
Marinetti
Version 2.0

Programmers’ Guide
“For the Apple IIGS

®

, the world just got a whole lot closer!”

Designed and written by Richard Bennett
© 1997-2001 Richard Bennett

This revision: 20th May 2001

Marinetti 2.0 Programmers’ Guide Page 2

Contents
Acknowledgements 6

Introduction 7

Summary of new features 8

Programming with Marinetti 9
What is TCP/IP 9
The link layer 9
The network layer 10
The application layer 10
The transport layer 11
Using datastreams 12
UNIX sockets 12
Other transport protocols 13
Calling Marinetti 13
Connecting to the network 13
Obtaining an ipid 13
Opening a TCP connection 14
Sending and receiving data 14
Closing a TCP connection 14
Releasing an ipid 15
Disconnecting from the network 15
How Marinetti obtains control 15
Information on internet protocols (RFCs) 15

Housekeeping tool calls 17
TCPIPBootInit 17
TCPIPStartUp 17
TCPIPShutDown 18
TCPIPVersion 18
TCPIPReset 19
TCPIPStatus 19
TCPIPLongVersion 21

Administrative tool calls 22
TCPIPGetConnectStatus 22
TCPIPGetErrorTable 23
TCPIPGetReconnectStatus 27
TCPIPReconnect 28
TCPIPGetMyIPAddress 30
TCPIPGetConnectMethod 31
TCPIPSetConnectMethod 32
TCPIPConnect 33
TCPIPDisconnect 35
TCPIPGetMTU 37
TCPIPGetConnectData 38

Marinetti 2.0 Programmers’ Guide Page 3

TCPIPSetConnectData 39
TCPIPGetDisconnectData 40
TCPIPSetDisconnectData 41
TCPIPLoadPreferences 42
TCPIPSavePreferences 42
TCPIPGetTuningTable 43
TCPIPSetTuningTable 45
TCPIPGetConnectMsgFlag 46
TCPIPSetConnectMsgFlag 47
TCPIPGetUsername 48
TCPIPSetUsername 49
TCPIPGetPassword 50
TCPIPSetPassword 51
TCPIPGetLinkVariables 52
TCPIPEditLinkConfig 54
TCPIPGetModuleNames 55
TCPIPGetHostName 57
TCPIPSetHostName 58
TCPIPGetLinkLayer 59
TCPIPGetAuthMessage 61
TCPIPGetAliveFlag 62
TCPIPSetAliveFlag 63
TCPIPGetAliveMinutes 64
TCPIPSetAliveMinutes 65
TCPIPGetBootConnectFlag 66
TCPIPSetBootConnectFlag 67

Domain Name Resolution 68
TCPIPGetDNS 69
TCPIPSetDNS 71
TCPIPCancelDNR 72
TCPIPDNRNameToIP 73

IP network tool calls 75
TCPIPPoll 75
TCPIPSendIPDatagram 76

Network and Transport layer tool calls 77
TCPIPLogin 77
TCPIPLogout 79
TCPIPSendICMP 80
TCPIPSendUDP 81
TCPIPGetDatagramCount 82
TCPIPGetNextDatagram 83
TCPIPGetLoginCount 85
TCPIPSendICMPEcho 86
TCPIPReceiveICMPEcho 87
TCPIPStatusUDP 88
TCPIPSetUDPDispatch 91

Marinetti 2.0 Programmers’ Guide Page 4

TCP tool calls 92
TCPIPOpenTCP 92
TCPIPListenTCP 93
TCPIPWriteTCP 94
TCPIPReadTCP 96
TCPIPReadLineTCP 99
TCPIPCloseTCP 102
TCPIPAbortTCP 104
TCPIPStatusTCP 105
TCPIPAcceptTCP 108

Transport administration tool calls 109
TCPIPGetSourcePort 109
TCPIPGetTOS 110
TCPIPSetTOS 111
TCPIPGetTTL 112
TCPIPSetTTL 113
TCPIPSetSourcePort 114
TCPIPGetUserStatistic 115
TCPIPSetNewDestination 116
TCPIPGetDestination 117

Library type calls 119
TCPIPConvertIPToHex 119
TCPIPConvertIPCToHex 121
TCPIPConvertIPToASCII 122
TCPIPConvertIPToCASCII 123
TCPIPConvertIPToClass 124
TCPIPMangleDomainName 125
TCPIPPtrToPtr 127
TCPIPPtrToPtrNeg 128
TCPIPValidateIPString 129
TCPIPValidateIPCString 130

Link layer modules 131
LinkInterfaceV 132
LinkStartup 132
LinkShutDown 133
LinkModuleInfo 134
LinkGetDatagram 135
LinkSendDatagram 136
LinkConnect 137
LinkReconStatus 139
LinkReconnect 140
LinkDisconnect 141
LinkGetVariables 142
LinkConfigure 143

Marinetti 2.0 Programmers’ Guide Page 5

Outward bound notifications 145
TCPIPSaysHello 145
TCPIPSaysNetworkUp 145
TCPIPSaysNetworkDown 146

Debugging and testing 147

Porting from BSD UNIX 150

Constants and equates 151
Tool error codes 151
Connect methods 151
Protocols 152
Domain Name Resolver status codes 152
TCP logic errors 152
TCP states 153

Marinetti 2.0 Programmers’ Guide Page 6

Acknowledgements

Sections of this document may be based on or lifted from discussions with programmers and developers
who assisted in testing Marinetti during its initial and on-going development cycles, and as such, some of
their copyrighted material may have accidentally been included in this document. Any use of individually
copyrighted text was unintentional and purely in the spirit of making Marinetti a reality. Concerned
copyright owners should contact the author to immediately resolve any conflicts.

Special thanks to Mike Westerfield for providing the headers and declarations for C, Pascal and BASIC,
in this document.

Special thanks to Geoff Weiss for his continuing confidence and his initial guiding light. Marinetti exists
only because of him.

Development phase testers

Tony Diaz
Dave Hecker
David Miller
Andrew Roughan
Erick Wagner
Ewen Wannop
Geoff Weiss

Specification feedback

Sönke Behrens
Joachim Lange
Devin Reade
Antoine Vignau
Mike Westerfield

Alpha testers

Jeff Blakeney
Tony Diaz
Dave Hecker
David Miller
Andrew Roughan
Erick Wagner
Ewen Wannop
Geoff Weiss
Mike Westerfield

FAQs

Ryan Suenaga
Erick Wagner (1.0)

Beta testers

Jeff Blakeney
Tony Diaz
Dave Hecker
Max Jones
Joe Kohn
David Miller
Andrew Roughan
Erick Wagner
Ewen Wannop
Tony Ward
Geoff Weiss
Mike Westerfield
Chris Vavruska

Those kind enough to email kind words about Marinetti 1.0

Rodney Abel
Cindy Adams
Jim Bauer
Jawaid Bazyar
Greg Buchne
Bruce Clark
Jon Christopher Sy Co
Art Coughlin
Dan DeDona
Jim Dwyer
Dean Esmay
Henrik Gudat
Jeremy Hack
Harold Hislop
Dave Johnson

Max Jones
James Keim
Tim Kellers
Joe Kohn
Daniel Krass
Gene Linkoski
Robert Liptak
Mark Marr-Lyon
Michael Malady
Nathan Mates
Ricardo Matinata
Mike McGovern
Kirk Mitchell
Todd Myers
Greg Nelson

Kevin Noonan
Aaron Pulver
J. Marshall Reber
Toby Reiter
Lucas Scharenbroich
Anne Schnaubelt
Paul Schultz
Kelvin Sherlock
Mitchell Spector
Ryan Suenaga
Joyce Sullivan
Greg Thompson
Gary Utter
Chris Vavruska

Marinetti 2.0 Programmers’ Guide Page 7

Introduction

Marinetti is a TCP/IP protocol suite for the Apple IIGS. It allows applications on an Apple IIGS with
System 6.0.1 to connect to and interact with, an internet.

The Marinetti software is free of charge, and is available from various locations, including the
Marinetti Home Page:

http://www.apple2.org/marinetti/

This document describes how to use Marinetti in your own programs, and the various tool calls which
Marinetti accepts.

Using this document in conjunction with the Apple IIGS Toolbox Reference Manuals and widely available
protocol RFCs, you should be able to add TCP/IP support to your Apple IIGS application.

This documentation refers to and assumes a prior knowledge of the Apple IIGS toolbox. Apple IIGS

toolbox reference manuals are available from:

The Byte Works
8000 Wagon Mound Driver N.W.
Albuquerque, NM 87120
U.S.A.

505-989-4092 (fax)
505-898-8183 (voice)

MikeW50@aol.com
http://www.hypermall.com/byteworks/

This document refers only to Marinetti 2.0, and not its predecessor, 1.0.

Marinetti is in no way connected to or with the vaporware product commonly referred to as “GS/TCP”,
Derek Taubert’s Apple IIGS port of public domain TCP/IP source code which requires GNO/ME to run
and as of the date of this document, has not been released.

Marinetti 2.0 Programmers’ Guide Page 8

Summary of new features

Marinetti version 2.0 is almost a complete rewrite of the original. So much so that all applications, without
exception, will need to be modified to use it.

The main changes between 1.0b1, the only public release, and 2.0, which may affect developers, include:

• The single Control Panel has had sections of code split off into a tool set stub, an init, and
individually loaded link layer modules.

• Preferences and link layer configuration data are now stored in a common TCPIP folder inside the
System folder.

• Marinetti now uses a toolbox interface. An interim Tool054, which provided tool access to the
version 1.0b1 requests was released to the public in December 1997, however this has now been
superceded and must be overwritten with the newer version 2.0 Tool054 file.

• Link layers are now separate load modules, with a documented interface for developers. Marinetti
ships with a number of modules supporting various link layer types.

• Marinetti now includes Domain Name resolution, allowing applications to use domain names instead
of IP addresses.

• Many calls have had their names changed to more accurately reflect what they do.
• Many calls have had their calling parameters changed.
• Better support for servers. While both versions allow you to write server applications, in 2.0 it is

more like BSD UNIX (unfortunately, but developers requested it).
• Marinetti no longer needs to be officially registered with the author.
• Many bugs have been fixed, making Marinetti much more stable. See the CHANGES file, which ships

with Marinetti, for more details.

Because Marinetti uses a toolbox interface, you will need to issue the tool locator call
_LoadOneTool(#54,#$200) before using it. The tool locator calls _StartUpTools and
_ShutDownTools do not support the Marinetti tool set.

Marinetti 2.0 Programmers’ Guide Page 9

Programming with Marinetti

Marinetti was written for the Apple IIGS with Apple IIGS programmers in mind. With this document,
along with the supplied header and declaration files, your current development environment, and some
minimal TCP/IP knowledge, you should be able to add TCP/IP facilities to your applications.

While previous knowledge of how TCP/IP and UNIX sockets work would be helpful, it is not mandatory
for getting Marinetti support into your applications. This chapter should give newcomers enough
information to get started, and those experienced with TCP/IP on other platforms a firm idea of how
Marinetti differs from traditional UNIX socket implementations.

If you are already familiar with how TCP/IP works, you might like to skip ahead to the section “Calling
Marinetti.”

What is TCP/IP

TCP/IP is actually two different pieces of software, yet they usually go together because applications on
an internet use them in conjunction with one another.

The term internet, note the lower case “i”, refers to a networking protocol which allows computers to talk
to each other in a fairly relaxed environment.

The term Internet, note the upper case “I”, refers to the most popular network in the world currently using
the internet protocol.

An internet is usually explained using a network layer model. Although more detailed models are fairly
common, this is the basic four layer model which they are derived from.

Application Telnet, FTP, Finger, Gopher, email etc.

Transport TCP, UDP

Network IP — ICMP, IGMP

Link Device driver and interface card (SLIP, PPP etc.)

On the Apple II, there is another layer at the bottom for driving the serial ports or interface card.

This layering is usually referred to as a stack, thus the terminology, TCP/IP stack.

The link layer

For two computers on an internet to communicate, they need to be connected so they can send data back
and forth. This is the link layer, named so because it looks after the two computers being linked together.
It could be a simple direct cable connection, or a modem to modem connection. For personal computers

Marinetti 2.0 Programmers’ Guide Page 10

using modems, the most common protocols are SLIP, the Serial Line Internet Protocol, and PPP, the Point
to Point Protocol.

SLIP is the most basic form of communication, and simply sends the data it is told to send, much like a
telecom program does. A newer version of SLIP, called C/SLIP, for Compressed Serial Line Internet
Protocol, compresses some of the data as it is transferred. The main problem with SLIP, is that there is no
handshaking for the computers to send administrative information back and forth, such as connection
tuning, compression options, and IP address management, leaving the user to provide a number of key
pieces of information for the whole thing to work properly.

PPP, on the other hand, provides the same serial connection as SLIP, yet it includes compression, and
basic handshaking. The handshaking lets the host tell the client what its IP address is, and which
compression options to use.

The network layer

The next layer up, the network layer, is the backbone of the connection.

IP, the Internet Protocol, takes packets of information, called datagrams, and sends them between the
various computers on the network.

Each computer in the network is allocated an address, called an IP address. Each datagram sent by IP
contains the destination computer’s address. If there are a number of computers connected together, IP
looks at the address in each datagram to decide which computer it is intended for.

Addresses are 32 bit numbers, but are usually expressed in the more readable dotted decimal notation,
such as 255.102.10.103. Each of the four numbers contains 8 bits of the complete 32 bit address. When a
datagram arrives, IP looks at the destination address in the datagram and decides whether it belongs to the
computer it is running on. If not, it simply sends it on to the next computer in the network. This way
datagrams hop from computer to computer until they arrive at the correct destination.

IP also has a facility where it can chop up large datagrams into fragments, which are really mini-
datagrams. The fragments may take different paths to the destination, depending on the network loading,
or other factors. When the fragments arrive at their destination, IP puts them all back together again as the
original datagram, and the receiver never knows they were fragmented.

IP on its own is fairly unreliable, as it never knows whether a datagram it sent has actually reached its
destination.

The application layer

Applications, such as email packages or Web browsers , simply open a direct path from themselves to the
destination server. Imagine it as running a hose from the garden tap to the garden. Turn it on and the data
comes flooding out in a continuous stream. In the case of a Web browser, we’re most likely talking about
an HTML document, or a GIF/JPEG.

Once made, the connection will remain until the application decides to close it, or as in the garden hose
example, it turns off the tap.

Marinetti 2.0 Programmers’ Guide Page 11

For Web browsers, a connection is opened and closed for each file, so in an HTML document that
contains say four GIFs, the browser would first read the HTML document, then read each of the GIFs. In
fact you can see this in action in Netscape Navigatir as it draws the images as they are received. In fact, in
Netscape Navigator there is a preference option for the maximum number of connections it may open
simultaneously. The default is 4, as this seems to be the optimum amount on low speed serial connections.

This is also where multi-tasking or threading comes into play, as each of these is considered a separate
task.

These connections are made and maintained by TCP, the Transmission Control Protocol.

The transport layer

TCP looks after management of the connection. You could think of it as the garden hose itself. It winds its
way throughout the garden, delivering the continuous stream of water to its destination, making sure every
drop arrives, and in the correct order.

TCP accepts a stream of data from the client or server and splits it up into segments. It then tells IP to send
these segments to the destination.

IP encapsulates the segments within IP datagrams and sends them across the network. IP at the other end
receives the datagrams and passes them to TCP as segments. TCP then starts rebuilding the original data
stream.

As each IP datagram arrives, which may need to be rebuilt from fragments, TCP sends back another
datagram which says “Yep! Got that one!” The sending TCP waits for these acknowledgement datagrams
before continuing. The application however, simply sees it as a continuous stream of data.

And that’s the basics of TCP.

What makes TCP complex, is the timing. Segments, and therefore datagrams, must arrive and be
acknowledged in a certain amount of time. If not, TCP resends the segment. If the acknowledgement gets
lost, then the destination TCP may start receiving segments that it already has, causing unecessary
overheads.

TCP also uses windowing, which means it sends a number of datagrams at once, waits for responses and
then sends another bunch. The ZMODEM file transfer protocol derives its efficiency from the same
windowing technique.

Because IP datagrams and fragments may take different paths to the destination, segments may also arrive
at their destination out of order, and the receiving TCP must wait and reorder them for the application.
Indeed the fragments of a datagram may also arrive out of order, adding another level of complexity.

Marinetti 2.0 Programmers’ Guide Page 12

Using datastreams

The one problem with the garden hose analogy, is that unlike a garden hose, TCP connections may
transport data in either direction at the same time. In effect, it is two garden hoses lying next to each other.

Any application using this continuous stream approach, is said to be using TCP/IP, because TCP is
managing, or transporting, the data stream, and IP is handling all the underlying network management.

What the applications do with their stream of data is completely up to them. This may mean a number of
connections, say one for telling the destination what to send, and another for the actual data being
returned, or could be a simple question and answer type protocol utilising a single connection.

FTP, POP3, NNTP, SMTP, are all based on this connection stuff being run by TCP.

UNIX sockets

Most implementations of TCP/IP are considered to be a part of the operating system, whether it be UNIX,
Mac OS, Amiga DOS, GS/OS, or whatever. For an application to use a TCP/IP connection, it needs a way
to identify it, much like a file reference number identifies individual files open by an operating system. In
the UNIX world, each connection is identified by a data structure called a socket.

The term socket may be used in a number of ways, so it is important that it is understood. At its most
theoretical, a socket is the TCP connection, or data stream between the two computers. For example, in
the Netscape Navigator example above, it would use five sockets, with probably four of them open at
once, to read in the HTML document and its four GIFs..

Another use of the term socket, is at the application runtime level. Each TCP connection knows its source
and destination by using an IP address to identify the computer, and a port number to identify a specific
connection on that computer. A number of connections may share a port, so another unique number is
used to identify each individual connection on the port. In UNIX TCP/IP implementations, a unique id for
each connection on the computer is usually generated by concatenating the port number with the unique
number. This unique id is called a socket, and is used by the application to uniquely identify each
connection.

Port numbers are used on servers to help identify applications. For example, if a computer is running a
Web server, then it is usually accessed through port 80. It may use other ports as well, or instead, but the
standard port is 80. For the Web server to identify each connection to port 80, of which there may be
many, it uses the socket assigned as described above.

There are other uses of the term socket, but these are the two main ones. Because there are so many uses
for the term, it is not used within Marinetti. Marinetti instead uses an ipid to identify individual TCP
connections. It is important to note that while most implementations do use the term socket, it is not
actually included in the official TCP or IP specifications. It is purely an artifact of the UNIX world.

Applications make calls to the TCP/IP stack via socket calls, which are usually kept in a socket library,
along with other operating system calls. With Marinetti, these calls are implemented as a tool set.

Marinetti 2.0 Programmers’ Guide Page 13

Other transport protocols

There are over 200 different protocols which use IP for datagram delivery, including TCP, UDP and
ICMP. Some of these are proprietary, and some are publicly documented in RFCs.

Each IP datagram contains an indicator byte describing the protocol the datagram conforms to. This way,
each protocol may have its own receive queue, and IP knows which queue the datagram should be
dropped into.

UDP, is a basic datagram delivery protocol, where the application takes care of timeouts and reordering of
data. ICMP is the administrative protocol which IP uses for returning timeout and network errors.

Calling Marinetti

Marinetti is a system tool, and as such will need to be loaded before use with the toolbox tool locator call
_LoadOneTool(#54,#$200). Once loaded, you will need to call _TCPIPStartUp to initialise the
tool set. The tool locator calls _StartUpTools and _ShutDownTools do not as yet support the
Marinetti tool set.

Connecting to the network

The first step, is to make a network connection. To see if the network is up, the application calls
_TCPIPGetConnectStatus, which returns a word indicating if the network is up.

If Marinetti is not yet connected to the network, the application may either make the connection itself by
making a _TCPIPConnect call, or issue a warning dialog indicating that the network is currently down.
The _TCPIPConnect call assumes that the user has set up Marinetti correctly using the TCP/IP CDev.

Obtaining an ipid

Once the network is up, the application may start making socket calls.

Each time you create a connection with a specific IP address and port number, no matter which protocol
you wish to use, a 16 bit integer, called an ipid, is allocated by Marinetti to reference it. The ipid may
then be used by your application to make requests to the connection, much like a GS/OS reference is used
to reference files. To assign an ipid, you use the _TCPIPLogin call.

_TCPIPLogin accepts a number of parameters, most notably the destination IP address and port
number, as well as a number of network performance variables. It returns the new ipid to you.

_TCPIPLogin also chooses a unique source port number, which can be examined using the
_TCPIPGetSourcePort call, and changed if necessary by calling _TCPIPSetSourcePort. If you
wish to change the source port, you must do so immediately after logging in, or network connections may
fail.

Marinetti 2.0 Programmers’ Guide Page 14

Opening a TCP connection

To open a TCP connection, call _TCPIPOpenTCP. This call accepts a single input, the ipid.

_TCPIPOpenTCP simply tells Marinetti to start initiation of a connection. Keep in mind that it may take
Marinetti some time to make the connection for you, depending on how busy the network is, and the speed
of both the link layer and the Apple IIGS it is running on.

The application then uses the _TCPIPStatusTCP call to check if the connection has been made. When
srState becomes tcpsESTABLISHED, you’re done. If the state goes to tcpsCLOSED, then the
connection failed.

Sending and receiving data

Once the TCP connection has been made, data may flow in either direction simultaneously, with Marinetti
doing all the work for you.

To send data, the application calls _TCPIPWriteTCP. This call simply copies the data into an internal
buffer, and initiates the send.

Again, the application must call _TCPIPStatusTCP to see when the data was transferred. When all the
buffers have been emptied, srSndQueued will be nil.

To receive data, the application calls _TCPIPReadTCP. This call attempts to fill the user supplied buffer
with data already received from the connection. The amount of data actually received is returned in
rrBuffCount.

If the receive buffer cannot be completely filled, then no data is returned, unless the push flag was set by
the sender.

_TCPIPReadTCP and _TCPIPReadLineTCP are the only TCP calls which immediately return with a
result. All other TCP calls simply initiate an action and return.

Closing a TCP connection

If the application wishes to close a TCP connection, it calls _TCPIPCloseTCP. The close is queued, and
won’t be initiated until all the data in the send buffer has been sent. Once the TCP connection has been
closed, _TCPIPStatusTCP will indicate an srState of tcpsCLOSED.

If the other end of the connection issues a close first, then _TCPIPStatusTCP will indicate a number of
varying close states. At this stage, the application may either make additional receive calls to empty out
the receive buffer, or it may issue a close of its own to force the connection to close. Once closed, again
the states will vary while the close is negotiated, and eventually the state will become tcpsTIMEWAIT.

The tcpsTIMEWAIT state will remain for quite a while, and is designed to let any lost segments expire
before letting this ipid open another connection. Once the time wait period has elapsed, the state
automatically becomes tcpsCLOSED.

Marinetti 2.0 Programmers’ Guide Page 15

In summary, both ends must issue direct close calls before the connection will close. If one end closes, the
other end is still free to receive data before it too closes the connection. Once in the tcpsCLOSED state,
all local data and control blocks have been purged.

Releasing an ipid

Once the application is finished with a particular destination IP address and port, it must call
_TCPIPLogout, to release the assigned ipid. You may only logout the ipid if the TCP connection is
in the tcpsTIMEWAIT or tcpsCLOSED state.

If the state is tcpsTIMEWAIT, the logout is queued for later, and actioned once Marinetti notices the
state becomes tcpsCLOSED. In this case, the ipid is no longer available until the socket is closed.

Disconnecting from the network

If the application made the original network connection, it may wish to disconnect from the network as
well. To do this, simply call _TCPIPDisconnect. In order to disconnect, every ipid must be logged
out.

How Marinetti obtains control

Marinetti depends on a number of administrative tasks running concurrently, such as handling
administrative duties and control of the underlying communications. To do this, it uses a RunQ entry.

However, if the RunQ is not active, because either it has been disabled, or the Event Manager has been
shut down, Marinetti will choke with a backlog of tasks and data. Data will still be received, however it
will not be actioned upon. To fix this, there is a call named _TCPIPPoll, which the application should
issue as often as possible. _TCPIPPoll checks the various pending Marinetti tasks and performs a set
number of iterations of each, so the more often _TCPIPPoll is called, the faster the system throughput.

The standard way of calling _TCPIPPoll, is to simply add one _TCPIPPoll call inside the
application’s main event loop, to be called when you receive a null event from the Event Manager (or
Task Master).

However, it is much easier to simply let the RunQ task do everything for you. In fact, you can even issue
_TCPIPPoll calls while the RunQ task is active, if you really wish to speed up throughput.

Finally, because different Apple IIGS systems have different speeds and loads, there are a number of
tuning parameters available using the _TCPIPGetTuningTable and _TCPIPSetTuningTable
calls.

Information on internet protocols (RFCs)

Protocol specifications are usually presented to the Internet public via RFCs, or Request For Comment
documents. These documents are numbered and may be found on the InterNIC mail server.

Marinetti 2.0 Programmers’ Guide Page 16

To retrieve an RFC, send an email message to:

mailserv@ds.internic.net

Before replacing the xxx with the number of the RFC you wish to retrieve, the content of your message
should read:

file /ftp/rfc/rfcxxx.txt

Alternatively, you could use one of the RFC HyperText Archives for search and retrieval, with all the
RFCs interlinked using HTML. I tend to use one of the mirror sites, such as the following:

http://sunsite.auc.dk/RFC/

Here is a list of current RFCs for a number of internet protocols. These are by no means all.

RFC977 NNTP Network News Transfer Protocol
RFC1939 POP3 Post Office Protocol - Version 3
RFC959 FTP File Transfer Protocol
RFC821 SMTP Simple Mail Transfer Protocol
RFC854 Telnet Protocol

Here are some of the Telnet negotiated option RFCs:

RFC856 Binary (8 bit)
RFC857 Echo
RFC858 Suppress go ahead
RFC859 Status
RFC860 Timing Mark
RFC1073 Window size
RFC1079 Terminal speed
RFC1091 Terminal type
RFC1184 Linemode
RFC1372 Remote flow control
RFC1408 Environment variables

Marinetti 2.0 Programmers’ Guide Page 17

Housekeeping tool calls

The following tool calls are mandatory tool locator calls.

TCPIPBootInit $0136

Initialises Marinetti.

▲ Warning This call must not be made by an application. ▲

Parameters

The stack is not affected by this call.

Errors None

BASIC SUB TCPIPBootInit

C extern pascal void TCPIPBootInit (void);

Pascal procedure TCPIPBootInit;

TCPIPStartUp $0236

Starts Marinetti for use by an application. This call must be made by the application before making any
other calls to Marinetti.

Parameters

The stack is not affected by this call.

Errors None

BASIC SUB TCPIPStartUp

C extern pascal void TCPIPStartUp (void);

Pascal procedure TCPIPStartUp;

Marinetti 2.0 Programmers’ Guide Page 18

TCPIPShutDown $0336

Shuts down Marinetti, once an application has finished with it.

Parameters

The stack is not affected by this call.

Errors None

BASIC SUB TCPIPShutDown

C extern pascal void TCPIPShutDown (void);

Pascal procedure TCPIPShutDown;

TCPIPVersion $0436

Returns the Marinetti version number. For Marinetti 2.0, the version returned is $0200.

Parameters

Stack before call

Previous contents

Space Word — Space for result

<— SP

Stack after call

Previous contents

versionInfo Word — Version information

<— SP

ErrorsNone.

BASIC FUNCTION TCPIPVersion as %

C extern pascal Word TCPIPVersion (void);

Pascal function TCPIPVersion: integer;

Marinetti 2.0 Programmers’ Guide Page 19

TCPIPReset $0536

Resets Marinetti.

▲ Warning This call must not be made by an application. ▲

Parameters

The stack is not affected by this call.

Errors None

BASIC SUB TCPIPReset

C extern pascal void TCPIPReset (void);

Pascal procedure TCPIPReset;

TCPIPStatus $0636

Returns a boolean flag indicating whether or not Marinetti is active.

Parameters

Stack before call

Previous contents

Space Word — Space for result

<— SP

Stack after call

Previous contents

activeFlag Word — Boolean; TRUE if Marinetti is active

<— SP

Errors None.

BASIC FUNCTION TCPIPStatus as %

C extern pascal Boolean TCPIPStatus (void);

Pascal function TCPIPStatus: boolean;

activeFlag The value returned is TRUE (non-zero) if Marinetti is active, and FALSE ($0000)
if it is not.

Marinetti 2.0 Programmers’ Guide Page 20

Marinetti 2.0 Programmers’ Guide Page 21

TCPIPLongVersion $0836

Returns the Marinetti rVersion number.

Parameters

Stack before call

Previous contents

— Space — Long — Space for result

<— SP

Stack after call

Previous contents

— rVersion — Long — rVersion

<— SP

Errors None.

BASIC FUNCTION TCPIPLongVersion as &

C extern pascal Long TCPIPLongVersion (void);

Pascal function TCPIPLongVersion: longint;

Marinetti 2.0 Programmers’ Guide Page 22

Administrative tool calls

The following calls deal with specific Marinetti administrative tasks.

TCPIPGetConnectStatus $0936

Asks Marinetti if it is currently connected to the network.

Parameters

Stack before call

Previous contents

Space Word — Space for result

<— SP

Stack after call

Previous contents

connectedFlag Word — Boolean; TRUE if currently connected

<— SP

Errors None.

BASIC FUNCTION TCPIPGetConnectStatus as %

C extern pascal Boolean TCPIPGetConnectStatus (void);

Pascal function TCPIPGetConnectStatus: boolean;

connectedFlag The value returned is TRUE (non-zero) if Marinetti is currently connected to the
network, and FALSE ($0000) if it is not.

Marinetti 2.0 Programmers’ Guide Page 23

TCPIPGetErrorTable $0A36

Returns a pointer to a list of longwords, Marinetti’s error table.

Parameters

Stack before call

Previous contents

— Space — Long — Space for result

<— SP

Stack after call

Previous contents

— errTablePtr — Long — Pointer to error table

<— SP

Errors None.

BASIC FUNCTION TCPIPGetErrorTable as errTablePtr

type errTable
 tcpDGMSTBLEN as long
 tcpDGMSTOTAL as long
 tcpDGMSFRAGSIN as long
 tcpDGMSFRAGSLOST as long
 tcpDGMSBUILT as long

 tcpDGMSOK as long

 tcpDGMSBADCHK as long
 tcpDGMSBADHEADLEN as long
 tcpDGMSBADPROTO as long
 tcpDGMSBADIP as long

 tcpDGMSICMP as long
 tcpDGMSICMPUSER as long
 tcpDGMSICMPKERNEL as long

 tcpDGMSICMPBAD as long
 tcpDGMSICMPBADTYPE as long
 tcpDGMSICMPBADCODE as long

Marinetti 2.0 Programmers’ Guide Page 24

 tcpDGMSICMPECHORQ as long
 tcpDGMSICMPECHORQOUT as long
 tcpDGMSICMPECHORP as long
 tcpDGMSICMPECHORPBADID as long

 tcpDGMSUDP as long
 tcpDGMSUDPBAD as long
 tcpDGMSUDPNOPORT as long

 tcpDGMSTCP as long
 tcpDGMSTCPBAD as long
 tcpDGMSTCPNOPORT as long
 tcpDGMSTCPQUEUED as long
 tcpDGMSTCPOLD as long

 tcpDGMSOFRAGMENTS as long
 tcpDGMSFRAGMENTED as long
end type
type errTablePtr as pointer to errTable

C extern pascal errTablePtr TCPIPGetErrorTable (void);

typedef struct {
 long tcpDGMSTBLEN;
 long tcpDGMSTOTAL;
 long tcpDGMSFRAGSIN;
 long tcpDGMSFRAGSLOST;
 long tcpDGMSBUILT;

 long tcpDGMSOK;

 long tcpDGMSBADCHK;
 long tcpDGMSBADHEADLEN;
 long tcpDGMSBADPROTO;
 long tcpDGMSBADIP;

 long tcpDGMSICMP;
 long tcpDGMSICMPUSER;
 long tcpDGMSICMPKERNEL;

 long tcpDGMSICMPBAD;
 long tcpDGMSICMPBADTYPE;
 long tcpDGMSICMPBADCODE;
 long tcpDGMSICMPECHORQ;
 long tcpDGMSICMPECHORQOUT;
 long tcpDGMSICMPECHORP;
 long tcpDGMSICMPECHORPBADID;

 long tcpDGMSUDP;
 long tcpDGMSUDPBAD;
 long tcpDGMSUDPNOPORT;

Marinetti 2.0 Programmers’ Guide Page 25

 long tcpDGMSTCP;
 long tcpDGMSTCPBAD;
 long tcpDGMSTCPNOPORT;
 long tcpDGMSTCPQUEUED;
 long tcpDGMSTCPOLD;

 long tcpDGMSOFRAGMENTS;
 long tcpDGMSFRAGMENTED;
 } errTable, *errTablePtr;

Pascal function TCPIPGetErrorTable: errTablePtr;

errTable = record
 tcpDGMSTBLEN: longint;
 tcpDGMSTOTAL: longint;
 tcpDGMSFRAGSIN: longint;
 tcpDGMSFRAGSLOST: longint;
 tcpDGMSBUILT: longint;

 tcpDGMSOK: longint;

 tcpDGMSBADCHK: longint;
 tcpDGMSBADHEADLEN: longint;
 tcpDGMSBADPROTO: longint;
 tcpDGMSBADIP: longint;

 tcpDGMSICMP: longint;
 tcpDGMSICMPUSER: longint;
 tcpDGMSICMPKERNEL: longint;

 tcpDGMSICMPBAD: longint;
 tcpDGMSICMPBADTYPE: longint;
 tcpDGMSICMPBADCODE: longint;
 tcpDGMSICMPECHORQ: longint;
 tcpDGMSICMPECHORQOUT: longint;
 tcpDGMSICMPECHORP: longint;
 tcpDGMSICMPECHORPBADID: longint;

 tcpDGMSUDP: longint;
 tcpDGMSUDPBAD: longint;
 tcpDGMSUDPNOPORT: longint;

 tcpDGMSTCP: longint;
 tcpDGMSTCPBAD: longint;
 tcpDGMSTCPNOPORT: longint;
 tcpDGMSTCPQUEUED: longint;
 tcpDGMSTCPOLD: longint;

 tcpDGMSOFRAGMENTS: longint;
 tcpDGMSFRAGMENTED: longint;
 end;
errTablePtr = ^errTable;

Marinetti 2.0 Programmers’ Guide Page 26

errTablePtr The value returned is a pointer to the error table. The error table is read only, and
is provided for reference only.

The currently defined error table offsets are:

tcpDGMSTBLEN +0000 The total length of the error table, in bytes, including
tcpDGMSTBLEN

tcpDGMSTOTAL +0004 Total datagrams received (good and bad)
tcpDGMSFRAGSIN +0008 Got a fragment (datagram is queued to frag list)
tcpDGMSFRAGSLOST +0012 Fragment purged after timeout in queue
tcpDGMSBUILT +0016 Built a datagram from fragments (is then queued)

tcpDGMSOK +0020 Datagrams queued from link or tcpDGMSBUILT

tcpDGMSBADCHK +0024 Bad IP checksum (datagram is purged)
tcpDGMSBADHEADLEN +0028 Bad IP header lengths (datagram is purged)
tcpDGMSBADPROTO +0032 Unsupported protocols (added to misc queue)
tcpDGMSBADIP +0036 Not my or loopback IP (datagram is purged)

tcpDGMSICMP +0040 ICMP total datagrams in (good and bad)
tcpDGMSICMPUSER +0044 ICMP user datagrams
tcpDGMSICMPKERNEL +0048 ICMP kernel datagrams
tcpDGMSICMPBAD +0052 ICMP bad checksum or datagram too short
tcpDGMSICMPBADTYPE +0056 ICMP bad ic_type
tcpDGMSICMPBADCODE +0060 ICMP bad ic_code
tcpDGMSICMPECHORQ +0064 ICMP ECHORQs in
tcpDGMSICMPECHORQOUT +0068 ICMP ECHORQ replies sent out
tcpDGMSICMPECHORP +0072 ICMP ECHORPs in
tcpDGMSICMPECHORPBADID +0076 ICMP ECHORPs unclaimed

tcpDGMSUDP +0080 UDPs OK (added to UDP queue)
tcpDGMSUDPBAD +0084 Bad UDP header (datagram is purged)
tcpDGMSUDPNOPORT +0088 No such logged in port (datagram is purged)

tcpDGMSTCP +0092 TCPs OK (returned to TCP main logic)
tcpDGMSTCPBAD +0096 Bad TCP header or checksum (datagram is purged)
tcpDGMSTCPNOPORT +0100 No such logged in port (datagram is purged)
tcpDGMSTCPQUEUED +0104 Arrived before required (datagram is queued)
tcpDGMSTCPOLD +0108 Already received this segment (datagram is purged)

tcpDGMSOFRAGMENTS +0112 Fragments transmitted
tcpDGMSFRAGMENTED +0116 Datagrams fragmented for transmission

Marinetti 2.0 Programmers’ Guide Page 27

TCPIPGetReconnectStatus $0B36

Asks Marinetti if there is enough information for it to dynamically reconnect to the network.

Parameters

Stack before call

Previous contents

Space Word — Space for result

<— SP

Stack after call

Previous contents

reconnectFlag Word — Boolean; TRUE if reconnect possible

<— SP

Errors None.

BASIC FUNCTION TCPIPGetReconnectStatus as %

C extern pascal Boolean TCPIPGetReconnectStatus (void);

Pascal function TCPIPGetReconnectStatus: boolean;

reconnectFlag The value returned is TRUE (non-zero) if Marinetti has enough information for it
to reconnect to the network, and FALSE ($0000) if it has not.

Marinetti 2.0 Programmers’ Guide Page 28

TCPIPReconnect $0C36

If the Apple IIGS crashes, or for whatever reason needs to be reboot, then Marinetti provides a reconnect
facility, so it can dynamically reconnect without having to re-dial or renegotiate the connection, depending
upon the connect method.

Reconnection assumes that there is enough internally saved information for Marinetti to reconnect (see the
TCPIPReconnectData $0B36 call), such as a modem or similar connection device still being
connected to the network, as well as Marinetti link management variables, which may have been saved to
disk before the crash.

Parameters

Stack before call

Previous contents

— displayPtr — Long — Pointer to message display routine

<— SP

Stack after call

Previous contents

<— SP

Errors terrLINKERROR There was an error with the link. In the case of the
built in serial ports, they may be in use by another
product or AppleTalk

terrCONNECTED Marinetti is already connected
terrNORECONDATA There is no reconnect data available to perform the

reconnect
terrLINKBUSY Modem or interface is busy
terrNOLINKINTERFACE No dial tone or similar
terrNOLINKRESPONSE No modem answer or similar

BASIC FUNCTION TCPIPReconnect as displayPtr

C extern pascal displayPtr TCPIPReconnect (void)

Pascal function TCPIPReconnect: displayPtr;

displayPtr This routine is called by Marinetti with various pstrings for display during the
reconnection process. The routine must be available to be called for the duration of
the TCPIPReconnect call. If you do not wish to display reconnection messages,
pass displayPtr as nil.

Marinetti 2.0 Programmers’ Guide Page 29

The routine is called in full native, with 16 bit accumulator and index registers.
The accumulator, index registers, data bank and direct page registers are undefined
on entry. The data bank and direct page registers must be restored on exit.The
pointer to the pstring is on the stack, and must be removed before returning.

uNOTE: Currently, for connections using the serial port, only a 19200 baud connection may be
reconnected to. This request was added mainly as a developer facility, and corners were cut to
provide it.

Marinetti 2.0 Programmers’ Guide Page 30

TCPIPGetMyIPAddress $0F36

Returns Marinetti’s IP address.

Parameters

Stack before call

Previous contents

— Space — Long — Space for result

<— SP

Stack after call

Previous contents

— ipaddress — Long — The IP address

<— SP

Errors terrNOCONNECTION Not currently connected

BASIC FUNCTION TCPIPGetMyIPAddress as &

C extern pascal Long TCPIPGetMyIPAddress (void);

Pascal function TCPIPGetMyIPAddress: longint;

Marinetti 2.0 Programmers’ Guide Page 31

TCPIPGetConnectMethod $1036

Returns the current method which Marinetti is using, or will use to connect to the network.

Parameters

Stack before call

Previous contents

Space Word — Space for result

<— SP

Stack after call

Previous contents

method Word — Current connect method

<— SP

Errors None.

BASIC FUNCTION TCPIPGetConnectMethod as %

C extern pascal Word TCPIPGetConnectionMethod (void);

Pascal function TCPIPGetConnectionMethod: integer;

Marinetti 2.0 Programmers’ Guide Page 32

TCPIPSetConnectMethod $1136

Tells Marinetti the default connect method to use.

Parameters

Stack before call

Previous contents

method Word — The new connect method

<— SP

Stack after call

Previous contents

<— SP

Errors terrCONNECTED Marinetti is already connected

BASIC SUB TCPIPSetConnectMethod (%)

C extern pascal void TCPIPSetConnectionMethod (Word);

Pascal procedure TCPIPSetConnectionMethod (method: integer);

Marinetti 2.0 Programmers’ Guide Page 33

TCPIPConnect $1236

Tells Marinetti to connect to the network, using the current connect method.

Parameters

Stack before call

Previous contents

— displayPtr — Long — Pointer to message display routine

<— SP

Stack after call

Previous contents

<— SP

Errors terrSCRIPTFAILED The connect script failed
terrLINKERROR There was an error with the link. In the case of the

built in serial ports, they may be in use by another
product or AppleTalk

terrCONNECTED Marinetti is already connected
terrNOLINKLAYER Unable to load link layer module for the selected

connect method
terrBADLINKLAYER Not a link layer module
terrUSERABORTED The user aborted the connect
terrLINKBUSY Modem or interface is busy
terrNOLINKINTERFACE No dial tone or similar
terrNOLINKRESPONSE No modem answer or similar

BASIC FUNCTION TCPIPConnect as displayPtr

C extern pascal displayPtr TCPIPConnect (void);

Pascal function TCPIPConnect: displayPtr;

displayPtr This routine is called by Marinetti with various pstrings for display during the
connection process. The routine must be available to be called for the duration of
the TCPIPConnect call. If you do not wish to display connection messages, pass
displayPtr as nil.

The routine is called in full native, with 16 bit accumulator and index registers.
The accumulator, index registers, data bank and direct page registers are undefined
on entry. The data bank and direct page registers must be restored on exit.The
pointer to the pstring is on the stack, and must be removed before returning.

Marinetti 2.0 Programmers’ Guide Page 34

Marinetti 2.0 Programmers’ Guide Page 35

TCPIPDisconnect $1336

Tells Marinetti to disconnect from the network.

Parameters

Stack before call

Previous contents

forceFlag Word — Boolean

— displayPtr — Long — Pointer to message display routine

<— SP

Stack after call

Previous contents

<— SP

Errors terrSCRIPTFAILED The connect script failed
terrLINKERROR There was an error with the link. In the case of the

built in serial ports, they may be in use by another
product or AppleTalk

terrNOCONNECTION Not currently connected
terrLOGINSPENDING There are still ipids logged in
terrUSERABORTED The user aborted the disconnect
terrLINKBUSY Modem or interface is busy
terrNOLINKINTERFACE No dial tone or similar
terrNOLINKRESPONSE No modem answer or similar

BASIC SUB TCPIPDisconnect (%, displayPtr)

C extern pascal void TCPIPDisconnect (Boolean,
displayPtr);

Pascal procedure TCPIPDisconnect (forceFlag: boolean; dPtr:
displayPtr);

forceFlag Ordinarily, the TCPIPDisconnect call will not disconnect unless every ipid
has been logged out. This is so as not to interrupt network tasks waiting to be
serviced. Remember, there may be more than one application running at a time, as
well as NDAs and CDAs, which may be using the network as well. However, if
the user knows that the pending ipids are either hung or can be forced, set this
flag to true and TCPIPDisconnect will forceably disconnect from the
network.

Marinetti 2.0 Programmers’ Guide Page 36

Normal procedure would be to issue TCPIPDisconnect with forceFlag set
to false. If a terrLOGINSPENDING error is returned, double check which
ipids are still logged in, or ask the user if they wish to continue, then if all is OK,
issue TCPIPDisconnect again with forceFlag set to true.

displayPtr This routine is called by Marinetti with various pstrings for display during the
disconnection process. The routine must be available to be called for the duration
of the TCPIPDisconnect call. If you do not wish to display disconnection
messages, pass displayPtr as nil.

The routine is called in full native, with 16 bit accumulator and index registers.
The accumulator, index registers, data bank and direct page registers are undefined
on entry. The data bank and direct page registers must be restored on exit.The
pointer to the pstring is on the stack, and must be removed before returning.

Marinetti 2.0 Programmers’ Guide Page 37

TCPIPGetMTU $1436

Returns the current MTU (Maximum Transmission Unit), or the maximum IP datagram size. This value is
set by the link layer module once it knows the host MRU (Maximum Receive Unit) size.

Parameters

Stack before call

Previous contents

Space Word — Space for result

<— SP

Stack after call

Previous contents

mtu Word — Maximum Transmission Unit size

<— SP

Errors None.

BASIC FUNCTION TCPIPGetMTU as %

C extern pascal Word TCPIPGetMTU (void);

Pascal function TCPIPGetMTU: integer;

Marinetti 2.0 Programmers’ Guide Page 38

TCPIPGetConnectData $1636

Returns the connect data for the specified connect method.

Parameters

Stack before call

Previous contents

— Space — Long — Space for result

userid Word — userID to use with NewHandle

method Word — Connect method to return

<— SP

Stack after call

Previous contents

— conHandle — Long — Handle to the connect data

<— SP

Errors None.

BASIC FUNCTION TCPIPGetConnectData (%, %) as conHandle

C extern pascal conHandle TCPIPGetConnectData (Word,
Word);

Pascal function TCPIPGetConnectData (userid: integer; method:
integer): conHandle;

conHandle The returned handle is now owned by the userid which was passed from
dataIn. Marinetti no longer owns or keeps track of this handle.

Marinetti 2.0 Programmers’ Guide Page 39

TCPIPSetConnectData $1736

Passes Marinetti the connect data for the specified connect method.

Parameters

Stack before call

Previous contents

method Word — Connect method of connect data to set

— conHandle — Long — Handle to the connect data

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC SUB TCPIPSetConnectData (%, conHandle)

C extern pascal void TCPIPSetConnectData (Word,
conHandle);

Pascal procedure TCPIPSetConnectData (method: integer; cHand:
conHandle);

conHandle Handle containing the connect data

Once passed, the handle is owned by Marinetti and you must not perform any
more actions on it.

Marinetti 2.0 Programmers’ Guide Page 40

TCPIPGetDisconnectData $1836

Returns the disconnect data for the specified connect method.

Parameters

Stack before call

Previous contents

— Space — Long — Space for result

userid Word — userID to use with NewHandle

method Word — Connect method to get

<— SP

Stack after call

Previous contents

— disconHandle — Long — Handle to the disconnect data

<— SP

Errors None.

BASIC FUNCTION TCPIPGetDisconnectData (%, %) as disconHandle

C extern pascal disconHandle TCPIPGetDisconnectData
(Word, Word);

Pascal function TCPIPGetDisconnectData (userid: integer;
method: integer): disconHandle;

disconHandle The returned handle is now owned by the userid which was passed from
dataIn. Marinetti no longer owns or keeps track of this handle.

Marinetti 2.0 Programmers’ Guide Page 41

TCPIPSetDisconnectData $1936

Passes Marinetti the disconnect data for the specified disconnect method.

Parameters

Stack before call

Previous contents

method Word — Connect method of disconnect data to set

— disconHandle — Long — Handle to the disconnect data

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC SUB TCPIPSetDisconnectData (%, disconHandle)

C extern pascal void TCPIPSetDisconnectData (Word,
disconHandle);

Pascal procedure TCPIPSetDisconnectData (userid: integer;
dHand: disconHandle);

disconHandle Handle containing the disconnect data.

Once passed, the handle is owned by Marinetti and you must not perform any
more actions on it.

Marinetti 2.0 Programmers’ Guide Page 42

TCPIPLoadPreferences $1A36

Loads the default preferences from disk.

Parameters

The stack is not affected by this call.

Errors None

BASIC SUB TCPIPLoadPreferences

C extern pascal void TCPIPLoadPreferences (void);

Pascal procedure TCPIPLoadPreferences;

TCPIPSavePreferences $1B36

Saves the default preferences to disk. If you wish to make a changes to preferences permanent, you must
make this call.

Parameters

The stack is not affected by this call.

Errors None

BASIC SUB TCPIPSavePreferences

C extern pascal void TCPIPSavePreferences (void);

Pascal procedure TCPIPSavePreferences;

Marinetti 2.0 Programmers’ Guide Page 43

TCPIPGetTuningTable $1E36

Returns the current tuning table.

Parameters

Stack before call

Previous contents

— tunePtr — Long — Pointer to 10 byte buffer for tuning table

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC FUNCTION TCPIPGetTuningTAble as tunePtr

type tuneRecord
 tcpTUNECOUNT as integer
 tcpTUNEIPUSERPOLLCT as integer
 tcpTUNEIPRUNQFREQ as integer
 tcpTUNEIPRUNQCT as integer
 tcpTUNETCPUSERPOLL as integer
end type
type tunePtr as pointer to tuneRecord

C extern pascal tunePtr TCPIPGetTuningTable (void);

typedef struct {
 Word tcpTUNECOUNT;
 Word tcpTUNEIPUSERPOLLCT;
 Word tcpTUNEIPRUNQFREQ;
 Word tcpTUNEIPRUNQCT;
 Word tcpTUNETCPUSERPOLL;
 } tuneStruct, *tunePtr;

Pascal function TCPIPGetTuningTable: tunePtr;

tuneRecord = record
 tcpTUNECOUNT: integer;
 tcpTUNEIPUSERPOLLCT: integer;
 tcpTUNEIPRUNQFREQ: integer;

Marinetti 2.0 Programmers’ Guide Page 44

 tcpTUNEIPRUNQCT: integer;
 tcpTUNETCPUSERPOLL: integer;
 end;
tunePtr = ^tuneRecord;

tunePtr Points to a 10 byte buffer where the tuning table is to be returned.

The currently defined tuning table offsets are:

tcpTUNECOUNT +0000 The total length of the tuning table, in bytes, including
tcpTUNECOUNT. Currently 10.

tcpTUNEIPUSERPOLLCT +0002 The number of datagrams Marinetti will build per
TCPIPPoll request. The valid range is 1 through 10
inclusive. The default is 2.

tcpTUNEIPRUNQFREQ +0004 The RunQ frequency value (60ths of a second). The default is
30 (half a second).

tcpTUNEIPRUNQCT +0006 The number of datagrams Marinetti will build per RunQ
dispatch. The valid range is 1 through 10 inclusive. The
default is 2.

tcpTUNETCPUSERPOLL +0008 The TCP steps to perform per user, per TCPIPPoll request
and RunQ dispatch. The valid range is 1 through 10 inclusive.
The default is 2.

Marinetti 2.0 Programmers’ Guide Page 45

TCPIPSetTuningTable $1F36

Replaces the current tuning table.

Parameters

Stack before call

Previous contents

— tunePtr — Long — Pointer to new tuning table

<— SP

Stack after call

Previous contents

<— SP

Errors terrBADTUNETABLELEN Tune table length in Marinetti 2.0 must be 10

BASIC SUB TCPIPSetTuningTAble (tunePtr)

C extern pascal void TCPIPSetTuningTAble (tunePtr);

Pascal procedure TCPIPSetTuningTable (tPtr: tunePtr);

tunePtr Points to a new tuning table, which Marinetti will copy into its internal tuning
table.

Marinetti 2.0 Programmers’ Guide Page 46

TCPIPGetConnectMsgFlag $4236

Returns the connect message flag, which tells the link layer module whether or not to display connect
messages.

Parameters

Stack before call

Previous contents

Space Word — Space for result

<— SP

Stack after call

Previous contents

conMsgFlag Word — Boolean

<— SP

Errors None.

BASIC FUNCTION TCPIPGetConnectMsgFlag as %

C extern pascal Boolean TCPIPGetConnectMsgFlag (void);

Pascal function TCPIPGetConnectMsgFlag: boolean;

conMsgFlag The value returned is TRUE (non-zero) if link layer modules are to display
connect messages, and FALSE ($0000) if they are not.

Marinetti 2.0 Programmers’ Guide Page 47

TCPIPSetConnectMsgFlag $4336

Tells Marinetti to tell link layer modules whether or not to display connect messages.

Parameters

Stack before call

Previous contents

conMsgFlag Word — Boolean

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC SUB TCPIPSetConnectMsgFlag (%)

C extern pascal void TCPIPSetConnectMsgFlag (Boolean);

Pascal procedure TCPIPSetConnectMsgFlag (flag: boolean);

conMsgFlag The value is TRUE (non-zero) if link layer modules are to display connect
messages, and FALSE ($0000) if they are not.

Marinetti 2.0 Programmers’ Guide Page 48

TCPIPGetUsername $4436

Returns the current username.

Parameters

Stack before call

Previous contents

— unBuffPtr — Long — Pointer to 51 byte response buffer

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC FUNCTION TCPIPGetUsername as usernamePtr

C extern pascal usernamePtr TCPIPGetUsername (void)

Pascal function TCPIPGetUsername: usernamePtr;

unBuffPtr Pointer to a 51 byte response buffer, for the returned username pstring.

Marinetti 2.0 Programmers’ Guide Page 49

TCPIPSetUsername $4536

Sets the current username.

Parameters

Stack before call

Previous contents

— usernamePtr — Long — Pointer to username pstring

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC SUB TCPIPSetUsername (usernamePtr)

C extern pascal void TCPIPSetUsername (usernamePtr);

Pascal procedure TCPIPSetUsername (name: usernamePtr);

usernamePtr Usernames may contain a maximum of 50 characters.

Marinetti 2.0 Programmers’ Guide Page 50

TCPIPGetPassword $4636

Returns the user’s current password.

Parameters

Stack before call

Previous contents

— pwBuffPtr — Long — Pointer to 51 byte response buffer

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC FUNCTION TCPIPGetPassword as passwordPtr

type password
 length as byte
 name(49) as char
end type
type passwordPtr as pointer to password

C extern pascal passwordPtr TCPIPGetPassword (void)

typedef struct {
 Byte length;
 char name[50];
 } password, *passwordPtr;

Pascal function TCPIPGetPassword: passwordPtr;

password = string[50];
passwordPtr = ^password;

pwBuffPtr Pointer to a 51 byte response buffer, for the returned password pstring.

Marinetti 2.0 Programmers’ Guide Page 51

TCPIPSetPassword $4736

Sets the user’s password.

Parameters

Stack before call

Previous contents

— passwordPtr — Long — Pointer to password pstring

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC SUB TCPIPSetPassword (passwordPtr)

C extern pascal void TCPIPSetPassword (passwordPtr);

Pascal procedure TCPIPSetPassword (name: passwordPtr);

passwordPtr Passwords may contain a maximum of 50 characters.

Marinetti 2.0 Programmers’ Guide Page 52

TCPIPGetLinkVariables $4A36

Returns a pointer to the variables maintained by the current link layer module.

Parameters

Stack before call

Previous contents

— Space — Long — Space for result

<— SP

Stack after call

Previous contents

— variablesPtr — Long — Pointer to variables

<— SP

Errors terrNOCONNECTION Not currently connected

BASIC FUNCTION TCPIPGetLinkVariables as variablesPtr

type variablesRecord
 inwLength as integer
 inwIP as long
 inwMethod as integer
 inwMTU as integer
 inwLVPtr as long
end type
type variablesPtr as pointer to variablesRecord

C extern pascal variablesPtr TCPIPGetLinkVariables
(void);

typedef struct {
 Word inwLength;
 Long inwIP;
 Word inwMethod;
 Word inwMTU;
 Long inwLVPtr;
 } variablesStruct, *variablesPtr;

Pascal function TCPIPGetLinkVariables: variablesPtr;

Marinetti 2.0 Programmers’ Guide Page 53

variablesRecord = record
 inwLength: integer;
 inwIP: longint;
 inwMethod: integer;
 inwMTU: integer;
 inwLVPtr: longint;
 end;
variablesPtr = ^variablesRecord;

variablePtr Points to the variables maintained by the current link layer module. The layout of
the variables is described in the LinkGetVariables link layer module call.

Marinetti 2.0 Programmers’ Guide Page 54

TCPIPEditLinkConfig $4B36

Presents a window allowing the user to edit configuration parameters required by the link layer module.
This call is currently only made by the Control Panel, but may be made by other applications which may
wish to control Marinetti’s setup.

Parameters

Stack before call

Previous contents

— connectHandle — Long — Handle to connect data

— disconnectHandle — Long — Handle to disconnect data

<— SP

Stack after call

Previous contents

<— SP

Errors terrNOLINKLAYER Unable to load link layer module for the selected
connect method

terrBADLINKLAYER Not a link layer module
terrBADENVIRONMENT Either the desktop is not currently displayed, or the

correct tools are not started.

BASIC SUB TCPIPEditLinkConfig (Handle, Handle)

C extern pascal void TCPIPEditLinkConfig (Handle,
Handle);

Pascal procedure TCPIPEditLinkConfig (connectHand: handle;
disconnectHAnd: handle);

This call passes two handles, containing the connect and disconnect data respectively. When the call
returns, the same handles will contain the alterned data.

This call must be made while the desktop is displayed, as the code which presents the data to the user
depends on certain tool sets to be already started. The complete list may found in the description of the
LinkConfigure link layer module call later in this document.

Marinetti 2.0 Programmers’ Guide Page 55

TCPIPGetModuleNames $4C36

Returns a pointer to an array of linkInfoBlk records, indicating which link layer modules are
available for use.

Parameters

Stack before call

Previous contents

— Space — Long — Space for result

<— SP

Stack after call

Previous contents

— moduleListPtr — Long — Pointer to module name list

<— SP

Errors None.

BASIC FUNCTION TCPIPGetModuleNames as moduleListPtr

type module
 liMethodID as integer
 liName(20) as byte
 liVersion as long
 liFlags as integer
 liFilename(16) as byte
 liMenuItem(14) as byte
end type
type moduleListPtr as pointer to module

C extern pascal void TCPIPGetModuleNames (ModuleListPtr);

typedef struct {
 Word liMethodID;
 char liName[21];
 Long liVersion;
 Word liFlags;
 char liFilename[16];
 Byte liMenuItem[14];
 } module, (*moduleListPtr)[];

Marinetti 2.0 Programmers’ Guide Page 56

Pascal function TCPIPGetModuleNames: moduleListPtr;

module = record
 liMethodID: integer;
 liName: string[20];
 liVersion: longint;
 liFlags: integer;
 liFilename: string[15];
 liMenuItem: array[0..13] of byte;
 end;
moduleList = array[0..99] of module;
moduleListPtr = ^moduleList;

moduleListPtr Points to an array of 64 byte extended linkInfoBlk records. The list is
terminated by a nil word. Each record is defined as follows:

+00 liMethodID word The connect method. See the conXXX
equates at the end of this document

+02 liName 21 bytes Pstring name of the module
+23 liVersion longword rVersion (type $8029 resource layout) of

the module
+27 liFlags word Contains the following flags:

bit15 This link layer uses the built in Apple IIGS serial ports
bits14-0 Reserved – set to zeros

+29 liFilename 16 bytes Pstring filename of the module
+45 liMenuItem 14 bytes rMenuItem template ready for use,

which defines this connect method as a
menu item

uNOTE: The link layer module call LinkModuleInfo also refers to a linkInfoBlk, but with less
entries in it. This is because Marinetti fills in the rest of the information itself before returning
the records in the TCPIPGetModuleNames call.

Marinetti 2.0 Programmers’ Guide Page 57

TCPIPGetHostName $5136

Returns the current host name.

Parameters

Stack before call

Previous contents

— hnBuffPtr — Long — Pointer to 31 byte response buffer

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC FUNCTION TCPIPGetHostName as hostNamePtr

type hostName
 length as byte
 name(29) as byte
end type
type hostNamePtr as pointer to hostName

C extern pascal hostNamePtr TCPIPGetHostName (void);

typedef struct {
 Byte length;
 char name[50];
 } hostName, *hostNamePtr;

Pascal function TCPIPGetHostName: hostNamePtr;

hostName = string[30];
hostNamePtr = ^hostName;

hnBuffPtr Pointer to a 31 byte response buffer, for the returned host name pstring.

uNOTE: The host name is not actually used for anything, but is provided for ease of porting of BSD
applications. The default is is set to "appleiigs" if no previous host name has been set.

Marinetti 2.0 Programmers’ Guide Page 58

TCPIPSetHostName $5236

Sets the current host name.

Parameters

Stack before call

Previous contents

— hostNamePtr — Long — Pointer to host name pstring

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC SUB TCPIPSetHostName (hostNamePtr)

C extern pascal void TCPIPSetHostName (hostNamePtr);

Pascal procedure TCPIPSetHostName (hPtr: hostNamePtr);

hostNamePtr Host names may contain a maximum of 30 characters.

uNOTE: The host name is not actually used for anything, but is provided for ease of porting of BSD
applications. The default is is set to "appleiigs" if no previous host name has been set.

Marinetti 2.0 Programmers’ Guide Page 59

TCPIPGetLinkLayer $5436

Returns information about the module.

Parameters

Stack before call

Previous contents

— linkInfoBlkPtr — Long — Pointer to buffer for response

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC FUNCTION TCPIPGetLinkLayer as linkInfoBlkPtr

type linkInfoBlk
 liMethodID as integer
 liName(20) as byte
 liVersion as long
 liFlags as integer
end type
type linkInfoBlkPtr as pointer to linkInfoBlk

C extern pascal linkInfoBlkPtr TCPIPGetLinkLayer (void);

typedef struct {
 Word liMethodID;
 char liName[21];
 Long liVersion;
 Word liFlags;
 } linkInfoBlk, *linkInfoBlkPtr;

Pascal function TCPIPGetLinkLayer: linkInfoBlkPtr;

linkInfoBlk = record
 liMethodID: integer;
 liName: string[20];
 liVersion: longint;
 liFlags: integer;
 end;

Marinetti 2.0 Programmers’ Guide Page 60

linkInfoBlkPtr = ^linkInfoBlk;

linkInfoBlkPtr Points to a fixed length 27 byte response buffer as follows:

+00 liMethodID word The connect method. New modules will
need to apply to the author for a unique ID
to use. See conXXX equates for details of
already defined values

+02 liName 21 bytes Pstring name of the module
+23 liVersion longword rVersion (type $8029 resource layout) of

the module
+27 liFlags word Contains the following flags:

bit15 This link layer uses the built in Apple IIGS serial ports
bits14-1 Reserved – set to zeros
bit0 Indicates whether the module contains an rIcon resource

Marinetti 2.0 Programmers’ Guide Page 61

TCPIPGetAuthMessage $5736

Returns the authentication message returned from the link layer module during connection.

Parameters

Stack before call

Previous contents

— Space — Long — Space for result

userid Word — userID for Marinetti to use with NewHandle

<— SP

Stack after call

Previous contents

— authMsgHandle — Long — Handle containing authentication message

<— SP

Errors None.

BASIC FUNCTION TCPIPGetAuthMessage (%) as handle

C extern pascal handle TCPIPGetAuthMessage (Word);

Pascal function TCPIPGetAuthMessage (userID: integer):
handle;

authMsgHandle If the current link layer supports authentication messages, then this handle will
contain the ASCII text of the message sent by the host, else it will be empty. Either
way, the handle belongs to the userid passed on the stack. The message may be for
a successful or unsuccessful connection, and varies depending on the host system
being used. It will always be less than 256 characters in length.

Marinetti 2.0 Programmers’ Guide Page 62

TCPIPGetAliveFlag $5A36

Returns the alive flag, which tells Marinetti whether to automatically keep the link alive.

Parameters

Stack before call

Previous contents

Space Word — Space for result

<— SP

Stack after call

Previous contents

aliveFlag Word — Boolean

<— SP

Errors None.

BASIC FUNCTION TCPIPGetAliveFlag as %

C extern pascal Boolean TCPIPGetAliveFlag (void);

Pascal function TCPIPGetAliveFlag: boolean;

aliveFlag The value returned is TRUE (non-zero) if Marinetti is to automatically keep the
link alive, and FALSE ($0000) if it is not.

Marinetti 2.0 Programmers’ Guide Page 63

TCPIPSetAliveFlag $5B36

Tells Marinetti whether to automatically keep the link alive.

Parameters

Stack before call

Previous contents

aliveFlag Word — Boolean

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC SUB TCPIPSetAliveFlag (%)

C extern pascal void TCPIPSetAliveFlag (Boolean);

Pascal procedure TCPIPSetAliveFlag (alive: boolean);

aliveFlag The value is TRUE (non-zero) if Marinetti is to automatically keep the link alive,
and FALSE ($0000) if it is not.

Marinetti 2.0 Programmers’ Guide Page 64

TCPIPGetAliveMinutes $5C36

Returns how often Marinetti should present traffic to the network in an attempt to stop it disconnecting
due to inactivity. The aliveFlag must be set to true to support this feature.

Parameters

Stack before call

Previous contents

Space Word — Space for result

<— SP

Stack after call

Previous contents

aliveMinutes Word — Boolean

<— SP

Errors None.

BASIC FUNCTION TCPIPGetAliveMinutes as %

C extern pascal Word TCPIPGetAliveMinutes (void);

Pascal function TCPIPGetAliveMinutes: integer;

aliveMinutes The number of minutes between network checks. A value of zero also forces
aliveFlag to false.

Marinetti 2.0 Programmers’ Guide Page 65

TCPIPSetAliveMinutes $5D36

Tells Marinetti how often to present traffic to the network in an attempt to stop it disconnecting due to
inactivity. The aliveFlag must be set to true to support this feature.

Parameters

Stack before call

Previous contents

aliveMinutes Word — Boolean

<— SP

Stack after call

Previous contents

<— SP

Errors terrBADALIVEMINUTES Minutes value is invalid

BASIC SUB TCPIPSetAliveMinutes (%)

C extern pascal void TCPIPSetAliveMinutes (Word);

Pascal procedure TCPIPSetAliveMinutes (aliveMinutes: integer);

aliveMinutes A number from 1 to 999, indicating the number of minutes between network
checks.

Marinetti 2.0 Programmers’ Guide Page 66

TCPIPGetBootConnectFlag $5F36

Returns the boot connect flag, which tells Marinetti whether to automatically connect to the network each
time GS/OS is booted.

Parameters

Stack before call

Previous contents

Space Word — Space for result

<— SP

Stack after call

Previous contents

bootConnectFlag Word — Boolean

<— SP

Errors None.

BASIC FUNCTION TCPIPGetBootConnectFlag as %

C extern pascal Boolean; TCPIPGetBootConnectFlag (void);

Pascal function TCPIPGetBootConnectFlag: boolean;

bootConnectFlag The value returned is TRUE (non-zero) if Marinetti is to automatically connect to
the network, and FALSE ($0000) if it is not.

Marinetti 2.0 Programmers’ Guide Page 67

TCPIPSetBootConnectFlag $6036

Tells Marinetti whether to automatically connect to the network each time GS/OS is booted.

Parameters

Stack before call

Previous contents

bootConnectFlag Word — Boolean

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC SUB TCPIPSetBootConnectFlag (%)

C extern pascal void TCPIPSetBootConnectFlag (Boolean);

Pascal procedure TCPIPSetBootConnectFlag (bootConnect:
boolean);

bootConnectFlag The value is TRUE (non-zero) if Marinetti is to automatically connect to the
network, and FALSE ($0000) if it is not.

Marinetti 2.0 Programmers’ Guide Page 68

Domain Name Resolution

Domain names are what most people traditionally think of when giving an address for a machine on an
internet. The problem is that the internet protocol requires you to address the machines with a numeric IP
address rather than a domain name. Your machine is responsible for looking up the numeric IP address of
the machine it wants to talk to before it can do so.

Domain names are purely administrative data, contained within a database on a server somewhere on the
network, which applications must refer to when converting to and from the actual numeric IP addresses
required by the network. Obviously Marinetti must start with a numeric IP address somewhere, and this is
provided by calling TCPIPSetDNS with the numeric IP addresses of Domain Name Servers on the
network you wish to use. Fields for this information are also provided in the CDev, and are saved with the
preferences.

Once Marinetti knows which Domain Name Servers to use, the application may start converting domain
names to numeric IP addresses by calling TCPIPDNRNameToIP.

Because the information for conversion is kept elsewhere on the network, looking up a domain name is
not instantaneous, and the application may do other things while it is waiting for an answer. Therefore,
making a TCPIPDNRNameToIP call initiates a request, and won't necessarily immediately return an
answer. You can do whatever you want while you wait for a reply, just make sure you’re either calling
SystemTask (or TaskMaster) or TCPIPPoll every so often, to allow the resolver to do its job.

Once the call has been made, check the return buffer every so often. While the call is pending, the initial
word, or DNR status code, will be set to DNR_Pending. Once the call has completed, this will change to
something else, and if successful, your answer will have been returned.

Marinetti 2.0 Programmers’ Guide Page 69

TCPIPGetDNS $1C36

Returns the IP addresses of the main and auxiliary Domain Name Servers.

Parameters

Stack before call

Previous contents

— DNSRecPtr — Long — Pointer to response record

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC FUNCTION TCPIPGetDNS as DNSRecPtr

type DNSRec
 DNSMain as long
 DNSAux as long
end type
type DNSRecPtr as pointer to DNSRec

C extern pascal DNSRecPtr TCPIPGetDNS (void);

typedef struct {
 Long DNSMain;
 Long DNSAux;
 } DNSRec, *DNSRecPtr;

Pascal function TCPIPGetDNS: DNSRecPtr;

DNSRec = record
 DNSMain: longint;
 DNSAux: longint;
 end;
DNSRecPtr = ^DNSRec;

DNSRecPtr Points to the response record. The layout is as follows:

+00 DNSMain longword Main DNS IP address
+04 DNSAux longword Auxiliary DNS IP address

Marinetti 2.0 Programmers’ Guide Page 70

Marinetti 2.0 Programmers’ Guide Page 71

TCPIPSetDNS $1D36

Sets the IP addresses of the main and secondary Domain Name Servers.

Parameters

Stack before call

Previous contents

— DNSRecPtr — Long — Pointer to response record

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC SUB TCPIPSetDNS (DNSRecPtr)

C extern pascal void TCPIPSetDNS (DNSRecPtr);

Pascal procedure TCPIPSetDNS (DNS: DNSRecPtr);

DNSRecPtr Points to the desired DNS record. The layout is as follows:

+00 DNSMain longword Main DNS IP address
+04 DNSAux longword Auxilliary DNS IP address

Marinetti 2.0 Programmers’ Guide Page 72

TCPIPCancelDNR $2036

Cancels a pending request to the Domain Name Servers.

Parameters

Stack before call

Previous contents

— dnrBufferPtr — Long — Pointer to return buffer

<— SP

Stack after call

Previous contents

<— SP

Errors terrNODNRPENDING No such entry in DNR list
terrDNRBUSY DNR is currently busy - try again later

BASIC SUB TCPIPCancelDNR (DNRBufferPtr)

C extern pascal void TCPIPCancelDNR (dnrBufferPtr);

Pascal procedure TCPIPCancelDNR (dnr: dnrBufferPtr);

dnrBufferPtr The pointer to the return buffer indicates which request to cancel.

Marinetti 2.0 Programmers’ Guide Page 73

TCPIPDNRNameToIP $2136

Initiates a request to the Domain Name Servers, via Marinetti’s Domain Name Resolver, to look up an
ASCII domain name and return it as a numeric IP address.

Parameters

Stack before call

Previous contents

— nameptr — Long — Pointer to pstring domain name to look up

— dnrBufferPtr — Long — Pointer to return buffer

<— SP

Stack after call

Previous contents

<— SP

Errors terrNODNSERVERS No servers registered with Marinetti
terrDNRBUSY DNR is currently busy - try again later

BASIC SUB TCPIPDNRNameToIP (pStringPtr, DNRBufferPtr)

type dnrBuffer
 DNRstatus as integer
 DNRIPaddress as long
end type
type dnrBufferPtr as pointer to dnrBuffer

C extern pascal void TCPIPDNRNameToIP (char *,
dnrBufferPtr);

typedef struct {
 Word DNRstatus;
 Long DNRIPaddress;
 } dnrBuffer, *dnrBufferPtr;

Pascal procedure TCPIPDNRNameToIP (name: pstring; dnr:
dnrBufferPtr);

dnrBuffer = record
 DNRstatus: integer;
 DNRIPaddress: longint;

Marinetti 2.0 Programmers’ Guide Page 74

 end;
dnrBufferPtr = ^dnrBuffer;

dnrBufferPtr Points to the following DNR return buffer:

+00 DNRstatus word Current status of DNR for this request
+02 DNRIPaddress longword Returned IP address

The DNRstatus codes are as follows:

DNR_Pending $0000 Request is still being processed
DNR_OK $0001 Your request completed successfully, and

dnrBuffer contains the requested data
DNR_Failed $0002 The request failed. Either the connection

timed out, or some other network error
DNR_NoDNSEntry $0003 Requested domain has no DNS entry
DNR_Cancelled $0004 Cancelled by user

Marinetti 2.0 Programmers’ Guide Page 75

IP network tool calls

These calls provide access to network layer functions

TCPIPPoll $2236

Tells Marinetti to execute a set number of steps in all its pending tasks. See TCPIPGetTuneTable for
more details.

Parameters

The stack is not affected by this call.

Errors None

BASIC SUB TCPIPPoll

C extern pascal void TCPIPPoll (void);

Pascal procedure TCPIPPoll;

Marinetti 2.0 Programmers’ Guide Page 76

TCPIPSendIPDatagram $4036

Sends a raw IP datagram across the network.

Parameters

Stack before call

Previous contents

— datagramPtr — Long — Pointer to the datagram to send

<— SP

Stack after call

Previous contents

<— SP

Errors terrNOCONNECTION Not currently connected to the network

BASIC SUB TCPIPSendIPDatagram (datagramPtr)

C extern pascal void TCPIPSendIPDatagram (datagramPtr);

Pascal procedure TCPIPSendIPDatagram (dPtr: datagramPtr);

This call assumes that the IP header has been formatted correctly with the appropriate length indicators,
and uses this to determine the checksum and final datagram length. While the destination address must be
embedded in the header, Marinetti will copy in its current IP address for you.

Marinetti 2.0 Programmers’ Guide Page 77

Network and Transport layer tool calls

These calls provide access to protocol functions of the network and transport layers, excluding TCP,
which is described in its own section.

Most requests involve using an ipid, which is assigned when you login to Marinetti.

You may only make one connection of each type, such as TCP or UDP, per ipid.

TCPIPLogin $2336

This is the initial login for a task, telling Marinetti the network destination, and IP management
parameters. In return, Marinetti assigns a source port number, and returns you an ipid to use with
subsequent calls.

Parameters

Stack before call

Previous contents

Space Word — Space for result

userid Word — userID for Marinetti to use with NewHandle

— destip — Long — Destination IP address

destport Word — Destination port number

defaultTOS Word — Default Type Of Service

defaultTTL Word — Default Time To Live

<— SP

Stack after call

Previous contents

ipid Word — ipid to use for subsequent calls

<— SP

Errors terrIPIDTABLEFULL There are too many connections already
terrNOCONNECTION Not connected to the network

BASIC FUNCTION TCPIPLogin (%, &, %, %, %) as %

Marinetti 2.0 Programmers’ Guide Page 78

C extern pascal Word TCPIPLogin (Word, Long, Word, Word,
Word)

Pascal function TCPIPLogin (userID: integer; destip: longint;
destport: integer; defaultTOS:
integer; defaultTTL: integer):
integer;

userid This must be a valid Memory Manager userID, which Marinetti may use on your
behalf when returning data to you. Handles returned which contain data, such as
those from TCPIPReadTCP, will belong to you, and be allocated with this
userID.

destIP The destination IP address for all connections using this ipid. Some standard
special case IP addresses are valid, such as 127.0.0.1, which is for loopback. Using
the loopback address, or Marinetti’s current IP address, two applications on the
same Apple IIGS may talk to each other via a TCP connection.

destPort The destination port for all connections using this ipid. Using a destination port
of $0000, tells Marinetti to use this login as a service dispatcher for incoming
connections.

defaultTOS This is the initial TOS (“Type Of Service”) value to use for all IP services for this
ipid. If unsure, use a value of $0000, which assigns equal priority to each TOS
bit. The following are the valid bit flags, of which only one may be set at a time.

%0001 0000 Minimise delay
%0000 1000 Maximise throughput
%0000 0100 Maximise reliability
%0000 0010 Minimise monetary cost

defaultTTL This is the initial TTL (“Time To Live”) value to use for all IP services for this
ipid. If unsure, use a value of $0040, which means each IP datagram will hop at
least 64 hosts before expiring. Values larger than $00FF will pinned to 255.

ipid This is the value assigned to this destination/port pair. It must be supplied with any
calls which access this connection.

Marinetti 2.0 Programmers’ Guide Page 79

TCPIPLogout $2436

Tells Marinetti to logout this ipid, thus freeing all its control blocks, and making it available for
subsequent TCPIPLogin calls.

Parameters

Stack before call

Previous contents

ipid Word — ipid to logout

<— SP

Stack after call

Previous contents

<— SP

Errors terrSOCKETOPEN This ipid still has a pending connection, and
Marinetti will not log it out until the connection has
closed/ended

terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC SUB TCPIPLogout (%)

C extern pascal void TCPIPLogout (Word);

Pascal procedure TCPIPLogout (ipid: integer);

Marinetti 2.0 Programmers’ Guide Page 80

TCPIPSendICMP $2536

Sends an ICMP message datagram across the network.

Parameters

Stack before call

Previous contents

ipid Word — Connection to use

— messagePtr — Long — Pointer to the ICMP message

messageLen Word — Length of the ICMP message

<— SP

Stack after call

Previous contents

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC SUB TCPIPSendICMP (%, messagePtr, %)

C extern pascal void TCPIPSendICMP (Word, messagePtr,
Word);

Pascal procedure TCPIPSendICMP (ipid: integer; mPtr:
messagePtr; messageLen: integer);

messagePtr Points to just the ICMP message. Marinetti takes care of generating the correct
checksum, encapsulating it in an appropriate IP datagram, and sending it across the
network.

If sending echo request and echo reply messages, you must store your ipid as the message identifier, or
instead use the TCPIPSendICMPEcho call, which was designed specifically for this purpose.

Ordinarily a ICMP datagram should have an IP header TOS value of 255 if performing network
administration functions, so that the destination has the best possible chance of receiving the message.
However, datagrams sent by TCPIPSendICMP use the current TOS value for the requested ipid.

TCPIPSendICMP automatically initialises and calculates the embedded ICMP checksum for you.

Marinetti 2.0 Programmers’ Guide Page 81

TCPIPSendUDP $2636

Sends a UDP datagram across the network.

Parameters

Stack before call

Previous contents

ipid Word — Connection to use

— udpPtr — Long — Pointer to the UDP data to send

udpLen Word — Length of the UDP data to send

<— SP

Stack after call

Previous contents

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC SUB TCPIPSendUDP (%, udpPtr, %)

C extern pascal void TCPIPSendUDP (Word, udpPtr, Word);

Pascal procedure TCPIPSendUDP (ipid: integer; uPtr: udpPtr;
udpLen: integer);

datagramPtr Points to just the UDP data. The UDP header is built for you inside Marinetti,
encapsulated in an appropriate IP datagram, and sent across the network.

Marinetti 2.0 Programmers’ Guide Page 82

TCPIPGetDatagramCount $2736

Returns the number of pending input datagrams for a specific ipid.

Parameters

Stack before call

Previous contents

Space Word — Space for result

ipid Word — Connection to use

protocol Word — Protocol of the queue to count

<— SP

Stack after call

Previous contents

dgmCount Word — Count of datagrams in the queue

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC FUNCTION TCPIPGetDatagramCount (%, %) as %

C extern pascal Word TCPIPGetDatagramCount (Word, Word);

Pascal function TCPIPGetDatagramCount (ipid: integer;
protocol: integer): integer;

Marinetti 2.0 Programmers’ Guide Page 83

TCPIPGetNextDatagram $2836

Returns the next datagram for a specific protocol.

Parameters

Stack before call

Previous contents

— Space — Long — Space for result

ipid Word — Connection to use

protocol Word — Protocol of the queue to count

flags Word — Return control flags

<— SP

Stack after call

Previous contents

— dgmHandle — Long — Handle containing the datagram

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC FUNCTION TCPIPGetNextDatagram (%, %, %) as dgmHandle

C extern pascal dgmHandle TCPIPGetNextDatagram (Word,
Word, Word);

Pascal function TCPIPGetNextDatagram (ipid, protocol, flags:
integer): dgmHandle;

protocol The values protocolICMP, protocolUDP and protocolTCP return entries
from the ICMP, UDP and TCP queues respectively. Any other value will return
the next IP queue entry.

flags Controls how the datagram is returned:

Bit 15 controls the IP header; 0 = keep, 1 = remove
Bit 14 controls the embedded header; 0 = keep, 1 = remove

Marinetti 2.0 Programmers’ Guide Page 84

Removing the embedded header also forces bit 15 to remove the IP header.

dgmHandle Contains the returned data, or is nil if there is no currently available datagram for
that protocol.

uNOTE: For TCP, this request is primarily a test routine, left over from previous versions of Marinetti.
Instead, TCP should be read using the appropriate TCP requests.

Marinetti 2.0 Programmers’ Guide Page 85

TCPIPGetLoginCount $2936

Returns the current number of Marinetti log ins.

Parameters

Stack before call

Previous contents

Space Word — Space for result

<— SP

Stack after call

Previous contents

loginCount Word — Number of current log ins

<— SP

Errors None.

BASIC FUNCTION TCPIPGetLoginCount as %

C extern pascal Word TCPIPGetLoginCount (void);

Pascal function TCPIPGetLoginCount: integer;

Marinetti will not disconnect from the network while there are pending log ins. All TCPIPLogin calls
must be balanced with a TCPIPLogout call.

Marinetti 2.0 Programmers’ Guide Page 86

TCPIPSendICMPEcho $2A36

Sends an ICMP echo request across the network.

Parameters

Stack before call

Previous contents

ipid Word — Connection to use

seqNum Word — Sequemce number

<— SP

Stack after call

Previous contents

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC SUB TCPIPSendICMPEcho (%, %)

C extern pascal void TCPIPSendICMPEcho (Word, Word)

Pascal procedure TCPIPSendICMPEcho (ipid, seqNum: integer);

seqNum The sequence number to include in the Echo request. This should ordinarily start at
1, and be incremented for each subsequent send.

This request builds an appropriate ICMP message, encapsulates it with an IP datagram, and sends it across
the network. The ipid is used as the embedded identifier.

Ordinarily a ICMP datagram should have an IP header TOS value of 255 if performing network
administration functions, so that the destination has the best possible chance of receiving the message.
However, datagrams sent by TCPIPSendICMPEcho use the current TOS value for the requested ipid.

Marinetti 2.0 Programmers’ Guide Page 87

TCPIPReceiveICMPEcho $2B36

Scans the ICMP protocol queue for the first echo reply message, deletes it, and returns its sequence
number.

Parameters

Stack before call

Previous contents

Space Word — Space for result

ipid Word — Connection to use

<— SP

Stack after call

Previous contents

seqNum Word — Sequence number of first echo reply

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in
terrNOICMPQUEUED No ICMP datagrams in the queue

BASIC FUNCTION TCPIPReceiveICMPEcho (%) as %

C extern pascal Word TCPIPReceiveICMPEcho (Word);

Pascal function TCPIPReceiveICMPEcho (ipid: integer):
integer;

seqNum The sequence number of the first echo reply message found in the ICMP queue.

uNOTE: This request may return no echo replies, even though TCPIPGetDatagramCount says
there are messages in the ICMP queue. This is because TCPIPGetDatagramCount counts
all messages, not just the echo replies.

Marinetti 2.0 Programmers’ Guide Page 88

TCPIPStatusUDP $5336

Returns a number of variables relating to UDP.

Parameters

Stack before call

Previous contents

ipid Word — Connection to use

— udpVarsPtr — Long — Pointer to variable response buffer

<— SP

Stack after call

Previous contents

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC SUB TCPIPStatusUDP (%, udpVarsPtr)

type udpVars
 uvQueueSize as integer
 uvError as integer
 uvErrorTick as long
 uvCount as long
 uvTotalCount as long
 uvDispatchFlag as integer
end type
type udpVarsPtr as pointer to udpVars

C extern pascal void TCPIPStatusUDP (Word, udpVarsPtr);

typedef struct {
 Word uvQueueSize;
 Word uvError;
 Long uvErrorTick;
 Long uvCount;
 Long uvTotalCount;
 Word uvDispatchFlag;
 } udpVars, *udpVarsPtr;

Marinetti 2.0 Programmers’ Guide Page 89

Pascal procedure TCPIPStatusUDP (ipid: integer; uPtr:
udpVarsPtr);

udpVars = record
 uvQueueSize: integer;
 uvError: integer;
 uvErrorTick: longint;
 uvCount: longint;
 uvTotalCount: longint;
 uvDispatchFlag: integer;
 end;
udpVarsPtr = ^udpVars;

On return from the call, the response buffer looks like this:

+00 uvQueueSize word Number of entries in receive queue
+02 uvError word Last ICMP type 3 error code
+04 uvErrorTick longword Tick of when error occurred
+08 uvCount longword Total received for this ipid
+12 uvTotalCount longword Total received for all ipids
+16 uvDispatchFlag word UDP dispatch flag

uvError If an ICMP Port Unreachable Error was received, then bit15 will be set, and the
remaining bits will contain an error code as follows:

$8000 Network unreachable
$8001 Host unreachable
$8002 Protocol unreachable
$8003 Port unreachable
$8004 Fragmentation needed but DF bit set
$8005 Source route failed
$8006 Destination network unknown
$8007 Desination host unknown
$8009 Destination network administratively prohibited
$800A Desination host administratively prohibited
$800B Network unreachable for TOS
$800C Host unreachable for TOS

If an ICMP Time Expired Error was received, then bit15 will be set, and the
remaining bits will contain an error code as follows:

$8010 TTL expired, never reached destination

uvTotalCount This is the same value as that returned in the tcpDGMSUDP field of the error
table.

uvDispatchFlag This is the dispatchFlag boolean, which was set by the
TCPIPSetUDPDispatch call, or false if not yet set. It indicates whether this
ipid can accept incoming UDP packets from different ports. destPort must
also be set to $0000.

Marinetti 2.0 Programmers’ Guide Page 90

Marinetti 2.0 Programmers’ Guide Page 91

TCPIPSetUDPDispatch $6136

Tells Marinetti whether this ipid is to be used for incoming UDP dispatch. To dispatch correctly,
destPort must be set to $0000.

Parameters

Stack before call

Previous contents

ipid Word — Connection to use

dispatchFlag Word — Indicates whether this ipid will dispatch

<— SP

Stack after call

Previous contents

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC SUB TCPIPSetUDPDispatch (%, %)

C extern pascal void TCPIPSetUDPDispatch (Word, Boolean);

Pascal procedure TCPIPSetUDPDispatch (ipid: integer;
dispatchFlag: boolean);

dispatchFlag The value is TRUE (non-zero) if Marinetti is dispatch incoming UDP datagrams to
this ipid, and FALSE ($0000) if it is not.

Marinetti 2.0 Programmers’ Guide Page 92

TCP tool calls

These calls are the TCP specific socket functions, and are similar to the BSD socket interfaces available
on UNIX systems. It should be noted that ipids using TCP may also use other protocols at the same
time.

TCPIPOpenTCP $2C36

Initiates a TCP open request.

Parameters

Stack before call

Previous contents

Space Word — Space for result

ipid Word — Connection to use

<— SP

Stack after call

Previous contents

tcpError Word — TCP logic error code

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC FUNCTION TCPIPOpenTCP (%) as %

C extern pascal Word TCPIPOpenTCP (Word);

Pascal function TCPIPOpenTCP (ipid: integer): integer;

tcpErr This will be one of the tcperr* equates.

This request initiates an open connection request, it does not complete the opening of the connection.

All successful TCPIPOpenTCP calls must be balanced at some stage with a successful
TCPIPCloseTCP call.

uNOTE: The current TOS and TTL values for the ipid are saved, and new preferred internal values
for TCP are substituted.

Marinetti 2.0 Programmers’ Guide Page 93

TCPIPListenTCP $4E36

Initiates a TCP listen request, to listen for incoming connection initiations.

Parameters

Stack before call

Previous contents

Space Word — Space for result

ipid Word — Connection to use

<— SP

Stack after call

Previous contents

tcpError Word — TCP logic error code

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC FUNCTION TCPIPListenTCP (%) as %

C extern pascal Word TCPIPListenTCP (Word);

Pascal function TCPIPListenTCP (ipid: integer): integer;

tcpErr This will be one of the tcperr* equates.

All successful TCPIPListenTCP calls must be balanced at some stage with a successful
TCPIPCloseTCP call.

If the ipid has logged in with a non-zero destPort, then this listen request will only respond to
incoming requests from that port number. Use a destPort of $0000 to catch all incoming requests.

uNOTE: The current TOS and TTL values for the ipid are saved, and new preferred internal values
for TCP are substituted.

Marinetti 2.0 Programmers’ Guide Page 94

TCPIPWriteTCP $2D36

Writes data to the send queues, ready to be sent across a TCP connection.

Parameters

Stack before call

Previous contents

Space Word — Space for result

ipid Word — Connection to use

— dataPtr — Long — Pointer to data to queue

— dataLength — Long — Length of data to queue

pushFlag Word — Push this data?

urgentFlag Word — Mark this data as urgent?

<— SP

Stack after call

Previous contents

tcpError Word — TCP logic error code

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC FUNCTION TCPIPWriteTCP (%, dataPtr, &, %, %) as %

C extern pascal Word TCPIPWriteTCP (Word, dataPtr, Long,
Boolean, Boolean);

Pascal function TCPIPWriteTCP (ipid: integer; dPtr: dataPtr;
dataLength: longint; pushFlag,
urgentFlag: boolean): integer;

pushFlag A boolean indicating whether to queue this with a local and destination push
(TRUE – non-zero) or to queue as per normal (FALSE - $0000).

urgentFlag A boolean indicating whether to interrupt normal transmission and queue this as
urgent data (TRUE – non-zero) or to queue as per normal (FALSE - $0000).

Marinetti 2.0 Programmers’ Guide Page 95

tcpErr This will be one of the tcperr* equates.

This request returns immediately, after queuing the data. Marinetti will actually send the data when and as
it is able to.

uNOTE: For those new to TCP programming, the urgentFlag parameter does not indicate that the data
is simply urgent. It is a standard TCP function which initiates a number of events which may
or may not include purging of data already in transit. It is advised not to use this parameter
unless you fully understand the consequences. The pushFlag is also a standard TCP function,
and while it will not purge data, you should be familiar wiuh the concept of a TCP “push”
before using it.

Marinetti 2.0 Programmers’ Guide Page 96

TCPIPReadTCP $2E36

Reads data from the TCP receive buffer, into a user buffer.

Parameters

Stack before call

Previous contents

Space Word — Space for result

ipid Word — Connection to use

buffType Word — Type of buffer in buffData

— buffData — Long — Buffer descriptor

— buffLen — Long — Length of buffer

— rrBuffPtr — Long — Pointer to read response buffer

<— SP

Stack after call

Previous contents

tcpError Word — TCP logic error code

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC FUNCTION TCPIPReadTCP (%, %, univ, &, rrBuffPtr) as %

type rrBuff
 rrBuffCount as long
 rrBuffHandle as handle
 rrMoreFlag as boolean
 rrPushFlag as boolean
 rrUrgentFlag as boolean
end type
type rrBuffPtr as pointer to rrBuff

Marinetti 2.0 Programmers’ Guide Page 97

C extern pascal Word TCPIPReadTCP (Word, Word, Ref, Long,
rrBuffPtr);

typedef struct {
 Long rrBuffCount;
 Handle rrBuffHandle;
 Word rrMoreFlag;
 Word rrPushFlag;
 Word rrUrgentFlag;
 } rrBUff, *rrBuffPtr;

Pascal function TCPIPReadTCP (ipid, buffType: integer; data:
univ longint; buffLen: longint;
bPtr: rrBuffPtr): integer;

rrBuff = record
 rrBuffCount: longint;
 rrBuffHandle: handle;
 rrMoreFlag: boolean;
 rrPushFlag: boolean;
 rrUrgentFlag: boolean;
 end;
rrBuffPtr = ^rrBuff;

buffType Describes the buffer type in buffData, and must be one of the following:

$0000 buffData is a pointer to a buffer for the read data.
$0001 buffData is a handle to contain the read data, and is resized by

Marinetti to fit.
$0002 buffData is ignored. A new handle is created, and returned

containing the read data.

buffLength This is the maximum length of the read data. Marinetti will only read up to
buffLen number of bytes into the buffer.

On return from the call, the requested 14 byte read response buffer is completed as follows:

+00 rrBuffCount longword Length of the returned data
+04 rrBuffHandle handle Handle to the data
+08 rrMoreFlag word Is there more data received?
+10 rrPushFlag word Was this buffer pushed?
+12 rrUrgentFlag word Is this urgent data?

rrBuffHandle Contains the handle to the data, only if buffType was $0002, and
rrbuffCount > 0.

rrMoreFlag A boolean indicating whether there is any data left in the queue still to read (TRUE
– non-zero) or this read has emptied the queue (FALSE - $0000).

Marinetti 2.0 Programmers’ Guide Page 98

rrPushFlag A boolean indicating whether this data was pushed (TRUE – non-zero) or not
(FALSE - $0000).

rrUrgentFlag A boolean indicating whether this is urgent data (TRUE – non-zero) or not (FALSE
- $0000).

When you issue a TCPIPReadTCP call, there are a number of logic steps which dictate how much data is
actually read. The Marinetti logic goes roughly like this:

1. Check how much data we have actually received from the connection. This is our maximum return
count, or maxrec.

2. See how much data the user is asking for, via the buffLength parameter.

3. Whichever is smallest out of buffLength and maxrec, becomes the amount to read, which
becomes rrBuffCount.

4. Was there an rrPushFlag set inside the data stream from the head of the queue up until
rrBuffCount? If so, rrBuffCount becomes the offset into the data stream of the end of the
push, so only the pushed data is returned.

5. Return rrBuffCount bytes to the user.

Marinetti 2.0 Programmers’ Guide Page 99

TCPIPReadLineTCP $5E36

Reads a line of data from the TCP receive buffer, into a user buffer.

Parameters

Stack before call

Previous contents

Space Word — Space for result

ipid Word — Connection to use

— delimitStrPtr — Long — Pointer to pstring containing line delimiter

buffType Word — Type of buffer in buffData

— buffData — Long — Buffer descriptor

— buffLen — Long — Length of buffer

— rlrBuffPtr — Long — Pointer to read line response buffer

<— SP

Stack after call

Previous contents

tcpError Word — TCP logic error code

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in
terrBUFFERTOOSMALL Buffer is too small

BASIC FUNCTION TCPIPReadLineTCP (%, pstringPtr, %, univ, &,
rlrBuffPtr) as %

type rlrBuff
 rlrBuffCount as long
 rlrBuffHandle as handle
 rlrIsDataFlag as boolean
 rlrMoreFlag as boolean

Marinetti 2.0 Programmers’ Guide Page 100

 rlrBuffSize as long
end type
type rlrBuffPtr as pointer to rlrBuff

C extern pascal Word TCPIPReadLineTCP (Word, char *,
Word, Ref, Long, rlrBuffPtr)

typedef struct {
 Long rlrBuffCount;
 Handle rlrBuffHandle;
 Word rlrIsDataFlag;
 Word rlrMoreFlag;
 Long rlrBuffSize;
 } rlrBuff, *rlrBuffPtr;

Pascal function TCPIPReadLineTCP (ipid, delimitStrPtr:
pStringPtr; buffType: integer;
data: univ longint; buffLen:
longint; bPtr: rlrBuffPtr):
integer;

rlrBuff = record
 rlrBuffCount: longint;
 rlrBuffHandle: handle;
 rlrIsDataFlag: boolean;
 rlrMoreFlag: boolean;
 rlrBuffSize: longint;
 end;
rlrBuffPtr = ^rlrBuff;

delimitStrPtr Points to a pstring to use as a line delimiter. Pushes and urgents are ignored, and
the user buffer is only filled if the delimiter string has been received. If
delimitStrPtr is nil, then this call is routed to TCPIPReadTCP instead.

If bit31 is set, then the delimiter is not stripped from the line before it is returned.

All other parameters are the same as the TCPIPReadTCP call.

On return from the call, the requested 16 byte read response buffer is completed as follows:

+00 rlrBuffCount longword Length of the returned data
+04 rlrBuffHandle handle Handle to the data
+08 rlrIsDataFlag word Was a line actually read?
+10 rlrMoreFlag word Is there more data received?
+12 rlrBuffSize longword Required buffer size

If a terrBUFFERTOOSMALL error is returned, then the line was too large for the
supplied buffer. The required size, whether the buffer was filled or not, is always
returned in rrBuffSize.

Marinetti 2.0 Programmers’ Guide Page 101

It is possible for rlrBuffCount to be nil and rlrIsDataFlag to be true,
indicating that a null line was read.

Marinetti 2.0 Programmers’ Guide Page 102

TCPIPCloseTCP $2F36

Issues a close of a connection.

Parameters

Stack before call

Previous contents

Space Word — Space for result

ipid Word — Connection to use

<— SP

Stack after call

Previous contents

tcpError Word — TCP logic error code

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC FUNCTION TCPIPCloseTCP (%) as %

C extern pascal Word TCPIPCloseTCP (Word);

Pascal function TCPIPCloseTCP (ipid: integer): integer;

tcpErr This will be one of the tcperr* equates.

Closing a connection involves handshaking across the network. As such, this call simply sets a flag
indicating that Marinetti is to close the connection as soon as possible. Use the TCPIPStatusTCP call
to check when the connection is finally CLOSED.

Closing state transition will normally go from CLOSING, which is set by TCPIPCloseTCP, through
FINWAIT1 and FINWAIT2 while the close is negotiated by each end, on to TIMEWAIT and then finally
CLOSED.

TIMEWAIT indicates that the connection is effectively closed as far as each end of the connection is
concerned, and Marinetti is simply reserving the port so as to expire lost network datagrams. Once
Marinetti is happy with making the port number available again, it will do so. The timeout period will
vary depending on the network time, but will be a minimum of two minutes.

Again, the TCPIPStatusTCP call will tell you when the state has finally gone to CLOSED, but for all
intents, unless you wish to use the same port number, TIMEWAIT indicates a successful close. You may

Marinetti 2.0 Programmers’ Guide Page 103

issue a TCPIPLogout call in either TIMEWAIT or CLOSED state, and Marinetti will take care of the rest
of the close for you.

When the connection finally closes (ie. CLOSED), Marinetti restores the original TOS and TTL values
which were saved when the connection was opened, although if you have already logged out, this
obviously won’t be an issue.

Marinetti 2.0 Programmers’ Guide Page 104

TCPIPAbortTCP $3036

Forces a connection to abnormally close.

Parameters

Stack before call

Previous contents

Space Word — Space for result

ipid Word — Connection to use

<— SP

Stack after call

Previous contents

tcpError Word — TCP logic error code

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC FUNCTION TCPIPAbortTCP (%) as %

C extern pascal Word TCPIPAbortTCP (Word);

Pascal function TCPIPAbortTCP (ipid: integer): integer;

tcpErr This will be one of the tcperr* equates.

Marinetti 2.0 Programmers’ Guide Page 105

TCPIPStatusTCP $3136

Returns the status of a connection.

Parameters

Stack before call

Previous contents

Space Word — Space for result

ipid Word — Connection to use

— srBuffPtr — Long — Pointer to status response buffer

<— SP

Stack after call

Previous contents

tcpError Word — TCP logic error code

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC FUNCTION TCPIPStatusTCP (%, srBuffPtr) as %

type srBuff
 srState as integer
 srNetworkError as integer
 srSndQueued as long
 srRcvQueued as long
 srDestIP as long
 srDestPort as integer
 srConnectType as integer
 srAcceptCount as integer
end type
type srBuffPtr as pointer to srBuff

C extern pascal Word TCPIPStatusTCP (Word, srBuffPtr);

typedef struct {
 Word srState;
 Word srNetworkError;
 Long srSndQueued;
 Long srRcvQueued;

Marinetti 2.0 Programmers’ Guide Page 106

 Long srDestIP;
 Word srDestPort;
 Word srConnectType;
 Word srAcceptCount;
 } srBuff, *srBuffPtr;

Pascal function TCPIPStatusTCP (ipid: integer; sPtr:
srBuffPtr): integer;

srBuff = record
 srState: integer;
 srNetworkError: integer;
 srSndQueued: longint;
 srRcvQueued: longint;
 srDestIP: longint;
 srDestPort: integer;
 srConnectType: integer;
 srAcceptCount: integer;
 end;
srBuffPtr = ^srBuff;

tcpErr This will be one of the tcperr* equates.

On return from the call, the requested status response buffer is completed as follows:

+00 srState word TCP state
+02 srNetworkError word ICMP error code
+04 srSndQueued longword Bytes left in send queue
+08 srRcvQueued longword Bytes left in receive queue
+12 srDestIP longword Destination IP address
+16 srDestPort word Destination port
+18 srConnectType word Connection type
+20 srAcceptCount word If in listen mode, number of pending

incoming requests

srState Indicates the current state of the TCP state machine. This will be one of the tcps*
equates.

srNetworkError If the connection fails, normally indicated by the state going to tcpsTIMEWAIT
or tcpsCLOSED, without application involvement, then the error code from an
ICMP Port Unreachable Error message will indicate what caused the problem.
Because $0000 is a valid error code, bit15 is used to indicate whether the error is
relevant to this connection.

$8000 Network unreachable
$8001 Host unreachable
$8002 Protocol unreachable
$8003 Port unreachable
$8004 Fragmentation needed but DF bit set
$8005 Source route failed

Marinetti 2.0 Programmers’ Guide Page 107

$8006 Destination network unknown
$8007 Desination host unknown
$8009 Destination network administratively prohibited
$800A Destination host administratively prohibited
$800B Network unreachable for TOS
$800C Host unreachable for TOS

If an ICMP Time Expired Error is received, then the segment is simply re–sent, in
the hope that a shorter path may be found. This differs from UDP, where an error
is reported back to the caller.

srConnectType Indicates the type of connection that is open, and will be one of the following:

$0000 Active (client) connection (See TCPIPOpenTCP)
$0001 Passive (listen/server) connection (See TCPIPListenTCP)

srAcceptCount Indicates the number of incoming requests queued if this is a passive connection.

Marinetti 2.0 Programmers’ Guide Page 108

TCPIPAcceptTCP $4F36

If a TCP connection in listen mode (see TCPIPListenTCP) has accepted an incoming connection
request, then this call will create a new ipid to control the connection. The original ipid is left open,
ready to accept more incoming requests.

Parameters

Stack before call

Previous contents

Space Word — Space for result

ipid Word — Connection to use

reserved Word — Reserved for future use. Use $0000

<— SP

Stack after call

Previous contents

newipid Word — ipid of new connection

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in
terrNOINCOMING There is no pending incoming request
terrNOTSERVER This ipid is not set up as a server

BASIC FUNCTION TCPIPAcceptTCP (%, %) as %

C extern pascal Word TCPIPAcceptTCP (Word, Word);

Pascal function TCPIPAcceptTCP (ipid, reserved: integer):
integer;

If successful, TCPIPAcceptTCP implicitly issues TCPIPOpenTCP on the new ipid, and thus must be
closed by the application when no longer required, by calling TCPIPCloseTCP. Likewise the actual
listen request, initiated by TCPIPListenTCP, must also be closed by the application when no longer
required, by calling TCPIPCloseTCP.

Marinetti 2.0 Programmers’ Guide Page 109

Transport administration tool calls

These calls deal with transport adminstration, such as parameters in control blocks, and transport layer
performance functions.

TCPIPGetSourcePort $3236

Returns the current source port for the specified ipid.

Parameters

Stack before call

Previous contents

Space Word — Space for result

ipid Word — Connection to use

<— SP

Stack after call

Previous contents

sourcePort Word — Source port

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC FUNCTION TCPIPGetSourcePort (%) as %

C extern pascal Word TCPIPGetSourcePort (Word);

Pascal function TCPIPGetSourcePort (ipid: integer): integer;

Marinetti 2.0 Programmers’ Guide Page 110

TCPIPGetTOS $3336

Returns the current Type Of Service value for a specified ipid.

Parameters

Stack before call

Previous contents

Space Word — Space for result

ipid Word — Connection to use

<— SP

Stack after call

Previous contents

TOS Word — Type Of Service (TOS)

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC FUNCTION TCPIPGetTOS (%) as %

C extern pascal Word TCPIPGetTOS (Word);

Pascal function TCPIPGetTOS (ipid: integer): integer;

Marinetti 2.0 Programmers’ Guide Page 111

TCPIPSetTOS $3436

Sets a new Type Of Service value for a specified ipid.

Parameters

Stack before call

Previous contents

ipid Word — Connection to use

TOS Word — Type Of Service (TOS)

<— SP

Stack after call

Previous contents

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC SUB TCPIPSetTOS (%, %)

C extern pascal void TCPIPSetTOS (Word, Word);

Pascal procedure TCPIPSetTOS (ipid, TOS: integer);

Marinetti 2.0 Programmers’ Guide Page 112

TCPIPGetTTL $3536

Returns the current Time To Live value for a specified ipid.

Parameters

Stack before call

Previous contents

Space Word — Space for result

ipid Word — Connection to use

<— SP

Stack after call

Previous contents

TTL Word — Time To Live (TTL)

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC FUNCTION TCPIPGetTTL (%) as %

C extern pascal Word TCPIPGetTTL (Word);

Pascal function TCPIPGetTTL (ipid: integer): integer;

Marinetti 2.0 Programmers’ Guide Page 113

TCPIPSetTTL $3636

Sets a new Time To Live value for a specified ipid.

Parameters

Stack before call

Previous contents

ipid Word — Connection to use

TTL Word — Time To Live (TTL)

<— SP

Stack after call

Previous contents

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC SUB TCPIPSetTTL (%, %)

C extern pascal void TCPIPSetTTL (Word, Word);

Pascal procedure TCPIPSetTTL (ipid, TTL: integer);

Marinetti 2.0 Programmers’ Guide Page 114

TCPIPSetSourcePort $3736

Sets a new source port for a specified ipid.

Parameters

Stack before call

Previous contents

ipid Word — Connection to use

sourcePort Word — New source port

<— SP

Stack after call

Previous contents

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC SUB TCPIPSetSourcePort (%, %)

C extern pascal void TCPIPSetSourcePort (Word, Word);

Pascal procedure TCPIPSetSourcePort (ipid, sourcePort:
integer);

Marinetti 2.0 Programmers’ Guide Page 115

TCPIPGetUserStatistic $4936

Returns a specific statistic for the specified ipid.

Parameters

Stack before call

Previous contents

— Space — Long — Space for result

ipid Word — Connection to use

statisticNum Word — Which statistic to return

<— SP

Stack after call

Previous contents

— statistic — Long — Returned statistic

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in
terrBADPARAMETER Invalid parameter for this call

BASIC FUNCTION TCPIPGetUserStatistic (%, %) as &

C extern pascal Long TCPIPGetUserStatistic (Word, Word);

Pascal function TCPIPGetUserStatistic (ipid, statisticNum:
integer): longint;

statisticNum Indicates which statistic to return.

$0001 Number of data bytes (octets) received by the current or most recent
TCP connection by this ipid

$0002 Number of data bytes (octets) sent by the current or most recent TCP
connection by this ipid

statistic The returned value depends upon the statistic requested.

Marinetti 2.0 Programmers’ Guide Page 116

TCPIPSetNewDestination $5036

Sets a new destination IP address and port, which will take affect next time a connection is initiated.

Parameters

Stack before call

Previous contents

ipid Word — Connection to use

— destip — Long — Destination IP address

destport Word — Destination port number

<— SP

Stack after call

Previous contents

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC SUB TCPIPSetNewDestination (%, &, %)

C extern pascal void TCPIPSetNewDestination (Word, Long,
Word);

Pascal procedure TCPIPSetNewDestination (ipid: integer;
destip: longint; destPort:
integer);

Marinetti 2.0 Programmers’ Guide Page 117

TCPIPGetDestination $6236

Returns the destination IP address and port which is being used for this ipid.

Parameters

Stack before call

Previous contents

ipid Word — Connection to use

— destRecPtr — Long — Pointer to response record

<— SP

Stack after call

Previous contents

<— SP

Errors terrNOCONNECTION Not currently connected to the network
terrBADIPID This ipid has not yet been logged in

BASIC SUB TCPIPGetDestination (%, destRecPtr)

type destRec
 drUserID as integer
 drDestIP as long
 drDestPort as integer
end type
type destRecPtr as pointer to destRec

C extern pascal void TCPIPGetDestination (Word,
destRecPtr);

typedef struct {
 Word drUserID;
 Long drDestIP;
 Word drDestPort;
 } destRec, *destRecPtr;

Pascal procedure TCPIPGetDestination (ipid: integer; dPtr:
destRecPtr);

destRec = record
 drUserID: integer;
 drDestIP: longint;

Marinetti 2.0 Programmers’ Guide Page 118

 drDestPort: integer;
 end;
destRecPtr = ^destRec;

destRecPtr Points to the following response record:

+00 drUserID word UserID used by this ipid
+02 drDestIP longword Destination IP address
+06 drDestPort word Destination port number

Marinetti 2.0 Programmers’ Guide Page 119

Library type calls

These calls are typical of generic library functions, and do not directly deal with networking. They are
primarily internal routines which may also be useful for developers.

TCPIPConvertIPToHex $0D36

Convert an ASCII text string representing a dotted decimal IP address, optionally followed by a comma
delimited port number, into their equivalent number values.

Parameters

Stack before call

Previous contents

— cvtRecPtr — Long — Pointer to response record

— ddippstring — Long — Pointer to dotted decimal address pstring

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC SUB TCPIPConvertIPToHex (cvtRecPtr, pstringPtr)

type cvtRec
 cvtIPAddress as long
 cvtPort as integer
end type
type cvtRecPtr as pointer to cvtRec

C extern pascal void TCPIPConvertIPToHex (cvtRecPtr,
char *);

typedef struct {
 Long cvtIPAddress;
 Word cvtPort;
 } cvtRec, *cvtRecPtr;

Marinetti 2.0 Programmers’ Guide Page 120

Pascal procedure TCPIPConvertIPToHex (cvt: cvtRecPtr; sPtr:
pStringPtr);

cvtRec = record
 cvtIPAddress: longint;
 cvtPort: integer;
 end;
cvtRecPtr = ^cvtRec;

cvtRecPtr Points to the response record. The layout is as follows:

+00 cvtIPAddress longword Returned IP address
+04 cvtPort word Port number or nil if none

ddippstring A pointer to a pstring containing an ASCII string for the dotted decimal address to
convert.

If the dotted decimal IP address is followed by a “,” (comma) a “:” (colon) or a “;”
(semi–colon) and then a number in the range 1 to 65535, then it will be returned as
the port number. eg. “192.80.63.5:23” returns the Telnet port, which is 23.

Marinetti 2.0 Programmers’ Guide Page 121

TCPIPConvertIPCToHex $3F36

Convert an ASCII text string representing a dotted decimal IP address, optionally followed by a comma
delimited port number, into their equivalent number values.

Parameters

Stack before call

Previous contents

— cvtRecPtr — Long — Pointer to response record

— ddipcstring — Long — Pointer to dotted decimal address cstring

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC SUB TCPIPConvertIPCToHex (cvtRecPtr, pstringPtr)

C extern pascal void TCPIPConvertIPCToHex (cvtRecPtr,
char *);

Pascal procedure TCPIPConvertIPCToHex (cvt: cvtRecPtr; sPtr:
pStringPtr);

cvtRecPtr Points to the response record. The layout is as follows:

+00 cvtIPAddress longword Returned IP address
+04 cvtPort word Port number or nil if none

ddipcstring A pointer to a cstring containing an ASCII string for the dotted decimal address to
convert.

If the dotted decimal IP address is followed by a “,” (comma) a “:” (colon) or a “;”
(semi–colon) and then a number in the range 1 to 65535, then it will be returned as
the port number. eg. “192.80.63.5:23” returns the Telnet port, which is 23.

Marinetti 2.0 Programmers’ Guide Page 122

TCPIPConvertIPToASCII $0E36

Converts a longword IP address into a pstring ASCII text string of the dotted decimal equivalent.

Parameters

Stack before call

Previous contents

Space Word — Space for result

— ipaddress — Long — The IP address to convert

— ddpstring — Long — Pointer to the 16 byte return buffer

Flags Word — Formatting flags

<— SP

Stack after call

Previous contents

Strlen Word — The length of the returned string

<— SP

Errors None.

BASIC FUNCTION TCPIPConvertIPToASCII (&, pstringPtr, %) as %

C extern pascal Word TCPIPConvertIPToASCII (Long, char *,
Word);

Pascal function TCPIPConvertIPToASCII (ipaddress: longint;
ddpstring: pString15Ptr; flags:
integer): integer;

flags Various formatting flags:

Bit 15 is for ASCII type; 0 = low ASCII, 1 = high ASCII

Marinetti 2.0 Programmers’ Guide Page 123

TCPIPConvertIPToCASCII $5836

Converts a longword IP address into a zero terminated ASCII text string of the dotted decimal equivelent.

Parameters

Stack before call

Previous contents

Space Word — Space for result

— ipaddress — Long — The IP address to convert

— ddcstring — Long — Pointer to the 16 byte return buffer

flags Word — Formatting flags

<— SP

Stack after call

Previous contents

strlen Word — The length of the returned string

<— SP

Errors None.

BASIC FUNCTION TCPIPConvertIPToCASCII (&, pstringPtr, %) as %

C extern pascal Word TCPIPConvertIPToCASCII (Long, char
*, Word);

Pascal function TCPIPConvertIPToCASCII (ipaddress: longint;
ddpstring: pString15Ptr; flags:
integer): integer;

flags Various formatting flags:

Bit 15 is for ASCII type; 0 = low ASCII, 1 = high ASCII

Marinetti 2.0 Programmers’ Guide Page 124

TCPIPConvertIPToClass $4136

Returns the class of a given IP address.

Parameters

Stack before call

Previous contents

Space Word — Space for result

— ipaddress — Long — The IP address

<— SP

Stack after call

Previous contents

class Word — The class of the IP address

<— SP

Errors None.

BASIC FUNCTION TCPIPConvertIPToClass (&) as %

C extern pascal Word TCPIPConvertIPToClass (Long);

Pascal function TCPIPConvertIPToClass (ipaddress: longint):
integer;

ipclass The class of the returned IP address will be one of the following:

$0000 Class A
$0001 Class B
$0002 Class C
$0003 Class D
$0004 Class E

Marinetti 2.0 Programmers’ Guide Page 125

TCPIPMangleDomainName $5936

Takes an ASCII string as input, and modifies it for use as a syntactically correct domain name, which may
be used as input to the DNR module.

Parameters

Stack before call

Previous contents

Space Word — Space for result

flags Word — Indicates which functions to perform

— dnPstringPtr — Long — Pointer to the domain name pstring

<— SP

Stack after call

Previous contents

port Word — Returned port number

<— SP

Errors None.

BASIC FUNCTION TCPIPMangleDomainName (%, pstringPtr) as %

C extern pascal Word TCPIPMangleDomainName (Word, char
*);

Pascal function TCPIPMangleDomainName (flags: integer;
dnPstringPtr: pStringPtr): integer;

flags Indicates which functions to perform. (Recommended = $F800):

bit15 Remove port suffix
bit14 Translate “%” tokens
bit13 Conversion to lower case
bit12 Delete illegal characters
bit11 Strip off high bit
bit10-bit0 Reserved – set to zeros

If all bits are set to zero, then the string will not be modified.

dnPstringPtr A pointer to a pstring containing an ASCII string domain name.

Marinetti 2.0 Programmers’ Guide Page 126

port If the domain name is is followed by a “,” (comma) a “:” (colon) or a “;”
(semi–colon) and then a number in the range 1 to 65535, then it will be returned as
the port number, else it will be nil. eg. “delphi.com:23” returns the Telnet port,
which is 23.

Marinetti 2.0 Programmers’ Guide Page 127

TCPIPPtrToPtr $5536

Copies memory in a forward direction from one location to another, optimised for speed.

Parameters

Stack before call

Previous contents

— fromPtr — Long — Pointer to source data

— toPtr — Long — Pointer to destination data

— length — Long — Length of data to copy

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC SUB TCPIPPtrToPtr (ptr, ptr, &)

C extern pascal void TCPIPPtrToPtr (ptr, ptr, Long);

Pascal procedure TCPIPPtrToPtr (fromPtr, toPtr: ptr; length:
longint);

Marinetti 2.0 Programmers’ Guide Page 128

TCPIPPtrToPtrNeg $5636

Copies memory in a backward direction from one location to another.

Parameters

Stack before call

Previous contents

— fromEndPtr — Long — Pointer to last byte in source data

— toEndPtr — Long — Pointer to last byte in destination data

— length — Long — Length of data to copy

<— SP

Stack after call

Previous contents

<— SP

Errors None.

BASIC SUB TCPIPPtrToPtrNeg (ptr, ptr, &)

C extern pascal void TCPIPPtrToPtrNeg (ptr, ptr, Long);

Pascal procedure TCPIPPtrToPtrNeg (fromEndPtr, toEndPtr: ptr;
length: longint);

Marinetti 2.0 Programmers’ Guide Page 129

TCPIPValidateIPString $4836

Returns a flag indicating whether the passed pstring is a valid ASCII representation of an IP address.

Parameters

Stack before call

Previous contents

Space Word — Space for result

— pstringPtr — Long — Pointer to IP address pstring

<— SP

Stack after call

Previous contents

validFlag Word — Boolean

<— SP

Errors None.

BASIC FUNCTION TCPIPValidateIPString (pstringPtr) as %

C extern pascal Word TCPIPValidateIPString (char *);

Pascal function TCPIPValidateIPString (sPtr: pStringPtr):
boolean;

validFlag The value returned is TRUE (non-zero) if this is a valid pstring, or FALSE ($0000)
if it is not.

This call does not interrogate the resultant IP address to see if it exists or is valid from a network
administration standpoint. It simply checks to make sure it is a valid dotted decimal address. ie. four
numeric arguments, each between 0 and 255 inclusive, delimited by decimal point symbols.

Marinetti 2.0 Programmers’ Guide Page 130

TCPIPValidateIPCString $1536

Returns a flag indicating whether the passed cstring is a valid ASCII representation of an IP address.

Parameters

Stack before call

Previous contents

Space Word — Space for result

— cstringPtr — Long — Pointer to IP address cstring

<— SP

Stack after call

Previous contents

validFlag Word — Boolean

<— SP

Errors None.

BASIC FUNCTION TCPIPValidateIPCString (cstringPtr) as %

C extern pascal Word TCPIPValidateIPCString (char *);

Pascal function TCPIPValidateIPCString (sPtr: cStringPtr):
boolean;

validFlag The value returned is TRUE (non-zero) if this is a valid cstring, or FALSE ($0000)
if it is not.

This call does not interrogate the resultant IP address to see if it exists or is valid from a network
administration standpoint. It simply checks to make sure it is a valid dotted decimal address. ie. four
numeric arguments, each between 0 and 255 inclusive, delimited by decimal point symbols.

Marinetti 2.0 Programmers’ Guide Page 131

Link layer modules

Link layer protocols, such as PPP, are handled through the Marinetti link layer module interface, and are
individually loaded as required from the *:System:TCPIP folder.

Marinetti link layer modules are OMF files of file type $00BC and auxilliary type $00004083.

Once loaded, the module load point is used as a dispatch procedure, much like the toolbox, and is called
with the accumulator and index registers long. Upon entry, the registers will be as follows:

A Module’s direct page if one was loaded as OMF, else $0000
X Call number
Y Marinetti UserID

(While loaded, modules are consider a part of Marinetti, and as such, all memory
allocations must use Marinetti’s UserID, and not the module’s)

DBK Unknown
DP Marinetti’s direct page
S RTL address then parameters

If the module was built with its own direct page, then A will contain its address in bank 0. A value of
$0000 indicates there is no direct page allocated and you should either allocate your own now, or use part
of Marinetti’s. The direct page register will contain Marinetti’s direct page, on which you have exclusive
access to offsets $E0-$FF. These locations will be preserved for you across calls, and so may be used for
permanent variables while loaded and started.

On exit, A will contain a Marinetti error code in the terr_* range ANDed with terrmask, with the
carry flag indicating any errors. The DBK and DP registers must be restored, and the stack fixed to remove
the input parameters passed by the call.

How your module works is up to you, as long as it conforms to the calling interface. All of the included
modules which use the serial port, allocate an internal interrupt buffer at LinkStartup time, and build
datagrams from there each time LinkGetDatagram is called. However, there is nothing to stop a
module building within an interrupt loop and queuing internally, or letting an external processor, such as a
network card, do the work, so long as IP datagrams are returned to Marinetti via the
LinkGetDatagram call.

Configuration data for link layer modules are stored within Marinetti, and applications may access them
using the TCPIPGetConnectData, TCPIPSetConnectData, TCPIPGetDisconnectData and
TCPIPSetDisconnectData tool calls. Additionally, they may be edited using the
TCPIPEditLinkConfig call.

Link layer modules must be careful when changing the layout of their connect and disconnect data, as
users may have an older versions currently installed. Modules should either include a version word at the
beginning of the data, or be able to recognise earlier layouts of the data.

While Marinetti looks after saving the configuration data for each module, the data itself is private to the
module concerned. For reference, the configuration data for SLIP and PPP (scripted) are currently defined
as ASCII scripts, and all the rest which ship with Marinetti are proprietary.

Marinetti 2.0 Programmers’ Guide Page 132

LinkInterfaceV $0000

Returns the maximum link layer module interface which this link layer module supports.

Parameters

Stack before call

Previous contents

Space Word — Space for result

<— SP

Stack after call

Previous contents

interfaceV Word — Interface version = $0001

<— SP

interfaceV The interface described in this document is $0001

LinkStartup $0002

Starts the link layer module once it is loaded. The module should perform any initialisation tasks short of
actually starting a connection.

Parameters

Stack before call

Previous contents

<— SP

Stack after call

Previous contents

<— SP

Marinetti 2.0 Programmers’ Guide Page 133

LinkShutDown $0004

Marinetti will purge the module from memory, once this call has completed. The module has no choice in
the matter.

Parameters

Stack before call

Previous contents

<— SP

Stack after call

Previous contents

<— SP

Marinetti 2.0 Programmers’ Guide Page 134

LinkModuleInfo $0006

Returns information about the module.

Parameters

Stack before call

Previous contents

— linkInfoBlkPtr — Long — Pointer to buffer for response

<— SP

Stack after call

Previous contents

<— SP

linkInfoBlkPtr Points to a fixed length 27 byte response buffer as follows:

+00 liMethodID word The connect method. New modules will
need to apply to the author for a unique ID
to use. See conXXX equates for details of
already defined values

+02 liName 21 bytes Pstring name of the module
+23 liVersion longword rVersion (type $8029 resource layout) of

the module
+27 liFlags word Contains the following flags:

bit15 This link layer uses the built in Apple IIGS serial ports
bits14-1 Reserved – set to zeros
bit0 Indicates whether the module contains an rIcon resource

Marinetti 2.0 Programmers’ Guide Page 135

LinkGetDatagram $0008

Returns a raw data datagram from the network.

Parameters

Stack before call

Previous contents

— Space — Long — Space for result

<— SP

Stack after call

Previous contents

— datagramHandle — Long — Handle containing the datagram

<— SP

datagramHandle The handle must be allocated with Marinetti’s UserID, which was passed to the
module during the call, and must contain a valid IP datagram, stripped of any
underlying network headers. If there is no datagram waiting, then
datagramHandle will be returned as nil.

Marinetti 2.0 Programmers’ Guide Page 136

LinkSendDatagram $000A

Sends an IP datagram to the network via the module’s datagram encapsulation.

Parameters

Stack before call

Previous contents

— datagramPtr — Long — Pointer to the datagram data

datagramLength Word — Length of the datagram to send

<— SP

Stack after call

Previous contents

<— SP

The module should wrap the datagram in the appropriate datagram encapsulation, and send it to the
network.

Marinetti 2.0 Programmers’ Guide Page 137

LinkConnect $000C

Attempts to connect Marinetti to the network.

Parameters

Stack before call

Previous contents

— authMsgHandle — Long — Handle for authentication message

conMsgFlag Word — Boolean

— usernamePtr — Long — Pointer to username pstring

— passwordPtr — Long — Pointer to password pstring

— displayPtr — Long — Pointer to message display routine

— conHandle — Long — Handle to the connect data

<— SP

Stack after call

Previous contents

<— SP

authMsgHandle If the link layer supports an authentication method, then any optional
authentication messages should be copied into this handle, which is supplied as
initially empty. If the link layer does not support authentication messages, then the
handle should simply be ignored. The data may then be retrieved by an application
by using the TCPIPGetAuthMessage call.

This is one of Marinetti's permanent data handles and must remain valid. You may
resize it as required, by using _SetHandleSize.

conMsgFlag The value is TRUE (non-zero) if link layer modules are to display connect
messages, and FALSE ($0000) if they are not.

Marinetti 2.0 Programmers’ Guide Page 138

displayPtr Points to the calling applications message display routine. It is possible for
conMsgFlag to be true, yet displayPtr is nil. The link layer module is
expected to handle this situation correctly, and not issue any display call backs.
The module is also completely in charge of calling the displayPtr routine,
including any register preservation required.See TCPIPConnect for more
details.

conHandle The handle content must not be altered or purged, as it belongs to Marinetti.

Valid error codes are those returned by the TCPIPConnect tool call, ANDed with terrmask.

Once the link is active, the link layer must fill in the link layer variables (see LinkGetVariables call)
correctly before returning.

Marinetti 2.0 Programmers’ Guide Page 139

LinkReconStatus $000E

Returns a flag indicating whether the module is in a state to reconnect.

Parameters

Stack before call

Previous contents

Space Word — Space for result

<— SP

Stack after call

Previous contents

reconStatus Word — Boolean

<— SP

reconStatus The value returned is TRUE (non-zero) if this link layer module is able to
reconnect to the network, and FALSE ($0000) if it is not.

Marinetti 2.0 Programmers’ Guide Page 140

LinkReconnect $0010

Attempts to reconnect to the network, assuming the physical connection is still active, but the logical
connection is not. An example would be a serial connection such as SLIP, where the modem is still
connected to an ISP after a reboot, and the user wants to continue from where they left off.

Parameters

Stack before call

Previous contents

— displayPtr — Long — Pointer to message display routine

<— SP

Stack after call

Previous contents

<— SP

Modules do not have to support this call. It is provided primarily for developers to stay connected while
testing. If not supported, simply return an error in the terr_* range, and ANDed with terrmask,
indicating an appropriate problem with the link. The only variable (see the LinkGetVariables call)
the link layer module should touch during this call, is lvConnected.

If a link layer module wishes to save its own data so it may better support the reconnect facility, it should
write its data to a file in *:System:TCPIP:, preferrably one named after the link layer, for example
PPP.state.

Before LinkReconnect is called, Marinetti will store the reconnection IP address in lvIPaddress in
case the link layer module requires it. There is no facility for using a different IP address on a
reconnection.

Marinetti 2.0 Programmers’ Guide Page 141

LinkDisconnect $0012

Attempts to disconnect Marinetti from the network.

Parameters

Stack before call

Previous contents

conMsgFlag Word — Boolean

— usernamePtr — Long — Pointer to username pstring

— passwordPtr — Long — Pointer to password pstring

— displayPtr — Long — Pointer to message display routine

— disconHandle — Long — Handle to the disconnect data

<— SP

Stack after call

Previous contents

<— SP

conMsgFlag The value is TRUE (non-zero) if link layer modules are to display connect
messages, and FALSE ($0000) if they are not.

displayPtr Points to the calling application’s message display routine. See LinkConnect
and TCPIPDisconnect for more details.

disconHandle The handle content must not be altered or purged, as it belongs to Marinetti.

Valid error codes are those return by the TCPIPDisconnect tool call, and ANDed with terrmask.

Before returning, the link layer module should set the lvConnected flag (see the
LinkGetVariables call) appropriately. All other variables may be left as is, even though the link may
have been dropped, and in fact may be used by Marinetti for post connection processing.

Marinetti 2.0 Programmers’ Guide Page 142

LinkGetVariables $0014

Returns a pointer to the link layer module’s variables.

Parameters

Stack before call

Previous contents

— Space — Long — Space for result

<— SP

Stack after call

Previous contents

— variablesPtr — Long — Pointer to variables

<— SP

variablesPtr Points to the following data block:

+00 lvVersion word Version of this record. The only
record currently defined, is this
one, which must be $0001.

+02 lvConnected word true ($8000) if currently
connected, false ($0000) if not.
Marinetti checks this often to see if
the link is still up

+04 lvIPaddress longword Current IP address being used by
the link layer module

+08 lvRefCon longword For internal use by the link layer
module. This usually contains a
pointer to another record
containing variables specific to this
link layer module

+12 lvErrors longword Total number of datagram errors
+14 lvMTU word Maximum Transmission Unit size

for this host

The above record must remain fixed in memory while the module is loaded.

Marinetti 2.0 Programmers’ Guide Page 143

LinkConfigure $0016

Presents a window allowing the user to edit configuration parameters required by the link layer module.
This call is currently only made by the Control Panel, but may be made by other applications which may
control Marinetti’s setup.

Parameters

Stack before call

Previous contents

— connectHandle — Long — Handle to connect data

— disconnectHandle — Long — Handle to disconnect data

<— SP

Stack after call

Previous contents

<— SP

This call passes two handles, containing the connect and disconnect data respectively. The handles may be
resized and edited as required. If either of the handles are empty, then there is currently no configuration
data, and the handle should be resized and initialised before presenting any dialogs to the user.

When called, the desktop will be displayed, and the following tool sets will guarantee to have been started.
Other tool sets may have also been started, but the module should check before using them and start them
if necessary, and shut them down again on exit.

Tool Set Name Tool Set No.
Tool Locator #01 $01
Memory Manager #02 $02
Miscellaneous Toolset #03 $03
Quickdraw II #04 $04
Event Manager #05 $05
Integer Math Toolset #11 $0B
Text Toolset #12 $0C
Window Manager #14 $0E
Menu Manager #15 $0F
Control Manager #16 $10
System Loader #17 $11
Quickdraw II Auxilliary #18 $12
LineEdit Toolset #20 $14

Marinetti 2.0 Programmers’ Guide Page 144

Dialog Manager #21 $15
Scrap Manager #22 $16
TCP/IP #54 $36

uNOTE: The module's resource fork is not available during calls to the module. Attempts by a module
to open its resource fork may cause the module and Marinetti to crash.

Marinetti 2.0 Programmers’ Guide Page 145

Outward bound notifications

It may be useful for some applications to be notified asynchronously when certain events occur within
Marinetti, such as the network going up and down. Marinetti provides this facility via System 6 IPC
requests.

An application that wishes to receive requests sent by Marinetti, should first call the Tool Locator tool set
call _AcceptRequests with a nameString such as TCP/IP~CompanyName~ProductName~.
CompanyName is the name of your company and ProductName is the name of your product. Marinetti
sends its requests to every application with a nameString beginning with TCP/IP.

The requests which Marinetti sends out should not be accepted by your routine. They are informational
only.

TCPIPSaysHello $8101

Marinetti sends this request once it has completed its startup procedure.

dataIn is reserved

dataOut is reserved

TCPIPSaysNetworkUp $8102

Marinetti sends this request immediately a network connection is made.

dataIn is a pointer to the following data buffer:

+00 inwLength integer Length of buffer, including this, is $000E
+02 inwIP longword Your IP address
+06 inwMethod integer The connect method currently being used
+08 inwMTU integer The MTU currently being used
+10 inwLVPtr longword Pointer to link layer variables currently being used

dataOut is reserved

Marinetti 2.0 Programmers’ Guide Page 146

TCPIPSaysNetworkDown $8103

Marinetti sends this request immediately after it has disconnected from the network.

dataIn is a pointer to the following data buffer:

+00 inwCount integer Length of buffer, including this, is $000E
+02 inwIP longword The IP address which was being used
+06 inwMethod integer The connect method which was being used
+08 inwMTU integer The MTU which was being used
+10 inwLVPtr longword Pointer to link layer variables which were being used

dataOut is reserved

uNOTE: The link layer module which was being used will be purged from memory after this request, so
you should save off any parameters you will need from the link layer variables before
returning.

Marinetti 2.0 Programmers’ Guide Page 147

Debugging and testing

Previous versions of Marinetti were called using the toolbox IPC interface, and supported a number of
built-in debugging requests. A test application called TESTER was also included with the Marinetti
Developers’ Kit to make it easier to test requests. Unfortunately, this was in Merlin source code, making it
difficult for ORCA/M programmers to make their own changes. There were also no test utilities for high
level compiled languages.

From Marinetti version 2.0 onwards, all calls are made using the toolbox interface. This makes debugging
and testing a lot easier, by using Dave Lyons’ Nifty List. The NList.Data file contains the call syntax
and error codes for tool calls, and is easily modified to allow you to issue Marinetti tool calls from the
Nifty List command line.

As the Nifty List solution is neater, easier to use, and language independent, the original TESTER
application is no longer included or supported. Also, due to the abundance of utilities which provide tool
breaks, such as Apple’s GSBug, a number of break point debugging requests have also been removed.

To add Marinetti support to Nifty List, load the NList.Data file into a text editor, and make the
following changes.

Find the line starting “2E26 MCSetVolume(…” and add the following after it:

0036 === Marinetti ===
0136 TCPIPBootInit()
0236 TCPIPStartUp()
0336 TCPIPShutDown()
0436 TCPIPVersion():Vers
0536 TCPIPReset()
0636 TCPIPStatus():ActFlg
0836 TCPIPLongVersion():rVersion/4
0936 TCPIPGetConnectStatus():connectedFlag
0A36 TCPIPGetErrorTable():@errTablePtr
0B36 TCPIPGetReconnectStatus():reconnectFlag
0C36 TCPIPReconnect(@displayPtr)
0D36 TCPIPConvertIPToHex(@cvtRecPtr,@ddippstring)
0E36 TCPIPConvertIPToASCII(ipaddress/4,@ddpstring,flags):strlen
0F36 TCPIPGetMyIPAddress():ipaddress/4
1036 TCPIPGetConnectMethod():method
1136 TCPIPSetConnectMethod(method)
1236 TCPIPConnect(@displayPtr)
1336 TCPIPDisconnect(forceflag,@displayPtr)
1436 TCPIPGetMTU():mtu
1536 TCPIPValidateIPCString(@cstringPtr):validFlag
1636 TCPIPGetConnectData(userid,method):H
1736 TCPIPSetConnectData(method,H)
1836 TCPIPGetDisconnectData(userid,method):H
1936 TCPIPSetDisconnectData(method,H)
1A36 TCPIPLoadPreferences()
1B36 TCPIPSavePreferences()
1C36 TCPIPGetTuningTable(@tunePtr)
1D36 TCPIPSetDNS(@DNSRecPtr)
1E36 TCPIPGetDNS(@DNSRecPtr)
1F36 TCPIPSetTuningTable(@tunePtr)
2036 TCPIPCancelDNR(@dnrBufferPtr)
2136 TCPIPDNRNameToIP(@nameptr,@dnrBufferPtr)
2236 TCPIPPoll()

Marinetti 2.0 Programmers’ Guide Page 148

2336 TCPIPLogin(userid,destip/4,destport,defaultTOS,defaultTTL):ipid
2436 TCPIPLogout(ipid)
2536 TCPIPSendICMP(ipid,@messagePtr,messageLen)
2636 TCPIPSendUDP(ipid,@udpPtr,udpLen)
2736 TCPIPGetDatagramCount(ipid,protocol):dgmCount
2836 TCPIPGetNextDatagram(ipid,protocol,flags):H
2936 TCPIPGetLoginCount():loginCount
2A36 TCPIPSendICMPEcho(ipid,seqNum)
2B36 TCPIPReceiveICMPEcho(ipid):seqNum
2C36 TCPIPOpenTCP(ipid):tcpError
2D36 TCPIPWriteTCP(ipid,@dataPtr,dataLength/4,pushFlag,urgentFlag):tcpError
2E36 TCPIPReadTCP(ipid,buffType,buffData/4,buffLen/4,@rrBuffPtr):tcpError
2F36 TCPIPCloseTCP(ipid):tcpError
3036 TCPIPAbortTCP(ipid):tcpError
3136 TCPIPStatusTCP(ipid,@srBuffPtr):tcpError
3236 TCPIPGetSourcePort(ipid):sourcePort
3336 TCPIPGetTOS(ipid):TOS
3436 TCPIPSetTOS(ipid,TOS)
3536 TCPIPGetTTL(ipid):TTL
3636 TCPIPSetTTL(ipid,TTL)
3736 TCPIPSetSourcePort(ipid,sourcePort)
3F36 TCPIPConvertIPCToHex(@cvtRecPtr,@ddipcstring)
4036 TCPIPSendIPDatagram(@datagramPtr)
4136 TCPIPConvertIPToClass(ipaddress/4):class
4236 TCPIPGetConnectMsgFlag():conMsgFlag
4336 TCPIPSetConnectMsgFlag(conMsgFlag)
4436 TCPIPGetUsername(@unBuffPtr)
4536 TCPIPSetUsername(@usernamePtr)
4636 TCPIPGetPassword(@pwBuffPtr)
4736 TCPIPSetPassword(@passwordPtr)
4836 TCPIPValidateIPString(@pstringPtr):validFlag
4936 TCPIPGetUserStatistic(ipid,statisticNum):statistic/4
4A36 TCPIPGetLinkVariables():@variablesPtr
4B36 TCPIPEditLinkConfig(connectHandle/4,disconnectHandle/4)
4C36 TCPIPGetModuleNames():@moduleListPtr
4E36 TCPIPListenTCP(ipid):tcpError
4F36 TCPIPAcceptTCP(ipid,reserved):newipid
5036 TCPIPSetNewDestination(ipid,destip/4,destport)
5136 TCPIPGetHostName(@hnBuffPtr)
5236 TCPIPSetHostName(@hostNamePtr)
5336 TCPIPStatusUDP(ipid,@udpVarsPtr)
5436 TCPIPGetLinkLayer(@linkInfoBlkPtr)
5536 TCPIPPtrToPtr(@from,@to,len/4)
5636 TCPIPPtrToPtrNeg(@fromend,@toend,len/4)
5736 TCPIPGetAuthMessage(userid):authMsgHandle/4
5836 TCPIPConvertIPToCASCII(ipaddress/4,@ddcstring,flags):strlen
5936 TCPIPMangleDomainName(flags,@dnPstringPtr):port
5A36 TCPIPGetAliveFlag():aliveFlag
5B36 TCPIPSetAliveFlag(aliveFlag)
5C36 TCPIPGetAliveMinutes():aliveMinutes
5D36 TCPIPSetAliveMinutes(aliveMinutes)
5E36
TCPIPReadLineTCP(ipid,@delimitStrPtr,buffType,buffData/4,buffLen/4,@rrBuffPtr):tcpErr
or
5F36 TCPIPGetBootConnectFlag():bootConnectFlag
6036 TCPIPSetBootConnectFlag(bootConnectFlag)
6136 TCPIPSetUDPDispatch(ipid,dispatchFlag)
6236 TCPIPGetDestination(ipid,@destRecPtr)

Find the line which contains “2613 mcCallNotSupported”, and add the following after it.

Marinetti 2.0 Programmers’ Guide Page 149

3601 terrBADIPID
3602 terrNOCONNECTION
3603 terrNORECONDATA
3604 terrLINKERROR
3605 terrSCRIPTFAILED
3606 terrCONNECTED
3607 terrSOCKETOPEN
3608 terrINITNOTFOUND
3609 terrVERSIONMISMATCH
360A terrBADTUNETABLELEN
360B terrIPIDTABLEFULL
360C terrNOICMPQUEUED
360D terrLOGINSPENDING
360E terrTCPIPNOTACTIVE
360F terrNODNSERVERS
3610 terrDNRBUSY
3611 terrNOLINKLAYER
3612 terrBADLINKLAYER
3613 terrENJOYCOKE
3614 terrNORECONSUPPORT
3615 terrUSERABORTED
3616 terrBADUSERPASS
3617 terrBADPARAMETER
3618 terrBADENVIRONMENT
3619 terrNOINCOMING
361A terrLINKBUSY
361B terrNOLINKINTERFACE
361C terrNOLINKRESPONSE
361D terrNODNRPENDING
361E terrBADALIVEMINUTES
361F terrBUFFERTOOSMALL
3620 terrNOTSERVER

If you have an older version of NList.Data or are still using Apple’s internal beta test
NList.AppleData (which should no longer be used), then you will need to find the appropriate lines
yourself.

Once the changes have been made, save them back to disk and reboot. You should now be able to issue
Nifty List commands against the Marinetti tool calls and error codes. If issuing calls outside of your
application, you will most likely need to use Nifty List to issue the _LoadOneTool(36,200) call first.

Marinetti 2.0 Programmers’ Guide Page 150

Porting from BSD UNIX

In order to ease porting from code using BSD socket interfaces, the following is a list of BSD system calls
and library functions, and the closest, if any, Marinetti call which performs the same or a similar function.

BSD call/function Marinetti equivalent Comments

accept TCPIPAcceptTCP These calls are functionally equivalent

bind TCPIPLogin
TCPIPListenTCP

This function is duplicated by issuing the
two Marinetti calls in order

close TCPIPCloseTCP These calls are functionally equivalent

connect TCPIPSetNewDestinatio
n TCPIPOpenTCP

There is no direct way to duplicate this
function

gethostbyaddr There is no way to duplicate this function

gethostbyname TCPIPDNRNameToIP While not as detailed, these calls are
functionally equivalent

gethostid TCPIPGetMyIPAddress These calls are functionally equivalent

gethostname TCPIPGetHostName These calls are functionally equivalent

getpeername There is no direct way to duplicate this
function

listen TCPIPListenTCP These calls are functionally equivalent

read TCPIPReadTCP These calls are functionally equivalent

recv, recvfrom,
recvmsg

TCPIPGetNextDatagram While functionally equivalent, the Marinetti
call is more flexible, as it is a generic call for
other transport layers as well as UDP

send, sendmsg,
sendto

TCPIPSendUDP The data passed by these BSD functions will
need to be altered to match the format used
for the Marinetti call

setsockopt There is no way to duplicate this function

shutdown There is no way to duplicate this function

socket TCPIPLogin The Marinetti call also provides a number of
configuration parameters, which the BSD
function requires other calls to duplicate

write TCPIPWriteTCP These calls are functionally equivalent

Marinetti 2.0 Programmers’ Guide Page 151

Constants and equates

Tool error codes

terrOK $0000
terrBADIPID $3601 Bad IPID for this request
terrNOCONNECTION $3602 Not connected to the network
terrNORECONDATA $3603 No reconnect data
terrLINKERROR $3604 Problem with the link layer
terrSCRIPTFAILED $3605 The script failed / timed out
terrCONNECTED $3606 Not while connected to the network
terrSOCKETOPEN $3607 Cannot complete - socket still open
terrINITNOTFOUND $3608 The Marinetti init is not loaded
terrVERSIONMISMATCH $3609 The init and tool set have different versions
terrBADTUNETABLELEN $360A Tune table length in Marinetti 2.0 must be 10
terrIPIDTABLEFULL $360B Marinetti cannot handle any more ipids
terrNOICMPQUEUED $360C No ICMP datagrams in the queue
terrLOGINSPENDING $360D There are still ipids logged in
terrTCPIPNOTACTIVE $360E Not active - probably in P8 mode
terrNODNSERVERS $360F No servers registered with Marinetti
terrDNRBUSY $3610 DNR is currently busy - try again later
terrNOLINKLAYER $3611 Unable to load link layer module
terrBADLINKLAYER $3612 Not a link layer module
terrENJOYCOKE $3613 But not so close to the keyboard
terrNORECONSUPPORT $3614 This module doesn’t support reconnect
terrUSERABORTED $3615 The user aborted the connect/disconnect
terrBADUSERPASS $3616 Invalid username and/or password
terrBADPARAMETER $3617 Invalid parameter for this call
terrBADENVIRONMENT $3618 No desktop or tools not started
terrNOINCOMING $3619 There is no pending incoming request
terrLINKBUSY $361A Modem or interface is busy
terrNOLINKINTERFACE $361B No dial tone or similar
terrNOLINKRESPONSE $361C No modem answer or similar
terrNODNRPENDING $361D No such entry in DNR list
terrBADALIVEMINUTES $361E Minutes value is invalid
terrBUFFERTOOSMALL $361F Buffer is too small
terrNOTSERVER $3620 This ipid is not set up as a server

Connect methods

conEthernet $0001 A generic ethernet card
conMacIP $0002 IP gateway over AppleTalk/LocalTalk
conPPPCustom $0003 Scriptable PPP
conSLIP $0004 Scriptable SLIP
conTest $0005 Developer test ID – not for public release
conPPP $0006 Basic PPP
conDirectConnect $0007 For connection of two IIGS’ via a serial cable
conAppleEthernet $0008 Apple’s never released Apple II ethernet card

Marinetti 2.0 Programmers’ Guide Page 152

Protocols

protocolAll $0000
protocolICMP $0001
protocolTCP $0006
protocolUDP $0011

Domain Name Resolver status codes

DNR_Pending $0000 Request is still being processed
DNR_OK $0001 Your request completed successfully, and dnrBuffer

contains the requested data
DNR_Failed $0002 The request failed. Either the connection timed out, or some

other network error
DNR_NoDNSEntry $0003 Requested domain has no DNS entry
DNR_Cancelled $0004 Cancelled by user

TCP logic errors

The following error codes are issued by Marinetti’s TCP logic, and are standard TCP error codes from the
RFC, they are not tool call error codes. A tool call error code indicates that the tool call failed, which in
this instance is not the case. As such, these logic error codes will only be returned by TCP tool calls when
the call succeeds, that is when the tool call error code is terrOK.

tcperrOK $0000 “tcperr” error codes from TCP RFC
tcperrDeafDestPort $0001
tcperrHostReset $0002
tcperrConExists $0003 “connection already exists”
tcperrConIllegal $0004 “connection illegal for this process”
tcperrNoResources $0005 “insufficient resources”
tcperrNoSocket $0006 “foreign socket unspecified”
tcperrBadPrec $0007 “precedence not allowed”
tcperrBadSec $0008 “security/compartment not allowed”
tcperrBadConnection $0009 “connection does not exist”
tcperrConClosing $000A “connection closing”
tcperrClosing $000B “closing”
tcperrConReset $000C “connection reset”
tcperrUserTimeout $000D “connection aborted due to user timeout”
tcperrConRefused $000E “connection refused”

Marinetti 2.0 Programmers’ Guide Page 153

TCP states

tcpsCLOSED $0000
tcpsLISTEN $0001
tcpsSYNSENT $0002
tcpsSYNRCVD $0003
tcpsESTABLISHED $0004
tcpsFINWAIT1 $0005
tcpsFINWAIT2 $0006
tcpsCLOSEWAIT $0007
tcpsLASTACK $0008
tcpsCLOSING $0009
tcpsTIMEWAIT $000A

