it the filename$ of the file to create (or re-create), and the total maximum number of blocks that you wish to have in the SMF file (max_blocks).

If the filename$ already exists, then SMF_CREATE will delete that file and create a new one.

SMF_CREATE does not open the new file into a file channel for you; you must do that yourself using the SMF_OPEN command if you need to.

See also: SMF_ALLOCATE, SMF_ATRIB, SMF_CLOSE, SMF_DELETE, SMF_FLUSH, SMF_INFO, SMF_OPEN, SMF_READ, SMF_REMOVE, SMF_SIZE, SMF_USER, SMF_WRITE, Using SMF Routines

SMF_DELETE

Type: command

SMF_DELETE(channel,block)

SMF_DELETE(msg,bltn)

SMF_DELETE(3,100)

The SMF_DELETE command is used to remove the given block from use in the SMF file. It does this by marking the area of the file that the block is using as free (available for re-use via SMF_ALLOCATE); marking its entry in the SMF file as unused, and then bringing all the following SMF blocks down by one (as if you tore out a page in a book).

After an SMF_DELETE, the highest block in use value of the SMF file is decreased by one.

See also: SMF_ALLOCATE, SMF_ATRIB, SMF_CLOSE, SMF_CREATE, SMF_FLUSH, SMF_INFO, SMF_OPEN, SMF_READ, SMF_REMOVE, SMF_SIZE, SMF_USER, SMF_WRITE, Using SMF Routines

SMF_FLUSH

Type: command

SMF_FLUSH(channel)

SMF_FLUSH(msg)

SMF_FLUSH(4)

The SMF_FLUSH command acts the same as if you had closed the SMF file using SMF_CLOSE, but it leaves the file open. This command is useful if you expect to leave the SMF file open for long periods and don't want to run the risk of having the file corrupted if something happens to the BBS.

See also: SMF_ALLOCATE, SMF_ATRIB, SMF_CLOSE, SMF_CREATE, SMF_DELETE, SMF_INFO, SMF_OPEN, SMF_READ, SMF_REMOVE, SMF_SIZE, SMF_USER, SMF_WRITE, Using SMF Routines

SMF_INFO

Type: system value

result=SMF_INFO(channel,parm)

The SMF_INFO command is used to return certain information from the SMF file. The parm value controls what is actually returned into result:

 parm means

 ---- ---------------------------

 0 Version of the SMF file, in hexword format. Divide this number by 256 for the major version,; the remainder is the minor version. This will always be 256 (indicating a version of 1.0)

 1 Maximum number of blocks that can be in use at any one given time. This value is set when the SMF file is created using the SMF_CREATE(filename$,maxblocks) command.

 2 Highest (or total) block in use in the SMF file. A value of zero indicates that there are no blocks in use in the file.

 3 Total number of free blocks in the file available for use. This will always be at least 1, and usually never more than 8000. Any value over 50 indicates that the SMF file is deeply fragmentated, and should be "optimized".

 4 This is the file offset from the front of the file to the In Use Table. This value should always be 16, and is only used by routines that have extreme needs for it (for example, SMF file repair programs).

 5 This is the file offset from the front of the file to the Free Blocks Table. The value here varies on the maximum number of blocks in the file. Like 4, it is used only by routines that need information on the structure of the file.

See also: SMF_ALLOCATE, SMF_ATRIB, SMF_CLOSE, SMF_CREATE, SMF_DELETE, SMF_FLUSH, SMF_OPEN, SMF_READ, SMF_REMOVE, SMF_SIZE, SMF_USER, SMF_WRITE, Using SMF Routines

SMF_OPEN

Type: command

SMF_OPEN(channel,filename$)

SMF_OPEN(msg,brd$)

SMF_OPEN(4,"5/mail")

The SMF_OPEN command is used to open an SMF file and ready it for use. You must use SMF_OPEN in order to open an SMF file; using the standard Open command will not work, as SMF file structures are much more "fluid" than normal ProDOS files.

All other SMF_xxxx commands (with the exception of SMF_CREATE) require that you have SMF_OPEN'd a file before using them.

See also: SMF_ALLOCATE, SMF_ATRIB, SMF_CLOSE, SMF_CREATE, SMF_DELETE, SMF_FLUSH, SMF_INFO, SMF_READ, SMF_REMOVE, SMF_SIZE, SMF_USER, SMF_WRITE, Using SMF Routines

SMF_READ

Type: command

SMF_READ(channel,block,filename$)

SMF_READ(msg,bltn,f$)

SMF_READ(4,100,"9/tfile")

The SMF_READ command is used to directly copy out the data in the block of the SMF file into the target filename$. Depending on what the SMF file is being used for, this could be text or binary data.

If the given filename$ already exists, it is overwritten. If it does not exist, then it is created using a filetype of TeXT.

See also: SMF_ALLOCATE, SMF_ATRIB, SMF_CLOSE, SMF_CREATE, SMF_DELETE, SMF_FLUSH, SMF_INFO, SMF_OPEN, SMF_REMOVE, SMF_SIZE, SMF_USER, SMF_WRITE, Using SMF Routines

SMF_REMOVE

Type: command

SMF_REMOVE(channel,block)

SMF_REMOVE(msg,bltn)

SMF_REMOVE(2,4123)

The SMF_REMOVE command is similar to the SMF_DELETE command (in fact, SMF_DELETE uses SMF_REMOVE), but SMF_REMOVE does not delete the block from the file; SMF_REMOVE zeroes out the block in question. In other words, SMF_REMOVE in the converse of SMF_ALLOCATE. In fact, you could call SMF_REMOVE "Smf_DEallocate".

After an SMF_REMOVE, the block's Atrib and User fields are not changed, but any data that was in the block is gone - the SMF routine will mark that block's data as available for use, and flag the block as empty.

See also: SMF_ALLOCATE, SMF_ATRIB, SMF_CLOSE, SMF_CREATE, SMF_DELETE, SMF_FLUSH, SMF_INFO, SMF_OPEN, SMF_READ, SMF_SIZE, SMF_USER, SMF_WRITE, Using SMF Routines

SMF_SIZE

Type: system value

result=SMF_SIZE(channel,block)

The SMF_SIZE command simply returns the size of the given block; if the block was never SMF_Allocate'd or was SMF_Remove'd, then SMF_SIZE will return a value of zero, indicating that the block no longer exists.

See also: SMF_ALLOCATE, SMF_ATRIB, SMF_CLOSE, SMF_CREATE, SMF_DELETE, SMF_FLUSH, SMF_INFO, SMF_OPEN, SMF_READ, SMF_REMOVE, SMF_USER, SMF_WRITE, Using SMF Routines

SMF_USER

Type: system variable

result=SMF_USER(channel,block)

SMF_USER(channel,block)=value

x=SMF_USER(msg,bltn)

SMF_USER(3,120)=85

Each SMF Block has two program-usable fields: these are the Atrib and USER fields of the block.

Whenever a SMF_ALLOCATE is done to create a new block, these fields are set to zero.

Setting SMF_USER is just the same as setting any other numerical variable: the range limit is the full 24-bit integer limit Metal imposes; thus you can set SMF_USER to a value from -8meg to +8meg.

Reading SMF_USER is just the same as reading another numerical variable.

NOTE: Due to the way the SMF routines are coded inside of Metal, you cannot use more than one SMF_xxx routine in the same expression. For example, the following code line will give a false result:

 SMF_USER(3,100)=SMF_USER(4,20)

You will have to save the second SMF_USER off into another variable as a "holder" in order to use it:

 x=SMF_USER(4,20)

 SMF_USER(3,100)=x

See also: SMF_ALLOCATE, SMF_ATRIB, SMF_CLOSE, SMF_CREATE, SMF_DELETE, SMF_FLUSH, SMF_INFO, SMF_OPEN, SMF_READ, SMF_REMOVE, SMF_SIZE, SMF_WRITE, Using SMF Routines

SMF_WRITE

Type: command

SMF_WRITE(channel,block,filename$)

SMF_WRITE(msg,bltn,f$)

SMF_WRITE(1,933,"9/afile")

The SMF_WRITE routine will take the given filename$ and copy as much data as it can into the given block number passed. There are two limits on how much the SMF_WRITE command will copy: the size given when the block was SMF_Allocate'd, and the size of the given filename$.

SMF_WRITE will not copy any more data than the block was allocated for;

If the size of the file to copy in is less than the size of the block, then the entire file will be copied, but the latter part of the block will be unused (usually zeroed).

See also: SMF_ALLOCATE, SMF_ATRIB, SMF_CLOSE, SMF_CREATE, SMF_DELETE, SMF_FLUSH, SMF_INFO, SMF_OPEN, SMF_READ, SMF_REMOVE, SMF_USER, SMF_SIZE Using SMF Routines

STEP

Type: buried command

... STEP value

for j = 1 to 9 STEP 2

for count = 100 to 0 step -1

The STEP command is used with the For-Next loop (see the "For" command). If the For-Next loop does not have the optional STEP value, a "step" (additive) of 1 is used.

See also: FOR, NEXT

STR$

Type: string function

result$=STR$(value{,len})

a$=STR$(money)

print left$(STR$(blk)+" ",4);

print STR$(aa,3);

STR$ stands for "make a string of some number". It is the converse of Val (which turns a string of numbers into a number). Basically, the STR$ and Val commands are used to bridge the chasm between string and integer variables.

STR$ will always return a string, ranging from 1 to 10 characters long. If the value is negative, then the result$ will have a dash (the negative sign) as the first character.

You never have to use STR$ in a Print statement just to print out a number - just use the value that you would use. For example, the following two lines will do the exact same thing:

Wrong way-> Print "You have "STR$(cash)" gold on hand."

Right way-> Print "You have "cash" gold on hand."

STR$ is normally used inside of a Right$, Left$, or Mid$ function to prepare some visual output, usually for a countdown or to line the display up in columns (making it "pretty" for the user).

If you wish STR$ to return just a certain amount of characters, you can give it the optional ,len command. This option will tell STR$ to "pad out" the left side of the string with zeros, and return only as much as it can. Thus, the following two lines will display the same thing:

 print right$("000"+STR$(baq),4)

 print STR$(baq,4)

See also: BITSTR$, CHR$, CNGCASE$, FILEINFO$, HEXSTR$, LEFT$, MID$, REPEAT$, RIGHT$, VAL

SWAPVAR

Type: command

SWAPVAR var1,var2

SWAPVAR a,b

SWAPVAR b$(x),b$(y)

SWAPVAR simply exchanges the values between var1 and var2. In our first example, if "a" was equal to 5, and "b" was equal to 19, then after the SWAPVAR, "a" would be 19, and "b" would be 5.

See also: CLEAR, PULLVAR, PUSHVAR

SYSCNTRL

Type: system variable

result=SYSCNTRL(number)

SYSCNTRL(number)=value

x=SYSCNTRL(2)

SYSCNTRL(1)=3

SYSCNTRL (SYStem ConTRoL) is used to check and set certain operational conditions under Metal. The value of number can range from 1 to 11.

 number means...

 1 buffering frequency

 2 show/hide invisible files

 3 case-shift GSOS filenames

 4 re-order modification/creation dates

 5 allow DIR files to have auxtypes

 6 -unused-

 7 -unused-

 8 -unused-

 9 -unused-

 10 perform Rot13 on data output

 11 cr character is actually this

SYSCNTRL(1) is used to control how often Metal goes to look for input from the user during text output. This directly affects how fast Metal will respond to control-S (pause) or the Abort$. The value of SYSCNTRL(1) ranges from 1 to 9.

 SYSCNTRL(1)=1: Metal will check input each and every character (100%)

 SYSCNTRL(1)=2: Metal will check input every other character (50%)

 SYSCNTRL(1)=3: Metal will check input every 4th character (25%)

 SYSCNTRL(1)=4: Metal will check input every 8th character (12.5%)

 SYSCNTRL(1)=5: Metal will check input every 16th character (6.25%)

 SYSCNTRL(1)=6: Metal will check input every 32nd character (3.125%)

 SYSCNTRL(1)=7: Metal will check input every 64th character (1.56%)

 SYSCNTRL(1)=8: Metal will check input every 128th character (.78%)

 SYSCNTRL(1)=9: Metal will check input every 256th character (.39%)

Note that Metal always checks input each time a carriage return is printed out.

The default for SYSCNTRL(1) is 6 - 64th character. This means that Metal will check, on the average, three times per printed line.

Setting SYSCNTRL(1) to a lower value will improve control-S and Abort$ handling, but will degrade system output speed.

You may re-define the default (or only) setting for SYSCNTRL(1) in your Metal.Config file by using CHARBUFFREQ=<value>.

SYSCNTRL(2) controls the showing of "invisible" files when reading directories. Invisible files are those files that have their "invisible" access bit turned on. This can only be done when the file is created under another operating system other than Metal (for example, The Finder, which uses invisible files to "hide" it's window/icon information files).

SYSCNTRL(2) defaults to 0, which means do not show invisible files. Setting SYSCNTRL(2) to 1 will show invisible files.

Note that you can always open and access invisible files, no matter what the setting of SYSCNTRL(2) is.

SYSCNTRL(3) controls whether or not Metal will perform a GSOS "case shift" on the filename when reading a directory. GSOS allows files to have lower-case letters in the filename (even though they are stored as upper-case letters on the disk), and uses an area of the "file definition" to record if the filename has lower case letters and which ones are.

SYSCNTRL(3) defaults to 0, which means do not perform a case shift; it presents all filenames back as upper case. Setting SYSCNTRL(3) to 1 will tell Metal to do the case shift.

SYSCNTRL(2) and SYSCNTRL(3) have no other effect outside of reading directory files. FileInfo$ will always report back on any file, using upper case filenames.

Normally, Metal will report back whatever the values of the file's creation and modification dates are. However, file transfers tend to use the creation date of the file as the date uploaded, and the modification date as when it was originally created (weird, yes). Setting SYSCNTRL(4) to a value of 1 will tell Metal to re-order the modification and creation date in a file's directory listing or FileInfo$ to what is correct - the creation date will always be the oldest date, and the modification will always be more recent.

Metal normally forbids you to give auxtypes to Directory files. However, there may be a reason that you want to do this. In this case, you can override Metal's default by turning this off: setting SYSCNTRL(5) to a value of 1 will let Metal give DIR files auxtypes.

SYSCNTRL(6) through SYSCNTRL(9) are undefined at the time of this writing, and are being left open for future use. Usage of these options will not cause anything "bad" to happen, until Metal is changed to where it starts to use these values.

SYSCNTRL(10) lets you turn on and off the Rot13 option. Rot13 refers to a common encryption format being used on InterNet and UseNet; all the characters from A to Z and a to z are shifted over by 13, so that A becomes N and N becomes A. Normally, this defaults to off (zero). Setting this to 1 (on) will tell Metal to perform a Rot13 on almost all text output. This includes PRINTing, TCOPY, etc.

The value of SYSCNTRL(10) is forced to zero when any TRAP becomes active (thus if the user drops carrier or an error occurs, this is zeroed). It is also zeroed on any INPUT or GET command.

The Shell Command "ROT13" will also perform this action across an entire text file.

SYSCNTRL(11) provides a cheap and easy way to re-define the carriage return character that Metal uses. Why would you want to do this? Well, if you're working on a program to convert between Apple and Unix, you could use this.

SYSCNTRL(11) always defaults to 13, and should not be changed unless you know what you're doing - it affects all the input routines going to and from the disk.

See also: ABORT$, FILEINFO$, GET, INPUT, OPEN, POSITION, PRINT, RECNUM, SYSINFO, Writing Externals

SYSERR

Type: system value/buried token

result=SYSERR

Trap SYSERR{=value} link label

last=SYSERR

Trap SYSERR goto CrashIt

SYSERR (the last SYStem ERRor number) is used primarily with the Trap command to set up a "trap" or "failsafe" mechanism to catch those nasty little insects that somehow manage to take their vacation inside of your perfectly working program.

Refer to the Trap command for more complete information on using SYSERR to trap bugs.

The following is a list of possible SYSERR values, both in decimal and hex values, with the string of what is printed out when Metal has such an error.

 SYSERR values:

Error Text Number (Hex) Number (Dec)

------------------------------ ------------- -------------

Syntax $80 128

Missing Symbol $81 129

Missing Data $82 130

Device Number out of Range $90 144

Range Error $91 145

Data Type Mismatch $92 146

Command Type Mismatch $93 146

Integer Overflow $A0 160

String Overflow $A1 161

Bad Dispatch Call $A2 162

GOSUB Stack Over 127 $B0 176

RETURN without GOSUB $B1 177

FOR/NEXT Stack Over 8 $B2 178

NEXT without FOR $B3 179

DO Stack Over 8 $B4 180

UNTIL without DO $B5 181

END IF without LONG IF $B7 183

WHILE Stack Over 8 $B8 184

END WHILE without WHILE $B9 185

TRAP Table Full $BA 186

Unable to RETURN from a RUNSUB $BB 187

Unable to RUN a Module $BC 188

Variable Memory Full $D0 208

CPU Stack Overflow $D1 209

Undefined Label $D3 211

Global Label not found $D4 212

Unable to allocate main RAM $D5 213

Bad CALL Format $D6 214

RAM Area Not Allocated $D7 215

Unable to load package $F8 248

Unable to load external $F9 249

Unable to run ASM package $FA 250

Program Halted $FE 254

End of program $FF 255

See also: DOSERR, SYSERR$, SYSINFO, TRAP

SYSERR$

Type: string function

result$=SYSERR${(value)}

a$=SYSERR$

print "Error number "x" is "SYSERR$(x)

SYSERR$ is used to pull out the string version (verbalization) of the last system error or the given value. If no value is used, then the last Syserr value is used, since Metal assumes you want to see what last caused an error.

See also: SYSERR, SYSINFO

SYSINFO

Type: system value

result=SYSINFO(value)

x=SYSINFO(1)

if SYSINFO(2) goto OutputAborted

if SYSINFO(4) and x$="!" staff=not staff

SYSINFO (SYStem INFOrmation) is used to read a wide variety of information about the system - what key was last pressed, what key caused output to stop, number of errors, etc.

All SYSINFO values are read-only - they cannot be set, since they reflect changing conditions inside the language and the system.

Here is the list:

SYSINFO(1) This SYSINFO returns back the ascii code of the last key hit. Note that is does not "eat" the keystroke from the buffer - it is still in the buffer, and will stay there until you remove it (either via Get a$ or Clear Input).

SYSINFO(2) Returns back the ascii value of the key that caused text output to stop. Only valid if Abort$ was equated to something. If Abort$ is null, or no key was hit to cause text stoppage, SYSINFO(2) will be zero.

SYSINFO(3) Returns back the number of keys in the input buffer. If this is zero, then there are no keys in there.

SYSINFO(4) Returns the "Local Sysop Mode" flag. This can only be changed via pressing openapple-L from the BBS keyboard. If this value is 1, then the sysop has gone "online locally" (and the user has been "lost in limbo" for the duration). Once the sysop presses openapple-L again to return from Local Mode, this SYSINFO goes back to zero.

SYSINFO(5) This counts the number of System Errors (crashes) that have occurred since Metal was started. Resets to zero only when Metal.System is re-launched.

SYSINFO(6) This returns the "Iduhno" value that was set initially in the Metal.Config file (sysinfo(6)=<xxx>). This Iduhno value can only be changed either by modifying the Metal.Config file and re-launching Metal, or by pressing openapple-1 through openapple-0, shifted or unshifted. See: The Local BBS Sysop Keyboard.

SYSINFO(7) This is bit7 (leftmost bit) of Iduhno. It is tied into openapple-1 and openapple-!.

SYSINFO(8) This is bit6 of Iduhno. It is tied into openapple-2 and openapple-@.

SYSINFO(9) This is bit5 of Iduhno. It is tied into openapple-3 and openapple-#.

SYSINFO(10) This is bit4 of Iduhno. It is tied into openapple-4 and openapple-$.

SYSINFO(11) This is bit3 of Iduhno. It is tied into openapple-5 and openapple-%.

SYSINFO(12) This is bit2 of Iduhno. It is tied into openapple-6 and openapple-^.

SYSINFO(13) This is bit1 of Iduhno. It is tied into openapple-7 and openapple-&.

SYSINFO(14) This is bit0 of Iduhno. It is tied into openapple-8 and openapple-*.

See also: ABORT$, CLEAR, GET$, SYSINFO$, Local BBS Sysop Keyboard.

SYSINFO$

Type: system value

result$=SYSINFO$(value)

x$=SYSINFO$(1)

print "This is "SYSINFO$(3)

SYSINFO$ is an extension (and in two cases, duplications) of the Sysinfo command. Instead of returning a number, it returns a string.

SYSINFO$(1) returns the last key hit in string format. No case conversion takes place on this, thus if the user hit "k", then "k" will be reported back, not "K". If there are no keys hit (nothing left in the buffer or whatnot), then this will return a null string.

SYSINFO$(2) returns the key that aborted text output in string format. If text has not been aborted, then this will return a null string.

SYSINFO$(3) returns the version of Metal - "METAL v1.23.45", for example.

SYSINFO$(4) returns the current CIB file being run. Yes, yes, this seems silly and really unnecessary, but please look at the STND.SUBS file in Future Vision and then think about it.

See also: ABORT$, CLEAR, GET$, SYSINFO
