

Copyright © 1993-2003 Morgan Davis. All Rights Reserved.

http://www.morgandavis.net

MD-BASIC is a trademark of Morgan Davis. Other
brands and products are trademarks of their respective
holders.

This publication is copyrighted and all rights reserved.
Information in this document is subject to change
without notice and does not represent a commitment
on the part of Morgan Davis. The document may not,
in whole or in part, be copied, photocopied, repro-
duced, translated, or reduced to any electronic medium
or machine-readable form without prior written con-
sent from Morgan Davis.

MORGAN DAVIS MAKES NO WARRANTIES, EITHER EXPRESS OR

IMPLIED, REGARDING THE ENCLOSED COMPUTER SOFTWARE PACKAGE,
ITS MERCHANTABILITY, OR ITS FITNESS FOR ANY PARTICULAR PUR-
POSE. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED

BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.
THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS.
THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY

FROM STATE TO STATE.

First Printing — April 1993 — U.S.A.
Third Edition — March 2003

25% Postconsumer Content
 +25% Preconsumer Content

50% Recycled Content by Total Weight

To the rest of the Davis Group:
Dawn, Kr isti, and Ryan.

4

Resources CODE, TEXT, PAGE by Morgan Davis

Special thanks to those who made this possible:

DBUG Thomas Alley, Greg DaCosta, Mark de Jong,
Derek Fong, Jay Jennings, Robert Merrill, John
Mire, Greg Schreurs, Jon Thomason, James
Zajkowski, and those who enlisted unknow-
ingly for your dedication and patience.

HOST The GEnie A2Pro staff for hosting and main-
taining the software proving grounds.

HELP Tim Swihart and Dave Lyons for being so
excellent in their capacities at Apple.

5

Contents

Introduction
What Is MD-BASIC? ... 7

Notation ... 8

10 Installation
What You Should Know.. 11

Read Me! ... 12

Easy Install .. 12

20 MD-BASICs
Getting Started ... 15

Editing a Document ... 26

Creating a Program ... 28

30 Preferences
About Preferences ... 33

The Preference Dialog ... 34

Saving Your Preferences .. 39

40 In A Nut Shell
Why Use A Shell? ... 43

Shell Savvy ... 43

Shell and Finder... 44

Shell Only ... 45

Desktop Access .. 46

Processing .. 46

Creating a Program ... 48

Conversion .. 49

6

50 Language Features
You Only Get Out What You Input 53

A Few Rules ... 54

A Cache Of Jewels .. 55

Sample.b ... 57

Language Extensions ... 58

60 Directives
The Directives .. 65

#declare .. 65

#define .. 66

#error .. 70

#if, #ifdef, #ifndef, #else, #endif 70

#include... 72

#pragma ... 72

#print .. 75

#reserve ... 76

70 Alerts and Errors
Processing Errors .. 79

Resolving Errors .. 82

Appendices
A: Reserved Words 87
B: ASCII Chart ... 89
C: ProDOS File Types 91
D: Error Codes ... 93

Index ... 95

CONTENTS

7

Introduction

MD-BASIC is a professional Applesoft development
tool that allows you to create BASIC programs using
the awesome power of your Apple IIGS. MD-BASIC
translates your source code into highly optimized
Applesoft programs that are smaller and faster than
programs created the painful, old-fashioned way. Its
luxurious interface, with menus and multiple windows,
makes writing and editing programs a dream.

MD-BASIC brings you the best features found in
modern high-level languages and compilers:

• Long, descriptive variable names
• Labels and named subroutines
• Nested IF-THEN-ELSE
• WHILE-WEND, REPEAT-UNTIL, and DO-LOOP
• Substitution macros (#define)
• Include common source code (#include)
• Conditional source code processing (#if)

MD-BASIC also comes with language interface and
library files to accelerate and simplify program develop-
ment.

It makes sense to use Applesoft, even today. It is built
into every Apple II, and programs can be written
quickly to take care of a variety of tasks that aren’t
desirable to do in assembly language. Most important,
MD-BASIC lets you be a better programmer. Now you
can focus on your work, without fighting the limitations
and clunky nature of Applesoft.

What Is
MD-BASIC?

8

Notation

INTRODUCTION

Throughout this manual the following symbols are
used to denote keys on your keyboard:

Reset Delete
Option Up arrow
Open-apple Down arrow
Control Left arrow
Escape Right arrow
Return Tab
Space Shift

Hyphenated key references, such as - , tell you to
press and hold the first key while typing the second.

9

C H A P T E R

10

10

10: INSTALLATION

11

What You
Should
Know

Installation
This chapter gives a brief overview of MD-BASIC’s
requirements and installation. Sit in front of your
computer while following along.

Since MD-BASIC is a BASIC programmer’s utility,
knowledge and experience with Applesoft is assumed.
This manual teaches you how to use MD-BASIC, but
does not teach the BASIC programming language.
There are many fine books on this subject.

MD-BASIC runs only on the Apple IIGS under System
6.0 or newer. Your system should have enough
RAM to support the operating system, plus an
additional 200K for MD-BASIC.

Installation is quick and easy using the Apple IIGS

Finder (discussed in the next section). You should
already know how to use the Finder.

If you intend to use MD-BASIC in its command-line
configuration with the ORCA or GNO shells, you
should be familiar with their installation of external
commands and utilities. More details on using MD-
BASIC from a shell are found in Chapter 40.

10: INSTALLATION

12

10: INSTALLATION

Restart your Apple IIGS or return to the Finder.

Insert the MD-BASIC diskette into your disk drive.

Double-click on the Read.Me icon.

This launches the MD-BASIC application. (If the Finder
says it can’t find an application for Read.Me, click the
Locate button and select MDBASIC).

The first time you run MD-BASIC, it asks you to person-
alize your copy. Enter your name and the name of
your company, club, school, etc. Then click OK .

See Read.Me now for information not available when
this manual was printed. When done, choose Quit
from the File menu to return to the Finder.

To install MD-BASIC from the Finder:

Create a new MDBASIC folder on your hard disk

Open the MDBASIC disk icon

Choose Select All from the Edit menu

Drag the icons into the new MDBASIC folder

NOTE: If you don’t have a hard disk, you can use MD-
BASIC from the supplied program disk. No installation
is necessary.

Using MD-BASIC in a command line environment, such
as Byte Works’ ORCA™ shell or Procyon’s GNO
Multitasking Environment, is discussed in Chapter 40.

Read Me!

Read.Me

Easy Install

MDBASIC

13

C H A P T E R

20

14

20: MD-BASICS

15

20: MD-BASICS

MD-BASICs
Now that MD-BASIC is installed, this chapter introduces
you to its features. You’ll learn how to use each menu
item so you can create your first MD-BASIC program.
Even if you plan to use MD-BASIC from a command
line environment, you should become familiar with its
graphical desktop interface.

Double-click the MDBASIC icon in the Finder’s
desktop. This starts MD-BASIC.

Across the top of the screen are the menus that contain
commands for performing tasks. Here is a summary of
MD-BASIC’s menus:

Apple includes the About MD-BASIC… menu item
and desk accessories, such as Control Panels.

File contains commands that allow you to manage
your documents.

Edit includes clipboard interaction and other editing
commands.

Text is used for searching and formatting text.

Program contains commands to create and launch
programs.

Window allows you to organize your desktop and
switch between documents on the desktop.

Getting
Started

MDBASIC

16

20: MD-BASICS

Choosing About MD-BASIC… from
the Apple menu displays a dialog
box with information about the
program, such as the version num-
ber and available memory.

Free memory is expressed in kilobytes where 1K is
1024 bytes. So 605K free means that roughly 620,000
bytes are unused by the computer.

The largest block indicates the largest contiguous
block of free memory available. This is the most crucial
figure. If it drops below 32K, some commands may not
work. To increase free memory, close windows,
control panels, or desk accessories.

NOTE: If you’ re really running low on memory, MD-BASIC
will warn you. To squeeze extra memory out of MD-BASIC,
hold down then chose About MD-BASIC….

17

The File menu contains commands for
using the filing capabilities of your
computer, such as the creation and
storage of documents.

New
To start a new, untitled document,
choose New. You can enter text by
typing it in or pasting information
contained in the clipboard.

Open…
To open a document already saved on
disk, choose Open…. A standard file
dialog is presented allowing you to
select one or more files. Only folders
and files known to contain text are

available in the file list.

To select one file, click on the file’s name. To select
multiple files, hold down while clicking or dragging
through the file list. Click Accept to open the files.

NOTE: The dialog’s Open button opens a folder. Use this to
navigate through folders to bring up new lists of files. For
more details on using standard file dialog boxes, refer to
Apple’s manuals that came with your computer.

Open Selection
This item is available only when text is selected in the
frontmost document. Open Selection attempts to
open the filename contained in the selected text. The
selection should include only the characters in the full
or partial pathname to the file. If the name is enclosed
in angle brackets, <like this>, MD-BASIC attempts to
open it from the BInclude directory which holds MD-
BASIC’s interface and library files.

20: MD-BASICS

18

Close
To close a document’s window, choose Close. You
can also click the close box in the upper left corner of
the window. If the document has been changed, you
are prompted to save it.

To close all the windows on the desktop, hold down
 when choosing Close or clicking the close box.

NOTE: If the Confirm saves box is not checked in the
Document Preferences the document is saved without
prompting when closed. Preferences are discussed next in
Chapter 30.

Save
This item is available only if the frontmost document
has been changed. To save the document, choose
Save. If the document is new (untitled), MD-BASIC
treats this command as Save as….

Save as…
To save the frontmost document to a new file, choose
Save as…. A standard file dialog allows you to select
the location and name of the file. The name of the file
is used as the document’s window title and is also
shown in the Window menu.

MD-BASIC’s reserved file type is SRC with an auxiliary
type of $0A04. Hold down while choosing Save
as... to save your file with a TXT file type and $0000
auxiliary type.

Revert to Saved
To undo all changes to the frontmost document since
the last time it was saved, choose Revert to Saved.
Since this discards all changes you may have recently
made, MD-BASIC asks you to confirm this action before
continuing.

20: MD-BASICS

19

Page Setup…
To select special printing options, such as paper size,
orientation, and print quality, choose Page Setup…
before using the Print… command.

Print…
To send the frontmost document to your printer,
choose Print….

Quit
To quit MD-BASIC and return to the Finder, choose
Quit. All open documents are closed, subject to saving
if any changes were made.

The Edit menu consists mostly of
commands that utilize the computer’s
clipboard, allowing you to cut and paste
text selections in and among your
documents. More details on editing are
discussed later in this chapter.

Undo
To reverse the effects of your last action,
choose Undo. This tells MD-BASIC to
forget about the last change you made,
(e.g, if you use Cut three times, you will
only be able to undo the last Cut).

Cut
To move the current text selection to the clipboard,
choose Cut. The selection is removed from the docu-
ment and placed into the clipboard.

20: MD-BASICS

20

Copy
To copy the current text selection to the clipboard,
choose Copy. The document remains unchanged.

Paste
To paste the contents of the clipboard into the docu-
ment, choose Paste. The text is inserted as if it were
typed from the keyboard. The contents of the clip-
board can be pasted repeatedly.

Clear
To remove the current text selection without affecting
the clipboard, choose Clear .

Select All
To select all the text in the frontmost document, choose
Select All.

Show Clipboard
To open a window displaying the current contents of
the clipboard, choose Show Clipboard.

Preferences…
To edit your program settings, choose
Preferences…. Preferences are dis-
cussed in detail in Chapter 30.

The Text menu, an extension of the Edit
menu, includes items that work directly
on the text in your documents.

Find…
To find a pattern of text in the frontmost
document, choose Find…. A dialog box
appears where you enter a pattern to
locate. Enter the pattern and click the

20: MD-BASICS

21

Find button. If the pattern is not found, the computer
beeps.

If checked, the Match case option tells MD-BASIC to
find patterns that exactly match the pattern entered,
otherwise case is ignored. If checked, the Top of file
option tells MD-BASIC to begin searching from the top
of the document, otherwise the search begins at the
insertion point.

Find Same
To find the last pattern entered in the Find… or
Replace… dialog boxes, choose Find Same. This
item can be used repeatedly to find subsequent pat-
terns. If the pattern is not found, the computer beeps.

Find Selection
To locate the next pattern of text contained in the
current selection, choose Find Selection. This item is
available only if text is selected in the frontmost docu-
ment. If the pattern is not found, the computer beeps.

The Replace…
dialog box, for
finding and
replacing
patterns of text,
shares its top half
with the Find…
dialog.

20: MD-BASICS

22

20: MD-BASICS

Replace…
To find and replace a pattern of text in the frontmost
document, choose Replace…. A dialog box appears
where you enter a pattern to find, along with a replace-
ment pattern. Enter the patterns and click the Replace
button. If the pattern is not found, the computer beeps.
To simply find the pattern, click Find. To replace all
patterns, click Replace All.

Replace Same
To replace the same pattern again, choose Replace
Same. This item can be used repeatedly to find and
replace subsequent patterns. If the pattern is not
found, the computer beeps.

Format…
To change the font, tabs, and style of the text for the
frontmost document, choose Format…. A dialog box
is displayed showing sample text in the current format.
Click the Font… button to choose a new font and
style. Use the Tabs pop-up menu to select a new tab
width. Changes are made to the sample text while
working in the dialog box, but are applied to your
document when you click OK . For more details on
document settings, see Chapter 30.

NOTE: Format changes affect the entire document, not just
the current selection. An MD-BASIC document maintains
only a single format throughout.

Shift Left
Shift Right
To shift a selection of text, useful for adjusting indenta-
tion, choose Shift Left or Shift Right. These items
insert or remove tabs at the beginning of each line. If
there is no selection, only the current line is shifted.

23

20: MD-BASICS

The Program menu includes commands to
create, convert, or run programs.

Run
To process the source code in the frontmost
document and run the resulting program,
choose Run. This processes the document’s
source into a standard Applesoft BASIC
program file. After the processing and
resolving passes are done, MD-BASIC
launches the BASIC interpreter in order to
run your program. Processing is discussed
in detail later in this chapter.

Build…
To process the source code in the frontmost document
and select the output name, choose Build…. Like
Run, Build… first processes the document’s source
code, then displays a standard file dialog box, asking
you to name the output file (the BASIC program). MD-
BASIC remembers the output pathname for subsequent
use with Run. Unlike Run, however, you remain in
MD-BASIC—the resulting program is not launched.

Make…
To process source code in a document that is not open,
but resides on disk, choose Make…. A standard file
dialog is shown, asking you to select one or more
source files for processing. Multiple file selection is
supported, as discussed for the Open… command in
the File menu. After the files are processed, a second
standard file dialog is displayed, asking you to name
the output file. Unlike Build…, Make… does not
record the output file name in the document.

24

Convert…
To convert a BASIC program into an MD-BASIC source
code document, choose Convert…. This brings up a
standard file dialog where you select one or more
Applesoft BASIC programs. After each program is
converted into an MD-BASIC document, a standard file
dialog box asks for the new document’s name and
location.

If the Open document box is checked in the Conver-
sion Preferences (discussed in Chapter 30), the new
document is opened after conversion.

Launch…
To run an application, choose Launch…. This opens a
standard file dialog where you select an application or
BASIC program to launch. When the application quits,
you return to MD-BASIC.

NOTE: The Launch… dialog presents SYS, S16, EXE, BIN,
and BAS file types. BIN and BAS files are run via the
preferred BASIC interpreter whose pathname is selected in the
Miscellaneous Preferences discussed in Chapter 30. Other
types of programs are executed directly.

Enter BASIC
To easily launch the BASIC interpreter selected in
Miscellaneous Preferences, choose Enter BASIC.
When the interpreter application quits, you return to
MD-BASIC.

NOTE: Run, Launch…, and Enter BASIC are not available
if MD-BASIC is running under a command line shell.

20: MD-BASICS

25

Use the Window menu to access and
organize windows on the desktop. The first
two items automatically clean up the desk-
top by repositioning windows for you.
Additional menu items are the titles of
documents on the desktop. Selecting such

an item brings the corresponding document’s window
to the front.

Tile Windows
To resize and tile up to 12 windows on your desktop,
choose Tile Windows. Windows are sized so that
they fill the screen area without overlapping.

Stack Windows
To resize and stack an infinite number of windows on
your desktop, choose Stack Windows. Windows are
identically sized and overlapped such that all title bars
can be easily seen.

Document Titles
To bring a window to the front, choose its correspond-
ing menu item. The current document is shown with a
check mark (). Documents that have been changed
and require saving are shown in bold.

20: MD-BASICS

26

Editing a
Document

20: MD-BASICS

Choose New from the File menu.

An untitled window opens on the desktop, allowing
you to enter your first MD-BASIC program. Carefully
type in this short program and experiment with the
editing sequences presented in this section:

#i nc l ude <Fi l eI O. h>

f Out Por t 3

pr i nt " Hel l o, Wor l d! "

pr i nt

i nput " <Pr ess RETURN t o qui t >" ; anyThi ng$

f Bye

The blinking vertical bar, called the insertion point,
shows you where typing will be inserted.

When the mouse is positioned over the window, it
changes from an arrow to an I-beam cursor.

Click the mouse once inside the document to move the
insertion point. Dragging the mouse selects a range of
text.

Double clicking selects a whole word. Dragging
selects text by words.

Triple clicking selects a line. Dragging selects text
by lines.

Holding while single, double, or triple clicking
extends the selection from the insertion point.

27

While entering text, these standard Apple IIGS text
editing keystrokes are at your disposal:

Key Alias Descr iption

-H Moves the insertion point left one
character. With , moves left one
word; , to the beginning of the line;

, extends the selection by charac-
ter, word, or line, depending on the
modifier keys also held down.

-U Moves the insertion point right one
character. With , moves right one
word; , to the end of the line; ,
extends the selection by character,
word, or line as described above.

-K Moves the insertion point up one line.
With , moves to the beginning of the
current page; , to the beginning of
the document; , extends the
selection by line, page, or document
depending on the modifier keys.

-J Moves the insertion point down one
line. With , moves to the end of the
current page; , to the end of the
document; , extends the selection
as described above.

-D Deletes the character to the left of the
insertion point, or removes the current
selection.

Clear Removes the current selection.
-F Deletes the character to the right

of the insertion point, or removes the
current selection.

-Y Removes all characters from the
insertion point to the end of the line.

MD-BASIC fully supports Apple’s Extended Keyboard.

20: MD-BASICS

28

Creating
a Program

Processing

Resolving

(If you haven’t entered the short program from the
previous section, do so now.)

MD-BASIC uses two phases to create BASIC programs.
The first phase involves processing all the source code.
The source code is read from one or more MD-BASIC
documents, translating high-level BASIC instructions
into a memory image of the entire program. Processing
includes optimization to reduce the size of the pro-
gram. Less is better and results in faster programs.

The second phase in creating a BASIC program is to
resolve labels to line numbers. Additional optimization
is done at this time, too. Finally, it writes the converted
memory image to disk as a traditional Applesoft BASIC
file.

To create a program from the short sample entered in
the previous section, do the following:

Choose Save as… from the File menu

In the standard file dialog, now displayed, enter
Hello.b for the file name, then click Save. MD-BASIC
documents, by convention, end with a .b extension.

Choose Run from the Program menu.

MD-BASIC begins processing Hello.b.

20: MD-BASICS

This progress
dialog lets you
know how much
processing has
completed so far.

29

NOTE: You can cancel processing at any time by pressing
or - .

When processing is complete, a standard file dialog
asks you to enter the name of the BASIC program to
create in the final resolving phase. Use the name Hello
and click Save. Resolving takes only a second or two.

If all is well, MD-BASIC launches the BASIC interpreter
to run your Hello program. The program will clear the
80-column text screen and display:

Hel l o, Wor l d!

<Pr ess RETURN t o qui t >

Congratulations! You’ve written and created your first
program with MD-BASIC! Press now to quit and
return to MD-BASIC.

NOTE: If you’ re totally lost and nothing is working as
described here, follow these steps:

Make sure MD-BASIC is installed according to the
instructions in Chapter 10.

Double check the sample program you entered in the
previous section. Your copy of Hello.b should be
identical.

If your startup disk does not have a copy of BASIC.System
in the volume directory, see the next chapter about setting
your preferences. Select the location of BASIC.System on
your drive.

Return to this section and try again.

20: MD-BASICS

30

20: MD-BASICS

31

C H A P T E R

30

32

30: PREFERENCES

33

30: PREFERENCES

Preferences
One of the best things about MD-BASIC is that it can be
configured to operate as you like. Since both the
desktop and shell modes take advantage of your
preferences, you’ll want to give this chapter due
attention.

MD-BASIC’s factory settings might be exactly what you
prefer to use if you’re just starting out. Later on, you
may want to make changes to suit your needs. You
can always restore the factory settings if you need to.

Preference changes can be temporary—good for one
session when you’re trying out a new feature. Or you
may save your settings for every session thereafter.

Preferences are saved in the MDBASIC.Prefs file.
The location of this file depends on where the
MDBASIC application is located. If it is launched
from a server over a network, MDBASIC.Prefs is
stored in your user directory (the @ prefix in GS/
OS). If MDBASIC is launched from a local disk,
MDBASIC.Prefs is stored in the same directory as
the application.

NOTE: To change your preferences from the shell mode,
invoke mdbasic using the -g option, then choose
Preferences… from the Edit menu.

About
Preferences

MDBASIC.Prefs

34

The
Preference
Dialog

The Preferences dialog box is where you can custom-
ize and configure MD-BASIC to your liking.

Select Preferences… from the Edit menu.

The top portion of the dialog includes a pop-up menu
and some buttons:

Clicking on the pop-up menu reveals different kinds of
related settings that you adjust as needed.

Document Preferences allow you to
choose the formatting you prefer for new
documents. A block of sample text is

provided, displaying the current format. You may
temporarily change the sample text if desired.

Tabs
To choose a new tab width, use the Tabs pop-up
menu. The sample text changes accordingly. (Factory
setting: 8)

Font…
To change the font, size, and style, click the Font…
button. The font selection dialog box appears. Make
changes as desired and click OK . The sample text
changes accordingly so you can see just how your
settings will look. (Factory setting: plain, 8 point
Shaston)

30: PREFERENCES

35

NOTE: In addition to documents created with New, the
preferred font and tab width are also applied to any files you
open that were not created with MD-BASIC. The formatting is
for visual purposes only. If you save any changes to such a
file, only the text is saved. The file’s original type and
formatting, if any, are retained.

 Confirm saves
To be prompted to save changed documents, check
the Confirm saves box. If this box is not checked,
any time a changed document is closed or is about to
be processed into a BASIC program, it is saved auto-
matically without confirmation. (Factory setting:)

Processing Preferences control aspects
related to source code processing.

 Ignore alerts
To ignore any alert messages during processing and
resolving, check the Ignore alerts box. Alerts are
minor warnings that inform you when something is not
quite right with your program, but not serious enough
to affect the resulting program. (Factory setting:)

 Require declaration
To require explicit variable declaration in all source
files, check the Require declaration box. Explicit
variable declaration is a feature that helps catch bugs in
your programs. To take advantage of it, you must
introduce the name of each variable used in your
program with a #declare directive. Details on direc-
tives are covered in Chapter 60. (Factory setting:)

30: PREFERENCES

36

Report
To generate a report after processing, check the boxes
in the Report section. The report window can be
saved or printed like any other MD-BASIC document,
however subsequent processing replaces the window’s
contents with an updated report.

 Summary report counts the number of source lines
processed, bytes generated in the output file, errors and
alerts, and other statistics. (Factory setting:)

 Label reference report lists labels and their associ-
ated line numbers. (Factory setting:)

 Variable reference report charts the renaming of
variables in the output file. (Factory setting:)

Optimization
To control the amount of optimization performed on
the programs created by MD-BASIC, adjust the pop-up
menus in the Optimization section. The higher the
level of optimization, the smaller, faster and more
efficient your programs can be.

Code optimization controls how much code is
piled onto each program line.

Vars optimization controls how variables in the
source code are renamed to shorter variations.

CAUTION: Never set Vars optimization to Off or Low unless
your program uses non-conflicting variable names that agree
with Applesoft’s limitations and restrictions. Only a High
setting insures 100% compatible variable names.

More details on optimization are covered in Chapter 60.
(Factory setting: High for both Code and Vars)

30: PREFERENCES

37

Conversion Preferences let you customize
the output and appearance of documents
created from BASIC programs using the

Convert… item in the Program menu.

Options
To adjust various options related to conversion, click
the check boxes in the Options section.

 REMs to comments converts REM (remark)
statements to comments. MD-BASIC comments follow
the single-quote (') character. (Factory setting:)

 Initial indent inserts a tab before each statement.
This enhances readability, especially in subroutines.
(Factory setting:)

 Open documents automatically opens the docu-
ments after they’re created. (Factory setting:)

Case
To select the case of Applesoft keywords and program
variables, use the pop-up menus in the Case section.
(Factory setting: both are set to lower).

Miscellaneous Preferences include sundry
settings.

Keep In Memory
To keep the MDBASIC application resident in memory,
check the boxes in the Keep In Memory section.
Keeping MD-BASIC in memory means it can be re-
started much faster.

Conversion

30: PREFERENCES

38

 When quitting affects the Quit menu item. (Factory
setting:)

 When launching affects the Run, Enter BASIC,
and Launch… menu items. (Factory setting:)

Search Options
To automatically set the options before searching,
check the boxes in the Search Options section.
These settings are used in the Find… and Replace…
dialog boxes.

 Match case tells MD-BASIC to find patterns that
exactly match the pattern entered. (Factory setting:)

 Top of file tells MD-BASIC to begin searching from
the top of the document. (Factory setting:)

BASIC
To select the BASIC interpreter, click the BASIC button.
This presents a standard file dialog box where you
choose an application to run BASIC programs created
by MD-BASIC. (Factory setting: * :BASIC.System)

BInclude
To select the location of MD-BASIC’s supplementary
files, click the BInclude button. This presents a
standard file dialog box from which you can select the
folder containing MD-BASIC’s interface files and
libraries. (Factory setting: 9:BInclude:)

30: PREFERENCES

39

Saving Your
Preferences

When you’re done configuring MD-BASIC, click the
Done button. If you made any changes, you will see:

Click Save to accept your changes and record them for
this and future sessions. Preferences are stored in a file
named MDBASIC.Prefs.

Click Accept to accept your changes for this session
only.

Click Discard to discard your changes as if none had
been made.

NOTE: To restore MD-BASIC to the factory settings, click the
Factory button at the top of the preferences dialog box. A
dialog box asks if you want to restore all of the factory
settings. Click the Restore button to continue, otherwise click
Cancel to keep your current settings.

MDBASIC.Prefs

30: PREFERENCES

40

30: PREFERENCES

41

C H A P T E R

40

42

40: IN A NUT SHELL

43

In A Nut Shell
If you plan to use MD-BASIC in a command line shell,
such as ORCA or GNO/ME, this chapter is for you. It
describes how to install and use MD-BASIC from a
command line.

A command line shell, typically used by programmers
and power users, is an alternative environment for
creating MD-BASIC programs. Shells provide a number
of tools and powerful features that simply can’t be
rolled into a single application. The main advantage is
that new features are infinite—you simply copy a new
program to disk, giving the shell a new command in
the process. Plus, shells provide the ultimate control
over your programs and software development.

The price for this flexibility is inversely proportional to
the ease-of-use factor: shell commands and their
control arguments are often arcane and hard to remem-
ber. This, however, seems to please most program-
mers to no end.

With a shell and its scripting (or batch file) feature, you
can automate the process of creating many MD-BASIC
programs. This is particularly useful for projects that
involve many separate but related BASIC programs.

You should be familiar with the installation of external
commands and utilities for your shell program. Its
manual explains file copying and other steps necessary
for making external programs available.

40: IN A NUT SHELL

Shell
Savvy

Why Use A
Shell?

44

Since shells offer so much flexibility in organizing your
programs and files, MD-BASIC can be installed in a
number of ways. Below are two recommended
installation schemes, but feel free to deviate if desired.

If you’ve already installed MD-BASIC as a desktop
application (described in Chapter 10), and you wish to
use MD-BASIC from a shell in addition to the Finder,
follow these steps:

Launch your development shell.

Copy the file /MDBASIC/MDBASIC to the
shell’s external program directory (e.g. Utilities
in ORCA or /bin in GNO).

Change MDBASIC’s file type to EXE (using
filetype in ORCA or chtyp in GNO).

Make whatever changes are necessary to your shell
to complete installation (e.g. edit the SysCmnd file
under ORCA).

Execute MD-BASIC using the following command
line:

mdbas i c - g

Once the graphical desktop display is shown,
choose Preferences from the Edit menu. Select
the Miscellaneous Preferences and click the
BInclude button to locate the BInclude folder you
installed as described in Chapter 10.

40: IN A NUT SHELL

Shell and
Finder

45

This allows you to have two copies of the MD-BASIC
program, one as an S16 application which you can
access from the Finder, and a second one as an EXE tool
for your shell. Both copies have their own preference
files but share a single BInclude folder.

NOTE: To make MDBASIC a command line tool, you must
change its file type to EXE. If the type is S16, MDBASIC can
be launched from your shell, but you won’ t be able to pass a
command line.

To use MD-BASIC solely from your shell environment:

Launch your development shell.

Copy the directory /MDBASIC/BInclude, and its
entire contents, into your shell’s library directory
(Librar ies in ORCA or /usr/lib in GNO).

Copy the file /MDBASIC/MDBASIC to the shell’s
external program directory (e.g. Utilities in ORCA
or /bin in GNO).

Change MDBASIC’s file type to EXE (using
filetype in ORCA or chtyp in GNO).

Make whatever changes are necessary to your shell
to complete installation (e.g. edit the SysCmnd file
under ORCA).

Execute MD-BASIC using the following command
line:

mdbas i c - g

Shell Only

BInclude

40: IN A NUT SHELL

46

Once the graphical desktop display is shown,
choose Preferences from the Edit menu. Select
the Miscellaneous Preferences and click the
BInclude button to locate the BInclude folder (in
Libraries under ORCA or in /usr/lib under GNO).

Shell installation is now complete.

Because it is now an EXE file, MD-BASIC can only be
launched from your shell. However, you can still
access its desktop interface using the -g option. Since
MD-BASIC operates under shell control, you won’t be
able to run any BASIC programs you create, or launch
applications. To do this, issue the appropriate com-
mands from the shell’s command line. To get to the
command line from the desktop mode:

Choose Quit from the File menu to exit from the
desktop mode to return to the shell’s prompt.

When you quit, the text screen is completely restored,
unchanged from the visit to the desktop mode.

As a command line tool, mdbasic allows you to
process source code into BASIC programs. You’ll need
to enlist your shell’s text editor for creating and chang-
ing source code.

To instruct mdbasic to perform an action, you include
command line arguments and flags when you issue the
mdbasic command. If you enter mdbasic without
arguments, it displays:

Usage: mdbas i c [opt i ons] f i l e . . .

40: IN A NUT SHELL

Desktop
Access

Processing

47

At least one argument, the name of a file, is required.
(Since options are optional, they’re denoted by square
brackets—don’t include the brackets in your command
line). For example, the following command line is
perfectly valid, though marginally useful:

mdbas i c hel l o. b

MD-BASIC processes the file hello.b, but that’s all it
does. While useful for checking a program for errors,
no output file is created. To do that, use the -o flag:

mdbas i c hel l o. b - o Hel l o

This processes hello.b, writing the output to Hello.

The -o flag is only one of the flags that mdbasic
recognizes. It uses your preferred settings unless
overridden by these additional flags (those with ± use a
minus sign to disable their function, or a plus sign to
enable their function):

-c
Converts a BASIC program into source code. Conver-
sion is discussed later in this chapter.

-g
Graphical (desktop) mode. This lets you access the
desktop interface while remaining in the shell.

-o f i le
Specifies the output file. If omitted, processing is
performed but no output file is created.

-p
Progress mode. This reports events as they happen,
such as processing subordinate files included by the
main source file.

40: IN A NUT SHELL

48

±s
Statistics. After processing, statistics are shown, such as
error and alert counts, the total number of lines pro-
cessed, etc.

±x
Variable cross reference. After successful processing
with optimization, a variable cross reference table is
produced, showing the names of variables used in the
source code and their replacements in the actual BASIC
program.

To create a BASIC program, MD-BASIC processes your
source code, translating high-level BASIC instructions
into a memory image of the entire program. Next,
labels are resolved and converted to line numbers.
After additional optimization, it writes the converted
memory image to disk as a traditional Applesoft BASIC
file.

Using your shell’s text editor, enter the following
program and save it to a file named Hello.b.

#i nc l ude <Fi l eI O. h>

f Out Por t 3

pr i nt " Hel l o, Wor l d! "

pr i nt

i nput " <Pr ess RETURN t o qui t >" ; anyThi ng$

f Bye

At the shell prompt, enter the following command
to create a program from Hello.b:

mdbas i c - p Hel l o. b - o Hel l o

40: IN A NUT SHELL

Creating
a Program

49

40: IN A NUT SHELL

MD-BASIC begins processing Hello.b. The -p flag
allows you to monitor the progress while MD-BASIC
works.

NOTE: You can cancel processing at any time by pressing
or - .

When the shell’s prompt returns, you’ll find Hello on
disk. To run it, launch the BASIC interpreter
(BASIC.System—usually located in the main directory
on your startup disk). From there, run Hello.

The program clears the 80-column text screen and
displays:

Hel l o, Wor l d!

<Pr ess RETURN t o qui t >

Press now to quit and return to the shell.

One of MD-BASIC’s greatest features is the ability to
convert BASIC programs you’ve already written into
decent source code. MD-BASIC indents FOR-NEXT
loops, creates and nests IF-THEN-ENDIF blocks, and
turns referenced line numbers into labels. It saves you
enormous amounts of time and energy.

The -c flag tells mdbasic that the file argument is a
BASIC (BAS type) file.

Example:

mdbas i c - c St ar t up

Conversion

50

40: IN A NUT SHELL

This converts Startup into source code.

Because no output file is specified (with the -o flag),
the source code is sent to the screen. This provides a
convenient way to list programs in MD-BASIC format.
You can use the shell’s output redirection feature to
send output to a file or device (e.g. a printer).

With -o, the conversion is written directly to the speci-
fied output file:

mdbas i c - c St ar t up - o s t ar t up. b

Conversion uses your preferred settings, unless overrid-
den by these additional command line flags:

±i
Initial indentation. Statements are indented one tab
stop and labels are left-justified.

±k
Converts keywords to upper (+) or lower (-) case.

±r
Converts REM statements to MD-BASIC comments.

-t n
Sets the tab width to n spaces (from 1 to 8). This flag is
used for indenting with space characters. If omitted,
real tab characters are used.

±v
Converts variable names to upper (+) or lower (-) case.

Processing

Resolving

51

C H A P T E R

50

52

50: LANGUAGE FEATURES

53

Language Features
Imagine a free-form Applesoft language with modern
BASIC conventions derived from high-level BASIC, C,
and Pascal. That’s MD-BASIC. You already know
Applesoft, so this chapter introduces you to MD-
BASIC’s features and extensions.

MD-BASIC translates instructions in a text file into
ordinary Applesoft programs. So the first step is to
write the instructions, source code, saving them in a
text file. The text file is processed by MD-BASIC, and
the resulting output creates a BAS-type file which you
can run. The sequence is illustrated by this diagram:

The MD-BASIC language is based on Applesoft. Only
subtle variations in the language and a few extensions
distinguish it from the venerable Applesoft command
set. The big difference is in how the language is
presented—the chief advantage of MD-BASIC over
Applesoft.

You Only
Get Out
What You
Input

50: LANGUAGE FEATURES

54

While MD-BASIC offers much latitude in the presenta-
tion of statements in your program source code, there
are a few formatting rules to note:

• Separate keywords. Unlike Applesoft, which
allows you to enter an entire program line without
inserting space characters, all MD-BASIC command
names and variables must be separated by at least one
space (or other punctuation). Running commands
together, like PRINTSPC(5), is not allowed in order to
provide a number of improvements over Applesoft.

• Split long lines. A line of source code consists of
characters that end with a carriage return character. A
single line cannot contain more than 255 characters. If
a program line is so long that it won’t fit on the screen,
you can extend it to subsequent lines by using the
backslash character (\) at the end of an incomplete
line.

• Avoid colons. Though discouraged, you can
insert colons between multiple statements on a single
line. Compound statement lines detract from the
readability of your source code. If you use colons, you
must insert a space before them, otherwise MD-BASIC
assumes that you’re defining a label. Labels are recog-
nized as any text followed immediately by a colon.
(Labels are discussed in detail later).

• Use GOTO after THEN. Applesoft allows you to
omit GOTO in IF-THEN statements that direct the
program to a line, but MD-BASIC requires the GOTO to
avoid “forward reference” errors. The GOTO is not
included in the output when MD-BASIC creates opti-
mized programs.

A Few
Rules

50: LANGUAGE FEATURES

55

• Drop weird ending characters. Nine Applesoft
commands end with odd characters that break the
parsing rules in MD-BASIC. They are IN#, PR#,
LOMEM:, HIMEM:, SPEED=, COLOR=, HCOLOR=,
ROT=, and SCALE=. These commands, due to their
inconsistent syntax, confuse MD-BASIC. Just leave the
odd characters out (e.g. LOMEM 4906, SPEED 255, and
PR 6).

• Quote any text. Strings of text, like those in REM
and DATA statements, must be enclosed in quotation
marks, otherwise MD-BASIC attempts to process the
text into Applesoft tokens.

The number of weird rules and bugs in Applesoft
dwarfs the commandments in the previous section.
Here’s how MD-BASIC overcomes Applesoft’s oddities
and liberates you from its idiosyncracies:

• Comments. Unlike Applesoft’s wasteful REM
statements that take up precious memory and slow
down execution, MD-BASIC lets you comment your
source code freely. MD-BASIC comments stay in your
source code where they belong, not in the programs
you run.

• Easy editing. Don’t subject yourself to Applesoft’s
arcane “escape-key” editing or crufty line editors.
Enjoy the powerful word processing features in MD-
BASIC or your favorite editor.

• Real variable names. It’s hard to write descrip-
tive code if you’re limited to two-letter variable names.
Printer_Slot% is exceedingly more meaningful than P%.

50: LANGUAGE FEATURES

A Cache
Of Jewels

56

• No keyword butchery. You needn’t worry about
Applesoft’s keywords in your variables. For example,
RefNum or DimScrnToGray are hacked by Applesoft
into RE FN UM and DIM SCRN TO GR AY, but are
perfectly decent variable names in MD-BASIC. Long
names are renamed to short Applesoft variants through
MD-BASIC’s optimization feature.

• No line numbers. Few can argue that labels are
infinitely desirable over line numbers. GOSUB
GetDateOfBirth vs. GOSUB 22764 is no contest.

• Do what I say! You can rely on MD-BASIC to
faithfully execute every command in your source code.
Applesoft cheerfully ignores any commands following
ONERR and REM statements.

• Works great. Less messy. MD-BASIC’s real,
nested IF-THEN-ELSE is neat and clean. Other modern
BASIC commands like DO-LOOP, WHILE-WEND, and
REPEAT-UNTIL avoid the GOTOs that plague most
Applesoft programs, making them difficult to follow.

All together, these features make Applesoft program-
ming a pleasure. You’ll welcome new challenges and
write complex programs that you never would have
attempted in ordinary Applesoft. The following sec-
tions discuss these features and more.

But first, study the Sample.b program on the next
page to get some exposure to a real MD-BASIC
program listing.

50: LANGUAGE FEATURES

57

' *
' * *
' * * Sampl e. b
' * *
' * * A sampl e pr ogr am t o demonst r at e MD- BASI C.
' * *
' *

#i ncl ude <Col or . h>
#i ncl ude <Appl eI O. h>

#def i ne Del ay(d) FOR i = 1 TO d : NEXT
#def i ne Cent er XCent er , YCent er
#def i ne Cl ear Key POKE _KBDSTRB, 0
#def i ne KeyI sDown (PEEK(_KBD) > 127)

HOME
VTAB 24
HTAB 13
PRI NT " Sampl e Pr ogr am"
REPEAT

GOSUB Dr awPat t er n
Del ay(4000)

UNTI L KeyI sDown
Cl ear Key
HOME
TEXT
PRI NT " Sampl e Pr ogr am Fi ni shed"

END

' *
' * *
' * * Dr awPat t er n f i l l s t he scr een wi t h an
‘ * * odd moi r e pat t er n by dr awi ng l i nes once
‘ * * i n bl ack and t hen i n whi t e.
' * *

Dr awPat t er n:
HGR
XCent er = RND(1) * HGRBoundsX + 1
YCent er = RND(1) * HGRBoundsY + 1
Si ze = I NT(RND(1) * 7) + 2

FOR X = 0 TO HGRBoundsX- 1 STEP Si ze
HCOLOR HBl ack1
HPLOT X, 0 TO Cent er TO HGRBoundsX- X, HGRBoundsY
HCOLOR HWhi t e2
HPLOT X+1, 0 TO Cent er TO HGRBoundsX- X- 1, HGRBoundsY

NEXT
FOR Y = 0 TO HGRBoundsY- 1 STEP Si ze

HCOLOR HBl ack1
HPLOT HGRBoundsX, Y TO Cent er TO 0, HGRBoundsY- Y
HCOLOR HWhi t e2
HPLOT HGRBoundsX, Y+1 TO Cent er TO 0, HGRBoundsY- Y- 1

NEXT
RETURN

Sample.b

This sample
program shows
you what an
MD-BASIC
program looks
like. You’ ll find
a copy of this
program on disk
in the Samples
folder.

50: LANGUAGE FEATURES

58

As you can see from the Sample.b listing on the
previous page, MD-BASIC adds a number of com-
mands and extensions to the Applesoft language:

Comments
Comments follow the single quote mark and are
considered comments up to the end of the line. Unlike
REM, MD-BASIC comments are not included in pro-
gram output.

Labels
Instead of line numbers, MD-BASIC programs use
descriptive labels to refer to locations in the program.
Labels contain numbers, letters, and the underscore
character. When labels are defined, a colon immedi-
ately follows:

Er r or Handl er :

When they’re referenced by a GOTO or GOSUB, the
colon is omitted:

ONERR GOTO Er r or Handl er

Since MD-BASIC is not sensitive to upper or lowercase,
ErrorHandler is recognized as ERRORHANDLER or
errorhandler , etc.

Variables
Like labels, MD-BASIC supports descriptive variable
names. Variables start with a letter or the underscore,
and may contain numbers. As in Applesoft, string
variables end with $, and integer variables end with %.
(For more about optimization and variables, see
Chapter 60.)

Language
Extensions

50: LANGUAGE FEATURES

59

Conditional Statements
Applesoft’s IF-THEN omits an important feature: ELSE.
MD-BASIC provides true, nested IF-THEN-ENDIF and
IF-THEN-ELSE-ENDIF. Example:

I F A = B THEN

GOSUB Thi sRout i ne

GOSUB That Rout i ne

ELSE

GOSUB TheOt her Rout i ne

ENDI F

PRI NT " And her e we ar e! "

After processing, these statements are translated into
ordinary Applesoft that might look like this:

100 I F A = B THEN GOSUB 500: GOSUB 600: GOTO 120

110 GOSUB 700

120 PRI NT " And her e we ar e! "

IF-THEN statements are formatted in two different
ways. The first is convenient for executing only one
statement:

I F A = B THEN GOTO Thi sRout i ne

The second form allows you to execute one or more
statements by enclosing them in a block terminated by
the ENDIF keyword:

I F A = B THEN

GOSUB Thi sRout i ne

f r eeMem = FRE(0)

ENDI F

MD-BASIC knows that a block of statements follows
when the line ends with the THEN keyword. A match-
ing ENDIF must be included so that the end of the
block is known.

50: LANGUAGE FEATURES

60

Statements in IF-THEN blocks should be indented to
maintain readability:

I F A = B THEN

GOSUB Thi sRout i ne

GOSUB That Rout i ne

I F C = D THEN

X = Y / 2

GOSUB TheOt her Rout i ne

ELSE

PRI NT Er r or _Message$

ENDI F

ENDI F

Loops
MD-BASIC’s looping statements, WHILE-WEND,
REPEAT-UNTIL, and DO-LOOP, allow you to design
loops without using GOTO to skip over parts of your
program. These two conditional loops are nearly
identical except for subtle differences:

WHI LE NOT Qui t t i ng

GOSUB DoEvent

WEND

REPEAT

GOSUB DoEvent

UNTI L Qui t t i ng

WHILE-WEND loops test the condition before the loop
is entered. If the condition is false, the loop won’t
execute at all. REPEAT-UNTIL insures that the loop is
executed at least once. After each iteration, both forms
test the condition and, if permitted, the statements in
the loop are executed again.

DO-LOOP is for unconditional loops—it lets you create
infinite loops without defining labels and using a
GOTO:

50: LANGUAGE FEATURES

61

DO

GOSUB DoEvent

LOOP

DO-LOOP is useful when you control termination
elsewhere in your code, or when you rely on ONERR
GOTO to break out the loop.

Hexadecimal Notation
Anywhere a numeric value is appropriate, it can be
expressed as a hexadecimal number if it aids in read-
ability (e.g. memory addresses):

CALL $300

MD-BASIC substitutes $300 for its decimal equivalent,
768. Hex numbers from $0 to $FFFFFFFF (0 to
4,294,967,295) are accepted.

Brackets and Parentheses
To assist in creating readable code, you can use brack-
ets in place of parentheses. This convention is used in
high-level languages like C and Pascal to differentiate
array subscripts from functions:

Char Code[i] = ASC(Number $[i])

MD-BASIC generates an error message if it encounters
a statement with mismatched parentheses or brackets.

Inserting Special Characters
If your program requires characters that MD-BASIC
would balk at or could not produce, special notation
can be used to insert them into the output file.

Use the caret (^) before a letter to signify insertion of a
control code. For example, ^D imbeds a Control-D
into the program, useful in quoted strings for issuing
disk commands.

50: LANGUAGE FEATURES

62

Use the backslash (\) to insert odd characters into your
program, such as single or double quotes, pound sign,
dollar sign, underscore, and so on. Use two
backslashes to insert a single backslash. This may be
handy if you use external commands, like ampersand
utilities.

You can insert a string of text by enclosing it between
grave (`) marks. Example:

CALL PO, 2, 3, ` $E0C0A9EA`

Ordinarily, MD-BASIC would convert $E0C0A9EA into
its decimal equivalent. The \ and ` make it possible to
support the myriad of external Applesoft commands.

Line Continuation
Some statements are so long that they wrap around the
screen. Fortunately, a statement can be continued on
subsequent lines by ending it with a backslash (\)
character. The backslash tells MD-BASIC that the end
of the statement has not yet been reached and contin-
ues on the next line.

NOTE: Statements are considered terminated when a
comment (a single quote) or the end of the line is reached,
whichever comes first. You cannot continue a statement onto
a new line if a comment intervenes.

Joining Quoted Strings
Any time MD-BASIC sees adjacent quoted strings, it
merges them into one. Example:

PRI NT " The bonds t hat once wer e wel come, " \

" become t he chai ns we despi se. "

Because of the backslash, MD-BASIC sees this as a
PRINT statement with two quoted strings. Since the
strings are adjacent, they’re joined and considered one.

50: LANGUAGE FEATURES

63

C H A P T E R

60

64

60: DIRECTIVES

65

Directives
This chapter examines various instructions you may
use in your source code to control processing. These
are called directives. While separate from the BASIC
language, they control how your source code is pro-
cessed and optimized.

MD-BASIC recognizes the following directives:

#declare #ifdef
#define #ifndef
#else #include
#endif #pragma
#error #print
#if #reserve

All directives begin with a # sign. Each must be on its
own line.

The #declare directive is for declaring variables that
will be used in your program. Using #declare is
optional unless the Require declaration checkbox is
checked in the Processing Preferences. Example:

#dec l ar e t ot al %, er r Code, i nput Li ne$

Your program can use as many #declare directives as
is necessary to declare all the variables used. For array
variables, include only the array’s base name. Always
include the variable’s type character (if integer or
string).

The
Directives

60: DIRECTIVES

#declare

66

60: DIRECTIVES

Since MD-BASIC allows you to take advantage of long,
descriptive variable names, the potential for mistakes is
greater, like transposing letters. Once #declare is
used, MD-BASIC is able to flag any undeclared vari-
ables it encounters. For instance, if you had written:

t ot al s% = 0

an error message would be generated because totals%
is undefined—total% is the defined name.

In addition to catching mistakes, #declare also helps to
organize variable usage. You might determine that
three different temporary variables is not as efficient as
a single variable that can offer the same functionality.

The #define directive is used for assigning a meaning-
ful symbol name to a value that replaces it. The
general form is:

#define symbol value

The symbol starts with a letter or underscore and may
contain digits. Any number of spaces or tabs separate
the symbol from its value. The value is the remainder
of the line. Any time symbol is used, MD-BASIC
replaces it with its value instead. The implications are
powerful and inviting.

NOTE: The value portion is optional, in which case MD-
BASIC defines an empty symbol. When the symbol is
encountered in your source code, it is effectively removed
(replaced by nothing).

#define

67

60: DIRECTIVES

You may want to assign a name to a constant in your
program:

#def i ne MAXI NT 32767

Each time MAXINT is encountered, it’s as if you had
really entered 32767 at that point in your source code.
It is important to understand that #defined symbols are
not variables—their values are constant. You could not
use:

MAXI NT = 42

This is clearly illegal, as it is viewed by MD-BASIC as:

32767 = 42

By convention, symbols used for holding constants are
normally in uppercase. Anyone reading your program
knows at a glance that a substitution will take place.

Another powerful feature of #define is that you can
use it to create code macros, what appear to be new
commands. The form is:

#define macro(arg) value

Each time the macro name is encountered, the argu-
ments associated with it are replaced by the actual
arguments found in the program.

Example:

#def i ne l ocat e(x , y) ht ab x : v t ab y

l ocat e(35, 12)

pr i nt " Thi s i s a t es t "

68

60: DIRECTIVES

When processed, x and y in the macro definition are
replaced with the values 35 and 12, as if you had really
entered:

ht ab 35 : v t ab 12

pr i nt " Thi s i s a t es t "

Substitution values can include defined symbols and
macros, too:

#def i ne Pr i nt At (x , y , msg) l ocat e(x , y) : pr i nt msg

Pr i nt At (35, 12, " Thi s i s a t es t ")

It generates the same output as above.

With this, you can use #define to create interfaces to
subroutines. This allows you to call subroutines by
name without using GOSUB or separately setting up
variables that the subroutine may need:

#def i ne Cent er (msg) _msg$ = msg: GOSUB _Cent er

This creates a macro named Center for calling the
_Center subroutine, which might look like this:

_Cent er :

home

i nver se
Pr i nt At (40 - l en(_msg$) / 2, 1, _msg$)

nor mal
r et ur n

Each time the Center macro is used, it is replaced
with the _msg$ assignment and the GOSUB to
_Center.

With this capability, you do not need to know the
names of variables that a subroutine requires as
input or output, making programming easier and
keeping your source code more readable.

69

60: DIRECTIVES

#define can be used to substitute a single punctuation
character. Of these four examples, the first two are
legal, but the last two are not:

#def i ne { THEN ' Good

#def i ne } ENDI F ' Good

#def i ne && AND ' Bad

#def i ne | | OR ' Bad

Also, #define cannot define BASIC keywords as
symbols, but keywords can be used in replacement
values:

#def i ne ex i t GOTO _ex i t ' Good

#def i ne end GOTO _ex i t ' Bad

(exit is not an Applesoft keyword, but end is).

It is a wise practice to put all #define and #declare
statements near the top of a program rather than
sprinkling them throughout the source code.

If you have many such definitions, put them in a
separate header file and use the #include directive
(coming up) to include it during processing. Header
files end with a .h extension by convention. For
example, a header file for Hello.b would be Hello.h,
and would contain all the symbol definitions, code
macros, and declared variables used by Hello.b.

MD-BASIC internally defines TRUE as 1 and FALSE as
0 for you. Additionally, the symbol _ _MDBASIC_ _
holds the MD-BASIC version number.

70

The #error directive forces MD-BASIC to stop process-
ing, primarily useful when debugging. An optional
message can be displayed:

#er r or " Thi s i s t he er r or message. "

See #print for more details on message format and
features.

These conditional directives allow you to selectively
process portions of your source code. This is useful for
maintaining and producing several customized versions
of a program. The general form is:

#if expression
statement

#endif

If the expression is true, the statements between the #if
and #endif are processed, otherwise they’re skipped.
You can also insert the #else directive to process
alternate code if the expression is false. Example:

#def i ne I I GS TRUE

#i f I I GS

r amDi sk$ = " / RAM5"

del ayFac t or % = 0

#el se

r amDi sk$ = " / RAM"

del ayFac t or % = 3

#endi f

This works just like IF-THEN-ELSE-ENDIF in BASIC.
The #else marks the end of the true part and the start
of the false part. Each #if must have a matching
#endif.

#error

#if,
#ifdef,
#ifndef,
#else,
#endif

60: DIRECTIVES

71

#if directives may be nested, so the following is per-
fectly valid:

#i f DEBUG

#i f PRI NTER_PORT

f Out Por t 1

#el se

f Out Por t 2

#endi f

pr i nt " Pani c ! "

#endi f

To omit a large section of your source code without
having to comment each line, use this form:

#if 0
statement

#endif

Since the expression is zero (false), anything between
the #if and #endif is skipped. Changing the 0 to 1
(true) allows the statement portion to be processed.

Another method of conditional processing uses the
#ifdef (if defined) and #ifndef (if not defined) direc-
tives. These test a symbol or macro to see if it has been
defined with #define, and the general form is:

#ifdef symbol
statement

#endif

If the symbol has been defined, the statement portion is
processed. Conversely, using #ifndef processes the
statement portion if the symbol is not defined. Use of
#else is supported with these directives, as are all the
features associated with #if.

60: DIRECTIVES

72

The #include directive instructs MD-BASIC to tempo-
rarily switch to another file. When the end of the
included file is reached, processing resumes with the
original file following the #include line.

The name of the included source file must be enclosed
between double quotes or angle brackets. Example:

#i nc l ude <Fi l eI O. h>

#i nc l ude " Hel l o. h"

Both instruct MD-BASIC to read and process additional
source files. The framing characters determine where
MD-BASIC begins searching for the files. Names
between angle brackets are expected to reside in the
BInclude folder. Names in double quotes are ex-
pected to be in the current directory—the same direc-
tory as your main source file.

Include files, often called header files which explains
the .h extension, normally include many #define and
#declare directives. They can also contain additional
#include directives to bring more files in for process-
ing.

The #pragma directive allows you to control functions
related to processing. A selector name and arguments,
if needed, determine the type of control action. The
general form is:

#pragma selector arguments

MD-BASIC #pragma directive recognizes the following
selectors:

#include

#pragma

60: DIRECTIVES

73

#pragma debug
Useful when you suspect a mismatched IF-ENDIF
block (or similar begin-end construct like WHILE-
WEND). MD-BASIC is only able to report missing
components when the end of the program is reached.
By placing #pragma debug after logical blocks of
code, say after each subroutine, a mismatch will
generate an error at that point.

#pragma declare n
This switches variable declaration checking on (1) or
off (0) based on the n argument. This is useful in cases
where you want to selectively monitor undeclared
variables for portions of a program. When declaration
insistence is on, MD-BASIC requires that each variable
encountered be formally introduced using the #de-
clare directive, as if the Require declaration option is
checked in the Processing Preferences dialog box.

#pragma once
Place this in any file that is ever #included to ensure
that it is processed only once per program. This avoids
redefinition errors should a header file be included
twice.

#pragma optimize code, vars
MD-BASIC’s code optimization packs as much code as
possible onto each line. This reduces a program’s size
considerably, leaving more free memory and increasing
execution speed. However, long program lines can
make modification in immediate mode very difficult.

Using a value of 0, 1, or 2 for the code argument, you
can control the amount of optimization applied to
program lines.

60: DIRECTIVES

74

The numbers relate to None, Low, and High, respec-
tively, as used in Processing Preferences. They have
the following effects on output:

None (0) each statement gets its own line.
Low (1) line lengths do not exceed 96 bytes.
High (2) lines are packed to their fullest.

The optional vars argument controls variable name
optimization and accepts similar values corresponding
to the Vars setting in the Processing Preferences
dialog box:

None (0) variable names are used as-is.
Low (1) names are truncated after the 2nd letter.
High (2) names are chosen by MD-BASIC to

replace your variables (starting from A
and working up to ZZ).

CAUTION: None or Low variable optimization allows you to
pass names directly to Applesoft. It is up to you to consider
Applesoft’s naming limitations. For example, the variable
TEST and TEMP are consider one in the same, since only the
first two letters (TE) are significant to Applesoft.

#pragma progress n
This turns progress reporting on (1) or off (0) based on
the value of the n argument. This is useful only when
MD-BASIC is run from a command line shell. (See
Chapter 40 for more details on command line options).

#pragma renum start, increment
MD-BASIC renumbers program lines starting with 1 and
increments them by 1 when High code optimization is
enabled. At any other setting, program lines start at 100
and increment by 10. Use this directive to choose a
different start line number and, optionally, a custom
increment.

60: DIRECTIVES

75

#pragma summary n
This turns summary reporting on (1) or off (0) based on
the value of the n argument. (See Chapter 30 for more
details on selecting report generation preferences).

#pragma xref variable, label
Use this directive to control report generation for
variable and, optionally, label cross references. A
value of 1 enables reporting, while 0 disables it. (Chap-
ter 30 discusses report generation preferences).

The #print directive prints a message during process-
ing, useful for displaying your own progress messages.
Example:

#pr i nt " Thi s i s a t es t . "

You can also use it to display more complex messages
including symbols:

#def i ne APPLE " Appl e I I +"

#pr i nt " The " APPLE " has a " $1966 \

" mi c r opr ocessor . "

Notice that the backslash (\) continues this long
directive on the next line. When processed, this
displays:

 The Appl e I I + has a 6502 mi c r opr ocessor .

The #error directive can display similar messages.

NOTE: Whenever MD-BASIC sees adjacent strings of quoted
text, it simply joins them as if they were one, removing the
quotation marks. Thus, “ this ” “ and” “ that” becomes “ this
and that” .

#print

60: DIRECTIVES

76

The #reserve directive creates custom reserved words.
Reserved words are like Applesoft tokens, such as
END, PRINT, and HPLOT. Anything other than a token
is assumed to be a variable. However, many program-
mers use external commands to enhance their pro-
grams, such as ampersand utilities. These added
commands must not be subjected to MD-BASIC vari-
able name optimization, so the #reserve directive is
used to protect them:

#r eser ve LI NE, FI LES, TYPE, ERASE

These reserved words are being defined because they
are not standard Applesoft tokens. When a program
using these commands is processed, the output file
retains the command names so that ampersand and
other utilities can work properly. Example:

& LI NE I NPUT s t r eet _addr ess$

After processing and optimization, this line might
look like:

500 & LI NE I NPUT M$

The word LINE is retained, and the street_address$
variable is renamed M$. If LINE had not been
reserved, it would have been renamed, too, produc-
ing undesirable output:

500 & R I NPUT M$

INPUT, an Applesoft token, is immune.

NOTE: #reserve can also be used to protect a variable from
being optimized and renamed. Essentially, the variable itself
becomes a reserved word but can still be used as a variable,
and is subject to Applesoft’s restrictions on variables.

#reserve

60: DIRECTIVES

77

C H A P T E R

70

78

70: ALERTS AND ERRORS

79

Alerts and Errors
Bugs happen. Often. Fortunately, MD-BASIC makes
locating and correcting errors easy. This chapter
discusses alert and error messages, and includes a
listing of all such messages with expanded meanings.

Problems during processing come in two forms: alerts
and errors. An alert tells you that something is not
quite right about your source code, but isn’t serious
enough to affect the resulting program, so processing
can continue. Errors, on the other hand, have an
undetermined effect on the output, so processing
cannot continue.

In the desktop mode, both alert and error messages are
shown in a dialog box that looks like this:

Click Edit to open the corresponding source file. The
insertion point is moved to the spot nearest the error.

If the message is reporting an alert, you can click the
Continue button to keep going.

70: ALERTS AND ERRORS

Processing
Errors

80

(If Ignore aler ts is not checked in the Processing
Preferences dialog, you’ll never see alert mes-
sages.)

To cancel processing, click Cancel.

Alert and error messages in the shell mode look like
this:

 37| #def i ne TRUE 1

Al er t | ^

_____| _Li ne 10 of Hel l o. b: Redef i ni ng symbol

The number at the top is the 37th line processed, but
the actual error occurs in line 10 of Hello.b (the
program #included one or more files). The caret (^)
points to the offending portion of the line.

Here are the error messages that can occur during
processing:

#else unexpected. A #else has no matching #if,
#ifdef, or #ifndef directive.

#endif unexpected. A #endif has no matching #if,
#ifdef, or #ifndef directive.

#endif expected. A #if, #ifdef, or #ifndef is not
terminated by #endif.

Bad hex value. An invalid hexadecimal number
follows the $ character.

Can’t include file. #include nesting limit has been
reached.

Can’t open file. The file does not exist, is already
open, or does not have read permission.

70: ALERTS AND ERRORS

81

70: ALERTS AND ERRORS

Code buffer full. The program is too large to load
into Applesoft memory.

ENDIF expected. An IF-THEN block is not terminated
by ENDIF.

IF nesting too deep. IF-THEN-ENDIF nesting limit
has been reached.

I llegal symbol. An illegal symbol is used (e.g., #ifdef
“A String”, or if Exit is a label, then Exit = 5 generates
this error).

Invalid character . An invalid character was encoun-
tered (i.e., a control character or special punctuation
not used in MD-BASIC).

Invalid label definition. Labels are defined at the
beginning of a line. Put spaces before colons used as
statement separators.

Missing quotation mark. A string literal (text
surrounded by quotation marks) is expected. Or, a
string starting with a quote is missing the closing quote.

Numeric expression expected. A non-numeric
argument is given.

Out of symbol storage. There is not enough
memory available for symbol storage.

Paren/bracket mismatch. The statement contains
an unmatched parenthesis and/or bracket.

Redefining symbol. An attempt is made to #define a
symbol more than once. This is an error if the new
value differs from the original.

82

Symbol table full. The symbol table has reached its
limit. Reduce the number of #defines, #declares, and
#reserves.

Syntax error . The syntax of a command or directive
is incorrect (e.g. using #define all by itself).

Too many IF blocks. The total number of IF-THEN-
ENDIF blocks has been reached.

Unexpected ELSE or ENDIF. An ELSE or ENDIF is
encountered without a matching IF.

Unknown directive. An unknown directive is used.

Unknown symbol. A symbol name, used in a #if
directive, has not been defined.

Wrong number of arguments. A #define macro
requires an explicit number of arguments. Too many
or too few are given.

Once processing is completed, the resolving pass
occurs. At this point, though, there is no logical link
back to the source code. So any errors that occur
during resolving can only be reported by their relation
to labels found in the program. Example:

ERROR: SHOW_TOTAL mi ss i ng pas t PRI NT_TABLE

This indicates that a reference is made to a non-existent
label called SHOW_TOTAL. The reference is encoun-
tered beyond the label PRINT_TABLE. This helps you
locate the bogus reference in your source code.

70: ALERTS AND ERRORS

Resolving
Errors

83

Here are the error messages that can occur during
resolving:

LABEL duplicated. A label is defined more than once.

LABEL unused. A label is never referenced. This is
an alert.

LABEL missing. Reference is made to a label that
does not exist.

Line too long. A single BASIC statement is too long to
fit on a line in Applesoft (most likely a DATA or PRINT
statement). Split the statement into two or more
statements. Increase code optimization to High if it is
set to Low.

Line out of sync. The position of a label in the first
resolving pass differs from it’s position in the final pass.
This occurs only with MD-BASIC’s commands that
embody internal GOTOs (like IF-THEN-ENDIF,
WHILE-WEND, etc.). Check for unterminated loops
inside of IF-THEN-ENDIF blocks, and vice versa.

70: ALERTS AND ERRORS

84

70: ALERTS AND ERRORS

85

A P P E N D I C E S

86

APPENDICES

87

Reserved Words
Reserved words in Applesoft are tokenized: each word
takes up one byte of program storage. The token
numbers are listed with each reserved word below.
MD-BASIC also has reserved words which are con-
verted into one or more Applesoft tokens (see next
page).

Applesoft

A: RESERVED WORDS

IF (173)
IN # (139) *
INPUT (132)
INT (211)
INVERSE (158)
LEFT$ (232)
LEN (227)
LET (170)
LIST (188)
LOAD (182)
LOG (220)
LOMEM: (164) *
MID$ (234)
NEW (191)
NEXT (130)
NORMAL (157)
NOT (198)
NOTRACE (156)
ON (180)
ONERR (165)
OR (206)
PDL (216)
PEEK (226)
PLOT (141)
POKE (185)
POP (161)
POS (217)
PRINT (186)
PR # (138) *
READ (135)
RECALL (167)
REM (178)
RESTORE (174)

RESUME (166)
RETURN (177)
RIGHT$ (233)
RND (219)
ROT= (152) *
RUN (172)
SAVE (183)
SCALE= (153) *
SCRN (215)
SGN (210)
SHLOAD (154)
SIN (223)
SPC (195)
SPEED= (169) *
SQR (218)
STEP (199)
STOP (179)
STORE (168)
STR$ (228)
TAB (192)
TAN (224)
TEXT (137)
THEN (196)
TO (193)
TRACE (155)
USR (213)
VAL (229)
VLIN (143)
VTAB (162)
WAIT (181)
XDRAW (149)

ABS (212)
AND (205)
ASC (230)
AT (197)
ATN (225)
CALL (140)
CHR$ (231)
CLEAR (189)
COLOR= (160) *
CONT (187)
COS (222)
DATA (131)
DEF (184)
DEL (133)
DIM (134)
END (128)
EXP (221)
FLASH (159)
FN (194)
FOR (129)
FRE (214)
GET (190)
GOSUB (176)
GOTO (171)
GR (136)
HCOLOR= (146) *
HGR (145)
HGR2 (144)
HIMEM: (163) *
HLIN (142)
HOME (151)
HPLOT (147)
HTAB (150)

* These reserved
words end with
characters that
are not allowed
in MD-BASIC.
Simply omit the
invalid character.

88

MD-BASIC
DO
ELSE
ENDIF
FALSE
LOOP
TRUE
REPEAT
UNTIL
WEND
WHILE
__MDBASIC__

CAUTION: Care should be taken when selecting variable
names to avoid using reserved words. For example, you
cannot use PRINT as a variable. Not so obvious, however,
are the shorter reserved words such as: AT, DO, GR, IN, ON,
PR, and TO.

A: RESERVED WORDS

89

ASCII Chart

B: ASCII CHART

32 $20 SPC 160 $A0

33 $21 ! 161 $A1

34 $22 " 162 $A2

35 $23 # 163 $A3

36 $24 $ 164 $A4

37 $25 % 165 $A5

38 $26 & 166 $A6

39 $27 ' 167 $A7

40 $28 (168 $A8

41 $29) 169 $A9

42 $2A * 170 $AA

43 $2B + 171 $AB

44 $2C , 172 $AC

45 $2D - 173 $AD

46 $2E . 174 $AE

47 $2F / 175 $AF

48 $30 0 176 $B0

49 $31 1 177 $B1

50 $32 2 178 $B2

51 $33 3 179 $B3

52 $34 4 180 $B4

53 $35 5 181 $B5

54 $36 6 182 $B6

55 $37 7 183 $B7

56 $38 8 184 $B8

57 $39 9 185 $B9

58 $3A : 186 $BA

59 $3B ; 187 $BB

60 $3C < 188 $BC

61 $3D = 189 $BD

62 $3E > 190 $BE

63 $3F ? 191 $BF

0 $00 ^@ 128 $80

1 $01 ^A 129 $81

2 $02 ^B 130 $82

3 $03 ^C 131 $83

4 $04 ^D 132 $84

5 $05 ^E 133 $85

6 $06 ^F 134 $86

7 $07 ^G 135 $87

8 $08 ^H 136 $88

9 $09 ^ I 137 $89

10 $0A ^J 138 $8A

11 $0B ^K 139 $8B

12 $0C ^L 140 $8C

13 $0D ^M 141 $8D

14 $0E ^N 142 $8E

15 $0F ^O 143 $8F

16 $10 ^P 144 $90

17 $11 ^Q 145 $91

18 $12 ^R 146 $92

19 $13 ^S 147 $93

20 $14 ^T 148 $94

21 $15 ^U 149 $95

22 $16 ^V 150 $96

23 $17 ^W 151 $97

24 $18 ^X 152 $98

25 $19 ^Y 153 $99

26 $1A ^Z 154 $9A

27 $1B ^ [155 $9B

28 $1C ^ \ 156 $9C

29 $1D ^] 157 $9D

30 $1E ^^ 158 $9E

31 $1F ^_ 159 $9F

64 $40 @ 192 $C0

65 $41 A 193 $C1

66 $42 B 194 $C2

67 $43 C 195 $C3

68 $44 D 196 $C4

69 $45 E 197 $C5

70 $46 F 198 $C6

71 $47 G 199 $C7

72 $48 H 200 $C8

73 $49 I 201 $C9

74 $4A J 202 $CA

75 $4B K 203 $CB

76 $4C L 204 $CC

77 $4D M 205 $CD

78 $4E N 206 $CE

79 $4F O 207 $CF

80 $50 P 208 $D0

81 $51 Q 209 $D1

82 $52 R 210 $D2

83 $53 S 211 $D3

84 $54 T 212 $D4

85 $55 U 213 $D5

86 $56 V 214 $D6

87 $57 W 215 $D7

88 $58 X 216 $D8

89 $59 Y 217 $D9

90 $5A Z 218 $DA

91 $5B [219 $DB

92 $5C \ 220 $DC

93 $5D] 221 $DD

94 $5E ^ 222 $DE

95 $5F _ 223 $DF

Low HighLow HighLow HighLow High

Low HighLow HighLow HighLow High

96 $60 ‘ 224 $E0

97 $61 a 225 $E1

98 $62 b 226 $E2

99 $63 c 227 $E3

100 $64 d 228 $E4

101 $65 e 229 $E5

102 $66 f 230 $E6

103 $67 g 231 $E7

104 $68 h 232 $E8

105 $69 i 233 $E9

106 $6A j 234 $EA

107 $6B k 235 $EB

108 $6C l 236 $EC

109 $6D m 237 $ED

110 $6E n 238 $EE

111 $6F o 239 $EF

112 $70 p 240 $F0

113 $71 q 241 $F1

114 $72 r 242 $F2

115 $73 s 243 $F3

116 $74 t 244 $F4

117 $75 u 245 $F5

118 $76 v 246 $F6

119 $77 w 247 $F7

120 $78 x 248 $F8

121 $79 y 249 $F9

122 $7A z 250 $FA

123 $7B { 251 $FB

124 $7C | 252 $FC

125 $7D } 253 $FD

126 $7E ~ 254 $FE

127 $7F DEL 255 $FF

90

B: ASCII CHART

Control Codes

0 $00 ^@ NUL Null
1 $01 ^A SOH Start of header
2 $02 ^B STX Start of text
3 $03 ^C ETX End of text
4 $04 ^D EOT End of transmission
5 $05 ^E ENQ Enquiry
6 $06 ^F ACK Acknowledge
7 $07 ^G BEL Bell

8 $08 ^H BS Backspace
9 $09 ^I HT Horizontal tab

10 $0A ^J LF Line feed
11 $0B ^K VT Vertical tab
12 $0C ^L FF Form feed
13 $0D ^M CR Carriage return
14 $0E ^N SO Shift out
15 $0F ^O SI Shift in

16 $10 ^P DLE Data link escape
17 $11 ^Q DC1 Device control 1 (XON)
18 $12 ^R DC2 Device control 2
(AUXON)
19 $13 ^S DC3 Device control 3 (XOFF)
20 $14 ^T DC4 Device control 4
(AUXOFF)
21 $15 ^U NAK Negative acknowledge
22 $16 ^V SYN Synchronous file
23 $17 ^W ETB End of transmission block

24 $18 ^X CAN Cancel
25 $19 ^Y EM End of medium
26 $1A ^Z SUB Substitute
27 $1B ^[ESC Escape
28 $1C ^\ FS File or form separator
29 $1D ^] GS Group separator
30 $1E ^^ RS Record separator
31 $1F ^_ US Unit separator

91

ProDOS File Types

Type Hex Dec Description

UNK $00 0 Unknown
BAD $01 1 Bad Blocks
PCD $02 2 Apple /// Pascal Code
PTX $03 3 Apple /// Pascal Text
TXT $04 4 ASCII Text
PDA $05 5 Apple /// Pascal Data
BIN $06 6 General Binary
FNT $07 7 Apple /// Font
FOT $08 8 Graphics
BA3 $09 9 Apple /// BASIC Program
DA3 $0A 10 Apple /// BASIC Data
WPF $0B 11 Word Processor
SOS $0C 12 Apple /// SOS System
DIR $0F 15 Folder
RPD $10 16 Apple /// RPS Data
RPI $11 17 Apple /// RPS Index
AFD $12 18 Apple /// AppleFile Discard
AFM $13 19 Apple /// AppleFile Model
AFR $14 20 Apple /// AppleFile Report Format
SCL $15 21 Apple /// Screen Library
PFS $16 22 PFS Document
ADB $19 25 AppleWorks Data Base
AWP $1A 26 AppleWorks Word Processor
ASP $1B 27 AppleWorks Spread Sheet
TDM $20 32 Desktop Manager Document
8SC $29 42 Apple II Source Code
8OB $2A 43 Apple II Object Code
8IC $2B 44 Apple II Interpreted Code
8LD $2C 45 Apple II Language Data
P8C $2D 46 ProDOS 8 Code Module
FTD $42 66 File Type Names
GWP $50 80 Apple IIGS Word Processor
GSS $51 81 Apple IIGS Spread Sheet
GDB $52 82 Apple IIGS Data Base
DRW $53 83 Drawing
GDP $54 84 Desktop Publishing
HMD $55 85 Hypermedia
EDU $56 86 Educational Data
STN $57 87 Stationery
HLP $58 88 Help
COM $59 89 Communications
CFG $5A 90 Configuration
ANM $5B 91 Animation
MUM $5C 92 Multimedia
ENT $5D 93 Entertainment
DVU $5E 94 Development Utility

Continued . . .

C: PRODOS FILE TYPES

92

Type Hex Dec Description

BIO $6B 107 PC Transporter BIOS
TDR $6D 109 PC Transporter Driver
PRE $6E 110 PC Transporter Pre-Boot
HDV $6F 111 PC Transporter Volume
WP $A0 160 WordPerfect Document
GSB $AB 171 Apple IIGS BASIC Program
TDF $AC 172 Apple IIGS BASIC TDF
BDF $AD 173 Apple IIGS BASIC Data
SRC $B0 176 Apple IIGS Source
OBJ $B1 177 Apple IIGS Object
LIB $B2 178 Apple IIGS Library
S16 $B3 179 GS/OS Application
RTL $B4 180 GS/OS Run-time Library
EXE $B5 181 GS/OS Shell Application
PIF $B6 182 Permanent Initialization
TIF $B7 183 Temporary Initialization
NDA $B8 184 New Desk Accessory
CDA $B9 185 Classic Desk Accessory
TOL $BA 186 Tool
DRV $BB 187 Device Driver
LDF $BC 188 Load File
FST $BD 189 GS/OS File System Translater
DOC $BF 191 GS/OS Document
PNT $C0 192 Packed Super Hi-Res Picture
PIC $C1 193 Super Hi-Res Picture
ANI $C2 194 Animation
PAL $C3 195 Palette
OOG $C5 197 Object Oriented Graphics
SCR $C6 198 Script
CDV $C7 199 Control Panel
FON $C8 200 Font
FND $C9 201 Finder Data
ICN $CA 202 Icons
MUS $D5 213 Music Sequence
INS $D6 214 Instrument
MDI $D7 215 MIDI
SND $D8 216 Sampled Sound
DBM $DB 219 Relational Data Base File
LBR $E0 224 Archival Library
ATK $E2 226 AppleTalk Data
R16 $EE 238 EDASM 816 Relocatable File
PAS $EF 239 Pascal Area
CMD $F0 240 BASIC Command
LNK $F8 248 EDASM Linker
OS $F9 249 GS/OS System File
INT $FA 250 Integer BASIC Program
IVR $FB 251 Integer BASIC Variables
BAS $FC 252 Applesoft BASIC Program
VAR $FD 253 Applesoft BASIC Variables
REL $FE 254 Relocatable Code
SYS $FF 255 ProDOS 8 System Application

ProDOS File Types (Continued)

C: PRODOS FILE TYPES

93

0 NEXT Without FOR: a NEXT was encountered without a matching FOR.
2 Range Error : an invalid argument value was specified.
3 No Device Connected: the given slot has no disk drive installed.
4 Write Protected Disk: unable save data unless write-enabled.
5 End of Data: an attempt was made to read data past the end of a file.
6 Path Not Found: the path to a filename was not found.
7 File Not Found: the specified file was not found.
8 I/O Error : the drive went offline or the disk has a media defect.
9 Disk Full: no room exists on the disk storing more data.

10 File Locked: the file is protected against modification or removal.
11 Invalid Option: an option not allowed for a certain command was used.
12 No Buffers Available: not enough memory for further disk functions.
13 File Type Mismatch: an invalid attempt was made to access a special file.
14 Program Too Large: you've written a FAT and SLOPPY program.
15 Not Direct Command: command was issued from immediate mode.
16 Syntax Error : a filename is illegal or a program statement misspelled.
17 Directory Full: the root volume contains too many filenames.
18 File Not Open: an attempt was made to read or write from an closed file.
19 Duplicate File Name: a RENAME or CREATE used on an existing file.
20 File Busy: an attempt to re-OPEN or modify an OPEN file.
21 File Still Open: upon entering immediate mode, a file was found OPEN.
22 RETURN Without GOSUB: a RETURN with no matching GOSUB.
42 Out of Data: an attempt was made to READ past the last DATA item.
53 I llegal Quantity: an out-of-range value was used with a certain command.
69 Overflow: you used an awfully BIG or amazingly SMALL number.
77 Out of Memory: program code and variables have used up free memory.
90 Undef'd Statement: a line number which does not exist was referenced.

107 Bad Subscr ipt: an array subscript is larger than the given DIMension.
120 Redim'd Array: an attempt was made to reDIMension an existing array.
133 Division by Zero: division by zero is undefined (remember your algebra?)
163 Type Mismatch: a numeric or string value was used incorrectly.
176 Str ing Too Long: the given string was larger than was allowed.
191 Formula Too Complex: go easy on the machine, Einstein.
224 Undef'd Function: reference to an undefined FuNction was made.
254 Reenter : user input was not of the type or format required.
255 Control-C Interrupt: -C was pressed.

Error Codes

D: ERROR CODES

94

D: ERROR CODES

95

INDEX

Index

#declare 35, 65
#define 66
#else 70
#endif 70
#error 70
#if 70
#ifdef 71
#ifndef 71
#include 69, 72
#pragma 72
#print 75
#reserve 76
() 61
< > 72
[] 61
\ 62, 75
^ 61
_ _MDBASIC_ _ 69
` 62

About MD-BASIC… 16
alerts 79
Applesoft 11

oddities 55
arguments 46
ASCII chart 89

BASIC interpreter 24, 29
selecting pathname 38

BASIC.System 49
BInclude 17, 72

location of 38
sharing 45

bugs (finding) 35
Build… 23

Clear 20
clipboard 19
Close 18

all windows 18
colon 54
command line arguments 46
comments 50, 55, 58, 62
conditional directives 70
conditional statements 59
Confirm saves 18, 35
constants, defining 67
continuing long lines 62
control codes

ASCII 90
inserting 61

Conversion 47
conversion 24, 49
Convert… 24, 37
Copy 19
Cut 19

96

INDEX

debug, #pragma 73
declare, #pragma 73
desktop interface

access from shell 46, 47
directives 65
DO-LOOP 60

Edit menu 19, 34
editing 55
editing keys 27
ENDIF 59
Enter BASIC 24
error codes (Applesoft) 93
errors 79
Extended Keyboard 27

factory settings 39
FALSE 69
file dialog. See standard file dialog
File menu 17, 26, 28, 46
file type 44, 91
Find Same 21
Find Selection 21
Find… 20, 38
font. See Format…
Font… button 22
Font… preference 34
Format… 22
formatting rules 54

GNO 43
GOTO 54, 60

header files 69, 72
hexadecimal 61

I-beam 26
IF statement 59
Ignore alerts 35, 80
Initial indent 37
insertion point 26
installation 11

shell 43

Keep In Memory 37
keywords

case of 37, 50
separating 54

labels 58
reference report 36

Launch… 24
launching

keeping in memory 38
line

labels vs. numbers 56
long lines 62
numbering 74

97

INDEX

splitting long lines 54
loop

conditional 60
unconditional 60

macro 67
Make… 23
Match case 21, 38
MD-BASIC

directives 65
language 53

MDBASIC.Prefs 39
memory 16

running low on 16
menus 15
mouse 26

New 17, 26, 35

once, #pragma 73
ONERR 56, 61
Open document 24, 37
Open Selection 17
Open… 17
optimization 28, 36, 73
optimize, #pragma 73
ORCA 43

Page Setup… 18
Paste 20

Preferences… 20, 34
Conversion 37
Document 34
Miscellaneous 37
Processing 35, 73, 74, 80
restoring factory settings 39
saving 39

Print… 19
printing options 18
processing 23, 28, 35, 47

cancelling 29, 49
errors 79

Program menu 23, 28
progress, #pragma 74

Quit 19, 46
keeping in memory 38

quit 24

Read.Me 12
REM 55
REMs to comments 37
renum, #pragma 74
REPEAT-UNTIL 60
Replace Same 22
Replace… 22, 38
Report 36
Require declaration 35, 73
requirements 11
reserved words 76, 87
resolving 28

errors 82
Revert to Saved 18
Run 23, 28

98

INDEX

Save 18, 28
Save as… 18, 28
Search Options 38
Select All 20
shell 43
Shift Left 22
Shift Right 22
Show Clipboard 20
Stack Windows 25
standard file dia-

log 17, 23, 24, 28
selecting multiple files 17

strings
joining 62

style. See Format…
subroutine interfaces 68
summary, #pragma 75
Summary report 36

tab width 50
Tabs pop-up menu 34
text

quoting 55, 62, 75
special 62

text editor 48
Text menu 20
Tile Windows 25
tokens 87
Top of file 21, 38
TRUE 69

Undo 19
all changes to document 18

untitled window 26

Variable cross reference 36, 48
variable names

avoiding reserved words 88
case of 37, 50
declaration 35, 65
descriptive 55, 58
keyword separation 56
optimization 36, 56, 74, 76
reserving 76

WHILE-WEND 60
Window menu 25
window title 18, 25

xref, #pragma 75

99

NOTES

100

NOTES

