
APPLE ProDOS APPENDIX

Notes

D-1 ProDOSTM Appendix

APPLE ProDOS APPENDIX

ProDOS 8 Version
For the Apple II+, //e, //c, IIGS

and Laser 128TM

by
Greg Branche

Original DOS 3.3 version by Dave Overton

© Copyright 1985, 1986, 1987

ZEDCOR, INC.
All Rights Reserved

ZBasic is a trademark of Zedcor, Inc.

Apple, IIGS, Imagewriter, and ProDOS are registered or licensed trademarks of Apple Computer, Inc.
Zedcor, Inc. is not affiliated with Apple Computer, Inc.

ProDOSTM Appendix D-2

APPLE ProDOS APPENDIX

TABLE OF CONTENTS

TABLE OF CONTENTS D3
__

HARDWARE REQUIREMENTS D5
64K Version
128K Version

__

FILES INCLUDED ON ZBASIC DISKETTE D6
64K Versions D6
128K versions D7

__

GETTING STARTED D8
__

NOTES ON THE ProDOS VERSION D9
Boot-up Process D9
Note to main reference section D9
Importance of using a RamDisk D10
ProDOS PATHNAMES D10
File BUFFER size (how to get an extra 2048 bytes) D10
List Keys D11
Help File D11
Reset Key D11
ProDOS Disk Error Codes D11
Hexadecimal Constants D12
Relative Coordinates versus Pixel Coordinates D12
MOUSE D12
IMPORTANT NOTES about video/system problems D13
Using the Super Serial Card D13
Commands not supported in this version D13
Integration of Text and Graphics D14
80 Column Card Control Codes D14
INVERSE text D14
Mouse Text Characters D15
Custom Character Sets D15

__

SPECIAL “CONFIGURE” OPTIONS D16
"Printer Slot 1-7" D16
Setting up a Printer initialization sequences D16
LOCATE order D17
CONFIG D17
Note on Case Conversion D17

__

D-3 ProDOSTM Appendix

APPLE ProDOS APPENDIX

__

TECHNICAL NOTES D18
ProDOS Machine Language Interface D18
Entry Points D18
ZBasic to ProDOS interface D18
Using MACHLG D19
MEMORY Usage D19
Zero Page Memory Map D19
64K Memory Map D20
128K Memory Map D21

__

CONVERTING Applesoft PROGRAMS TO ZBasic D22
Applesoft commands and ZBasic Equivalents D23
Applesoft file commands and ZBasic Equivalents D24
Converting DOS 3.3 ZBasic programs to ProDOS D25

__

REFERENCE D26
CLS command D27
COLOR statement D28
DATE$, TIME$ functions D29
DEF LPRINT statement D30
DEF MOUSE statement D31
DIR command D32
EDITOR command D34
INSLOT statement D35
MEM command D36
MODE statement D37
ONLINE command D38
OUTSLOT statement D39
PATH command D40
POINT function D41
RENAME command D42
RUN command D43
USR function D44
USR5 function D45

__

FULL SCREEN EDITOR D46
Difference between the Full Screen E ditor

and the Standard Line Editor D46
80 Column Editor D47
80 column cursor movement DIAGRAM D47
40 column Editor D48
40 column cursor movement DIAGRAM D48
Full Screen Editor Quick Reference Page D49
Cursor key definitions (40 and 80 column) D50
Editor Command definitions D51

__

ProDOSTM Appendix D-4

APPLE ProDOS APPENDIX

HARDWARE REQUIREMENTS

Apple / /c, I IGS and Laser 128

The 64K and 128K ProDOS versions of ZBasic function with a standard Apple //c and
IIGS. A disk drive is required (5.25 or 3.5 inch). ProDOS provides a /RAM disk, size
depending on available memory. An Apple Mousetm with interface, Joystick and Super
Serial Card are supported but are not required.

IIGS Note: The IIGS emulates the //e, //c modes with this version of ZBasic. Super
High-Res graphics are not supported on this version directly.

Apple / /e
64K Version The 64K ProDOS version runs with a standard Apple //e. A disk drive is required (5.25

or 3.5 inch). An AppleMousetm with interface, Joystick and Super Serial Card are
supported but are not required.

If you have an Extended 80 column card, or other memory board, ProDOS provides a
/RAM disk, size depending on additional memory. If you have only 64K there will be
more disk accesses and compilation will take longer.

//c,//e,//GS Note: Code can be generated which will run on the older Apple][+ or][if
certain restrictions are observed; Avoid MODE 3 or 7 as they require an extended 80
column card which will not function in an Apple][+.

128K Version The 128K version of ZBasic requires an Extended 80 Column Card and a 65C02 or
65802 microprocessor.

Apple][or Apple][+

64K Version If you have an Apple][or][+, you MUST have a 16K bank-switched memory card
installed (giving you at least 64K memory). If you have a ProDOS compatible memory
board that allows ProDOS to create a /RAM disk, ZBasic will take advantage of it. If you
have only 64K there will be more disk accesses and compilation will take longer.

A disk drive is required (5.25 or 3.5 inch). ZBasic requires a minimum of 64K memory to
create and execute programs. An AppleMousetm with interface, Joystick and Super
Serial Card are supported but are not required.

128K Version The 128K ProDOS version of ZBasic will not operate on an Apple][or][+.

OLDER 80 COLUMN CARDS

Older style 80 column cards may or may not function.

The Videx 80 column card works in mode 2 although you will have to do some manual
switching. When typing CLS from the Standard line editor ZBasic will sense the Videx
board and clear the screen automatically.

D-5 ProDOSTM Appendix

APPLE ProDOS APPENDIX

FILES INCLUDED ON THE MASTER DISKETTE
64K VERSION

The following files are included with the 64K ProDOS version of ZBasic.

File Description
ZBASIC.SYSTEMThe boot program and low-memory subroutines.

RUNTIME.OBJ High-memory runtime subroutines. This program MUST accompany
stand-alone programs you create with ZBasic.

EDITOR.OBJ The ZBasic command environment and Standard line editor.
COMPILER.OBJ The ZBasic compiler.

FSEDIT.80.OBJ 80-column full screen editor for //c, IIGS and 80-col //e.
May be deleted if not used.

FSEDIT.40.OBJ 40-column full screen editor for 40-col //e,][and][+.
May be deleted if not used.

INIT.64.OBJ Contains a stand-alone program initialization sequence.

THE FILE ABOVE ARE REQUIRED WHEN CREATING ZBASIC PROGRAMS.
__

THE FILES BELOW ARE OPTIONAL OR EXAMPLE PROGRAMS

ZBASIC.HLP Help file accessed with the "HELP" command.

DISKIO.BAS Sample program demonstrating ZBasic file commands.
GRAPH.BAS Sample program demonstrating ZBasic graphics.

SORT.BAS Program to illustrate the use of the QUICK.APP and SHELL.APP sorting
programs. Load this program first then type:
APPEND 1000 QUICK.APP (or SHELL.APP).

QUICK.APP Append file containing a quicksort subroutine.
SHELL.APP Append file containing a shell sort subroutine.

SIEVE The SIEVE benchmark program from BYTE magazine.
GRAPHICS.COLORS Demonstrates the colors available in each of the graphics modes.

BLOAD.SAMPLE Demonstrates the use of the BLOAD and BSAVE functions.
BSAVE.FN Function to simulate the ProDOS BASIC.SYSTEM BSAVE command.
BLOAD.FN Function to simulate the ProDOS BASIC.SYSTEM BLOAD command.
DHRBSAVE.FN Double Hi-Res BSAVE function saves Double Hi-Res Graphic screen.
DHRBLOAD.FN Double Hi-Res BLOAD function loads Double Hi-Res Graphic screen.
DRAW.FN Function to simulate the Applesoft DRAW command.

PREFIX.SAMPLESample program demonstrating the use of the PREFIX function.
PREFIX.FN Function to set or retrieve the ProDOS default prefix at runtime.
CREATE.FN Function to create a ProDOS subdirectory from within a ZBasic program.

DATETIME.FN Function to manually set the date and time.

ProDOSTM Appendix D-6

APPLE ProDOS APPENDIX

FILES INCLUDED ON THE MASTER DISKETTE
128K VERSION

The following files are included on the 128K ProDOS version of ZBasic (flip side of the diskette):

FILE Description
ZBASIC.SYSTEM The boot program and low-memory subroutines.

The following three MUST accompany stand-alone programs you create with ZBasic.

RT.MAIN.OBJ1 High-memory runtime subroutines.
RT.AUX.OBJ0 Low auxiliary memory routines.
RT.AUX.OBJ1 High auxiliary memory routines.

EDITOR.OBJ0 The ZBasic command environment and Standard line editor
EDITOR.OBJ1 and Full Screen Editor.
EDITOR.OBJ2

COMPILER.OBJ0 The ZBasic compiler.
COMPILER.OBJ1

INIT.128.OBJ 128K Stand-alone program initialization sequence.

Use the example programs on the 64K side of the diskette (see previous page for details). There will
also be a couple examples on this side of the diskette. These programs will not work with the 64K
version.

D-7 ProDOSTM Appendix

APPLE ProDOS APPENDIX

GETTING STARTED

1. Make a BACKUP of your master ZBasic diskette. Store the master in a safe place (refer to the
ProDOS reference manual for backup methods).

Note: There are two versions of ZBasic for ProDOS; a 64K version and a 128K version. On
5.25" diskettes they occupy opposite sides. On 3.5" diskettes they are in two different sub-
directories. If using 5.25" diskettes make sure to backup both sides.

2. Due to storage limitations, the ZBasic disk does not contain ProDOS operating system.
Therefore you must create a ProDOS environment. There are a couple of ways to do this:

a. BOOT FROM A ProDOS Master Disk (/USERS.DISK). Then type "B" from the
menu to enter Applesoft BASIC.

From the prompt(]), enter: "PREFIX /ZBASIC", then:"-ZBASIC.SYSTEM".

b. CREATE A ZBASIC BOOT DISK: Format a blank disk (using the FILER utility).
Copy the file "PRODOS" from a ProDOS disk to your freshly formatted disk. Transfer
the following files from you ZBasic Master Disk to your new copy:

64K VERSION
ZBASIC.SYSTEM EDITOR.OBJ
RUNTIME.OBJ INIT.64.OBJ
COMPILER.OBJ
FSEDIT.80.OBJ (use FSEDIT.40.OBJ if using a 40 col Apple][,][+ or //e)

128K VERSION
ZBASIC.SYSTEM COMPILER.OBJ0
RT.MAIN.OBJ1 COMPILER.OBJ1
RT.AUX.OBJ0 INIT.128.OBJ
RT.AUX.OBJ1 EDITOR.OBJ0
EDITOR.OBJ1 EDITOR.OBJ2

CTRL <OPEN APPLE> RESET will now
load and execute ZBasic for this disk.

3. Read this appendix, making notes of any variations.

4. Now read "Getting Started" in the main reference section.

ProDOSTM Appendix D-8

APPLE ProDOS APPENDIX

BOOT-UP PROCESS

When the ZBASIC.SYSTEM program is loaded from ProDOS, it does several things prior to
putting you into the editor:

o ZBasic Title page displayed during the boot process.
o Zero page locations are initialized.
o The low-memory runtime module is moved into place.
o ZBasic looks for a volume with the first four characters "/RAM". If found, it will
 copy the necessary system files into the ram disk. If you do not wish to have
 ZBasic use the /RAM disk, simply rename it prior to loading ZBasic.
o The command environment and standard line editor overlay is loaded into
 memory (to invoke the full screen editor type EDITOR or EDITOR+).

NOTE TO THE MAIN REFERENCE SECTION

Wherever there are notable differences between the text and the Apple ProDOS version
you will see an Apple ICON that will tell you the difference or refer you to the correct section.
The icon looks like this:

Occasionally the icon refers to the Apple // DOS 3.3 version. In those instances simply
ignore this icon.

THE IMPORTANCE OF USING A RAM DISK

In order to leave as much free memory as possible for program development, there is a lot
of overlay swapping and other disk access involved while editing and running a program
interactively (like an interpreter).

For example, if you type "PRINT 2.345*32" from the editor command line, quite a number
of events take place:

o the editor saves whatever program you have in memory to the disk (/RAM disk, if enabled).
o loads and runs the compiler from disk (/RAM disk, if enabled).
o compiles the command and stores the object code in memory.
o loads and runs the runtime system (/RAM disk, if enabled).
o the runtime executes the object code (which is this example prints 75.04).
o then reloads and executes the editor (/RAM disk, if enabled) and waits for the next command.

Phew! As I said, a lot of disk access! It should be obvious that a /RAM disk will speed up
the whole process 10-15 times since disk access is nearly eliminated.

D-9 ProDOSTM Appendix

APPLE ProDOS APPENDIX

USING THE RAM DISK

These versions of ZBasic require 64K and 128K of memory, respectively. If your system
has more then the minimum amount of memory required, and the extra memory is
configured as a ProDOS /RAM disk, ZBasic will use it to store some system files and overlays
so that overall program development time will be reduced and system speed will be
improved.

In addition, a temporary file used to hold your source code is also saved to disk during the
overlay swapping. This file is named ZTEMP.ZBS.

If there is no /RAM volume, the ZBasic disk MUST remain in the drive for normal operation.

If the /RAM disk is not large enough to hold ZTEMP.ZBS, ZBasic returns a DISK FULL error
and returns to the editor. You should save the file to a diskette and compile from disk at this
point (RUN*) or exit ZBasic, disable the /RAM disk by renaming it from ProDOS, then re-
enter ZBasic without rebooting.

Warning: DO NOT RENAME THE /RAM DISK WHEN IN USE!

ProDOS PATHNAMES

The filenames used in ZBasic are standard ProDOS pathnames. ProDOS pathnames can
consist of up to 64 characters, including separating slashes. Individual filenames can be up
to 15 characters long, and can consist of alphanumeric characters and periods only.

Pathnames may be used with OPEN,RENAME,SAVE,LOAD and all other disk commands
and statements. See your ProDOS manual for more information about pathname syntax.

FILE BUFFER SIZE--- OR HOW TO GET AN EXTRA 2048 BYTES

Each file opened by a ZBasic program requires a 1024 byte file buffer. ZBasic defaults to
two file buffers (2048 bytes).

If you configure ZBasic for one file buffer, 1024 bytes is freed for program or variables
(configuring for no open files would free 2048 bytes).

See "Configure" in main manual.

ProDOSTM Appendix D-10

APPLE ProDOS APPENDIX

LIST KEYS

The following is a list of additional keys which can be used in the command mode editor to
list lines of source code (as well as those described in the main manual):

Up Arrow List previous line
Down Arrow List next line
Left Arrow List first line of the file
Right Arrow List last line of the file

HELP

The file used by the HELP command is named "ZBASIC.HLP". If you so desire, this file can
be deleted to allow more storage room on the disk.If ZBasic is not able to find this file in it's
system directory, it will look in the user's currently logged directory (see the PATH
command). If ZBasic still cannot find the help file, you will get a "File-Not-Found" error.

CONTROL-RESET VERSUS CONTROL-C

This version allows you to use either CTRL-C or CTRL-RESET to exit a running program. If
the computer should "lock up" for some reason, or you are faced with the monitor prompt
(*), you can press CTRL-RESET to restart the ZBasic editor. Your source program should
remain intact. If you press CTRL-RESET while executing a stand alone program, the
program will be terminated, and you will be allowed to load and execute another ProDOS
system program. If you are faced with the monitor prompt anywhere within the ZBasic
system, pressing CTRL-Y will also return you to the editor.

ADDITIONAL DISK ERROR CODES

Error Code Error Message
9 Position Error
10 No Device Connected Error
11 Disk Switched Error
12 Duplicate Filename Error
13 Incompatible File Format Error
14 Access Error
15 File Already Open Error
16 Directory Structure Damaged Error
17 Not a ProDOS Volume Error
18 Duplicate Volume Online Error
19 File Structure Damaged Error
20 I/O Error
21-255 Disk Error

The actual disk error code will be the filenumber time 256 plus the number above. See
disk error in the main reference manual for more information.

D-11 ProDOSTM Appendix

APPLE ProDOS APPENDIX

HEXADECIMAL CONSTANT INDICATORS ($ and &)

In addition to the "&" prefix signifying a hexadecimal constant (as in &FF69), the "$"
character may also be used (as in $FF69). This is so that Apple users will feel more at home.
Remember that if this character is used the program will not be directly transportable to the
Apple DOS 3.3, IBM, Macintosh, CP/M, or other versions of ZBasic.

RELATIVE GRAPHIC COORDINATES VERSUS PIXEL COORDINATES

The standard ZBasic graphic coordinate system is great for porting programs between the
various computers that run ZBasic or between Hi-Res and double Hi-Res. Occasionally you
may need to switch to PIXEL coordinates. Use this statement:

POKE WORD &85, 0

After this statement is executed, the following screen dimensions will be in effect with the
different graphics modes:

MODE 1 40 x 40
MODE 3 80 x 40
MODE 5 280 x 192
MODE 7 560 x 192 (not available with the Apple][+ or //e without an extended 80 col. card)

MODE automatically resets to the device independent coordinate system, so you must use
the POKE WORD &85, 0 statement immediately after setting MODE to re-enable the pixel
coordinates above.

MOUSE

If your program uses the MOUSE function to receive input from the mouse
(DEF MOUSE=0), you MUST use a MOUSE(0) function at the beginning of the program
prior to any other MOUSE call.

MOUSE(0) forces ZBasic to scan the slots for a mouse interface card, and then initialize the
mouse properly. If the mouse is not initialized prior to accessing it, your program may die a
horrible death (crash)!

In addition, if a mouse interface could be found and initialized properly, MOUSE(0) will
return a value of -1 (true,) otherwise a value of zero (false) will be returned.

ProDOSTM Appendix D-12

APPLE ProDOS APPENDIX

IMPORTANT NOTES ABOUT VIDEO/SYSTEM PROBLEMS

ZBasic allow you to set many different graphics and text modes. This feature lets you jump
form one MODE to another as your program requires. This does introduce a unique
potential for confusing video problems that are easily mistaken for system errors.

o While programs compiled in the interactive method (RUN) of ZBasic will usually operate
correctly even if MODE is not set at the beginning of a program, a program compiled to
disk as a stand-alone program (RUN* or RUN+) may appear to "Hang the system" if MODE is
not set. To solve this problem; BE SURE TO SET THE MODE AT THE BEGINNING OF
EVERY STAND-ALONE PROGRAM. If using an Apple][+ (or //e without an extended 80
column card) be sure to avoid MODE 3 and 7.

o Sometimes when typing programs in the editor, especially after pressing CTRL-C or CTRL-
RESET from a running program, you may experience an unresponsive screen or keyboard.
Nine times out of ten what has happened here is that the MODE has been changed in the
compiled program and needs to be reset in the editor (your keys are actually appearing on
an invisible page of another MODE). Just type:

<RETURN> MODE 2 <RETURN>

Even though you will not see the keys being typed, the screen will return to normal when
you're finished typing. Do not REBOOT the system, as you will lose the program in memory.
Remember: You can't see the keys being pressed until you press <RETURN>.

o CONTROL KEYS IN LISTINGS: The 80 column card responds to certain control codes.
Sometimes a REM or quoted string may contain a control character that may set the 80
column card to 40 characters or to a different mode. Use the example above to correct the
setting and delete the control character from the offending line.

USING THE SUPER SERIAL CARD

The file number specified in serial I/O must be the negative slot # in which an Apple Super
Serial Card is installed. The Apple IIc has the equivalent of a Super Serial Card installed in
slot # 2. This card would be accessed by:

OPEN "C",-2,300...

ZBasic communication commands only support the Apple Super serial card and compatible
serial interfaces.

Note: The IIGS serial port is not yet supported. A Super Serial Card or compatible card or
modem will function properly.

COMMANDS NOT SUPPORTED IN THIS VERSION OF ZBASIC

The following two functions are not supported: INP() and OUT(). See the notes at the
bottom of the pages in the main reference section for commands that may not be fully
compatible.

D-13 ProDOSTM Appendix

APPLE ProDOS APPENDIX

INTEGRATION OF TEXT AND GRAPHICS

Unlike Applesoft, ZBasic allows you to integrate text and graphics on the screen.

This permits porting of programs over to the Apple from the IBM PC and many others
(MODE 5 only on the][+ and 64K //e. MODE 5 and 7 only on the 128K //e and //c).

80 COLUMN CARD CONTROL CODES

The Apple 80-column text card firmware supports many control codes to perform special
operations, such as screen scrolling up and down. These control codes are available in
modes 2 and 6. Simply print CHR$(x), where x is the code for the function you want to
perform (see the 80-column text card manual for a listing of these codes.)

In addition, several of these codes are available in Modes 5 and 7. The codes and the
function they perform in MODES 5 and 7 are listed in the following table:

CHR$ Code Function
7 Beep the Apple speaker
8 Moves the cursor position one space to the left; from left edge of window,

moves to right end of line above
10 Moves cursor position down to the next line, scrolls if necessary
13 Moves cursor position to left end of next line, scrolls if necessary
14 Sets display format normal (white on black)
15 Sets display format inverse (black on white)
22 Scrolls the display down one line, leaving the cursor at the current position
23 Scrolls the display up one line, leaving the cursor at the current position
24 Turns the MouseText off
27 Turns the MouseText on
28 Moves cursor position one space to the right; from right edge of window,

moves it to left end of line below

Other Apple screen control codes are not implemented (as control codes) for graphics
MODE 5 and 7.

INVERSE TEXT

To shift to the inverse character set, print a CHR$(15). All characters printed after this will be
in inverse text.

To switch back to normal text, print a CHR$(14). These are the same control codes that
Apple's 80-column card uses to switch modes. As mentioned before, this works with the
40-column screen also (a slight enhancement to Apple's firmware done by our software).

ProDOSTM Appendix D-14

APPLE ProDOS APPENDIX

MouseText CHARACTERS

In addition to the MouseText characters available in 40 and 80 column modes of the new
Apple // machines, MouseText is available in Modes 5 & 7. To shift the character set to
MouseText, print a CHR$(27) and a CHR$(15).

To de-select MouseText, print a CHR$(14) and a CHR$(24). Since Apple's procedure for
printing MouseText requires you to shift to inverse mode (the CHR$(15)), you might think
that inverse MouseText isn't possible. Not so with ZBasic! If you want to experiment a little,
just use a CHR$(27) to select inverse MouseText, and CHR$(24) to select normal
alphanumerics again!

CUSTOM CHARACTER SETS

The character set that is included with your ZBasic system and used by the graphics
character driver is the standard ASCII character set with the addition of the MouseText
characters (MODE 5 and MODE 7 only).

If you wish, you can customize the character set to your liking. Space does not permit
getting into the specifics of how each character is defined or used, but I can tell you how to
change the character set to a pre-defined set. Our character set is defined in exactly the
same way as the character sets included on the DOS Toolkit disk, available from Apple
Computer, Inc. To change the character set, follow these instructions:

1. From Applesoft BASIC, with ProDOS active, insert a BACKUP COPY of your ZBasic
 master disk in the drive.

2. Type: 64K: BLOAD "/ZBASIC/ZBASIC.SYSTEM, A$2000,TSYS"
128K: BLOAD "/ZBASIC/RT.AUX.OBJ0, A$2800"

 This loads the character set (and some other stuff) into memory.

4. Load your character set by typing:
BLOAD <your character set pathname>, A$3900"

 This loads your character set over our character set. Since the DOS Toolkit character
 sets are only 768 bytes long, (characters 32-128) and only contain definitions for the
standard ASCII characters, you will not be overwriting the MouseText (0-31).

5. Re-insert your ZBasic master disk, and type:
64K: BSAVE "/ZBASIC/ZBASIC.SYSTEM, A$2000,L$4000,TSYS"
128K: BSAVE "/ZBASIC/RT.AUX.OBJ0, A$2800"

D-15 ProDOSTM Appendix

APPLE ProDOS APPENDIX

SPECIAL ProDOS CONFIGURATION OPTIONS

ZBasic can be configured by typing "C" at the initial prompt screen (see the "Configure"
section of the main reference manual), or by typing "CONFIG" while in the editor (see
"CONFIG" on the next page). In addition to the standard configuration parameters, there
are two more parameters which you can set for the Apple //.

PRINTER SLOT? 1-7

This allows you to specify which slot your printer interface is in. This number must be from 1 to
7 (slot 1 is the standard printer slot for Apples). As in the rest of the configuration
questions, pressing <RETURN> as a response will accept the default and skip the
initialization string configuration.

If you type a number from 1 to 7, you are telling ZBasic that your printer card is in
that slot and you will be given an opportunity to specify a printer initialization string (the //c
has the equivalent of an Apple Super Serial Card in slot 1):

SETTING UP A PRINTER INITIALIZATION SEQUENCE

ENTER THE EXACT KEYSTROKES REQUIRED BY YOUR
PRINTER AND/OR INTERFACE CARD ("^" TO END):

The printer initialization string can be any sequence of up to 12 ASCII characters that can be
typed from your keyboard (end input with the "^" symbol (caret).

To enter the initialization string, type the EXACT keys required by your printer and/or
interface card. The keys will appear on the screen as you type them. Unprintable control
characters will appear prefixed by a caret(^) character on the screen. Once set, this string is
sent to the printer prior to anything else being sent out (such as LLIST,LPRINT, or ROUTE
128). Be sure to see the <S>ave option under "Getting Started" in the front of this manual.

Some common control codes may be entered from the keyboard using:

CTRL H =8 TAB or CTRL | =9 CTRL J =10
CTRL L =12 RETURN =13 DELETE=127
CTRL \ =28 CTRL] =29 CTRL ^ =30
CTRL _ =31 ESC or CTRL [=27

See your Apple reference manual for other character sequences.

This is most useful for those users who have an older interface card that does not interface
correctly with the 80-column screen. These cards will echo characters to the screen using
the 40-column screen firmware, instead of the 80-column firmware when the 80-column
card is active (usually messing everything up).

One solution is to tell the interface card to NOT echo characters by using the following
initialization sequence: <CONTROL I> 80N

This would instruct the interface to turn off the screen, and allow up to 80 characters per line
on the printer. See your interface card manual for more details. You can also send printer
configuration characters to your printer for all kinds of fancy printing, if your printer is capable
of it. Your printer manual will list printer control codes that are applicable.

continued...

ProDOSTM Appendix D-16

APPLE ProDOS APPENDIX

continued from previous page

LOCATE order X,Y? <Y/N> Y_

This option allows you to configure the order of the coordinates in the LOCATE statement.

Normally ZBasic expects the horizontal (X) coordinate first. By answering "N" to this
question you can make the vertical (Y) coordinate first and the horizontal (X) coordinate
second.

Note: This also alters the coordinate base of the screen to make the upper-left hand corner
character position 1,1 instead of 0,0 (only affects LOCATE).

This option is provided to maintain compatibility with the IBM/MSDOS versions of ZBasic
which have this option so that BASICA programs are easier to convert. This makes porting
BASIC programs from other computers much easier.

CONFIG

You may re-configure the system any time from the standard line editor by using the
CONFIG command. Use caution when doing this while working with CHAIN programs or
programs that will be sharing data (especially floating point numbers).

Each CHAINed program must be compiled using the same configuration as the other
programs in the overall CHAINed system. Otherwise, you will get a chain error when
attempting to run them.

If you elect to (S)ave your custom configuration, ZBasic will ask you to enter the complete
pathname of the ZBASIC.SYSTEM file. This will normally be "/ZBASIC/ZBASIC.SYSTEM",

unless you have installed ZBasic on a hard disk and/or changed the name of this file.

If ZBasic has trouble saving your configuration, it will give you an error message and wait for
a keypress. After pressing a key, you will be returned to the configure menu.

If no error is encountered, you will automatically be put into the line editor.

NOTE ON CASE CONVERSION

During boot-up, the system checks to see if it is running on an Apple][+ or a newer
machine. If you are using a][+ the system will automatically convert from lower to upper case
for both keyboard input and screen output.

If it's a newer machine, the system will skip the conversion. Upper/lower case conversion
can be configured separately by the user from the configure menu. See "Configure" in the
front of this manual.

D-17 ProDOSTM Appendix

APPLE ProDOS APPENDIX

THE ProDOS MACHINE LANGUAGE INTERFACE

These versions of ZBasic have been written with the ease of direct access to ProDOS in
mind. This section of the manual describes how a ZBasic program can talk with ProDOS
directly.

MLI INTERFACE

First of all, this is NOT a tutorial on how to use the ProDOS Machine Language Interface.
For more information on that subject, consult the ProDOS Technical Reference Manual.

ENTRY POINTS

All parameters for ProDOS calls that are made by ZBasic are located in a parameter block at
$1F00 (all addresses are in HEX). There is an 18 byte buffer here that the ZBasic system
uses for all MLI calls (18 being the maximum length of any MLI parameter block).

In addition, the entry point for a ProDOS call with the 64K version is at $803 ($865 for the
128K version). One more buffer that might be useful is the file name buffer. It is located at
$1F12, and is 64 bytes long (the maximum length of a ProDOS pathname).

ZBasic TO ProDOS INTERFACE

To use the ZBasic to ProDOS interface, first set up the parameter list for the MLI call that
you wish to make. If you need to, you can set up the pathname pointer with:

POKEWORD &1F01, VARPTR (name$)

since ZBasic strings conform to the ProDOS pathname standards (a count byte followed by
the string). Next, you must load the 6502 Accumulator with the MLI command code, and
then JMP or JSR to location $803 ($865 for the 128K version). The ProDOS call will be
performed, and the carry flag will have the status of the call upon return. If the carry is clear,
then the call returned with no error. If, on the other hand, the carry is set, then there was an
error and the error code can be retrieved from location $A2. The ProDOS error that is
returned by the MLI is translated into the appropriate ZBasic error code, if possible. If not,
then the actual MLI error code will be returned. If you wish to use the standard ZBasic error
handler, then you can perform a JMP to location $809 ($87F for the 128K version) if the
carry is set upon return from the ProDOS interface.

For example, to use this interface to set the ProDOS system prefix to "/ZBASIC":

PATH$ = "/ZBASIC"
POKE &1F00, 1 <--- Sets up parameter block
POKE WORD &1F01, VARPTR(PATH$)
MACHLG &A9, &C6 &20, $803 <--- 128K version change to $865
MACHLG &90, 3, &20, $809 <--- 128K version change to $87F
END

Note: Either "&" or "$" may be used to denote Hex numbers (ProDOS version only).

ProDOSTM Appendix D-18

APPLE ProDOS APPENDIX

USING MACHLG

The assembly language source for the MACHLG statements would look something like this:

SET.PREFIX EQU *
LDA #$C6 ;MLI CODE FOR SET_PREFIX
JSR $803 ;CALL THE INTERFACE
BCC DONE ;NO ERROR

ERROR JSR $809 ;LET ZBASIC HANDLE THE ERROR
DONE EQU *

ProDOS ERROR CODES

For the 64K version only; another location of interest is $806. This is the entry point for the
subroutine that translates ProDOS error codes into ZBasic error codes. If you wish to
access the MLI directly, but still want ZBasic error codes returned, you can perform a JSR to
this subroutine with the ProDOS error code in the accumulator. The translated error code
will be stored in location $A2.

For more examples of how to use the ProDOS-ZBasic interface, see the CREATE, PREFIX,
BLOAD, and BSAVE functions included on your master diskette.

MEMORY USAGE

The following diagrams illustrate memory usage for the various phases of operation of the
ZBasic system.

Note: Memory locations 768-975 (page 3) are not used by the ZBasic system. This would
be a good place to store short machine language subroutines.

D-19 ProDOSTM Appendix

APPLE ProDOS APPENDIX

ProDOSTM Appendix D-20

APPLE ProDOS APPENDIX

D-21 ProDOSTM Appendix

APPLE ProDOS APPENDIX

CONVERTING APPLESOFT PROGRAMS
TO WORK WITH ZBASIC

ZBasic is an advanced version of BASIC. While it shares many of the commands and
syntax of Applesoft, it is not exactly the same in many areas, such as graphics, disk
file handling and such.

CONVERTING APPLESOFT FILES FOR LOADING INTO ZBASIC

ZBasic source code files and Applesoft files are not compatible. To convert an
Applesoft program so you can load it into ZBasic:

1. Make sure you have a Backup of your Applesoft program then load the Applesoft
 program into Applesoft. Make sure your program doesn't have a line zero then add
 the following line to the program.

0F$="FILENAME":PRINTCHR$(4) "OPEN";F$
:PRINTCHR$(4) "WRITE";F$:POKE33,33:PRINT"0";
:LIST 1-:PRINTCHR$(4)"CLOSE":TEXT:END

 Note: The program above is one line. Enter without spaces or <RETURN>.

2. Change "FILENAME" above to the name of the file you wish to create for loading
 into ZBasic. Then type RUN.

3. Load ZBasic, press "E" for edit, and then load the program using LOAD. To
 compile the program type RUN. When errors occur use the chart on the next few
 pages to convert syntax to ZBasic syntax.

CONFIGURING ZBASIC FOR COMPATIBILITY WITH APPLESOFT

ZBasic allows you to configure the system for your preferences. To make ZBasic as
compatible as possible to Applesoft, set the following configurations. See
"Configure" in the front of this manual for details about setting configuration options:

Default Variable type: S (avoid doing this whenever possible)
Convert to Uppercase Y/N: Y
Optimize Expressions for integer Y/N: N (avoid doing this whenever possible)

STRING LENGTH NOTE

ZBasic uses strings differently than Applesoft. See "Converting Old Programs" and
DIM and DEF LEN in the front section of this manual for more information.

COMMANDS THAT ARE DIFFERENT

The following commands are different and will require converting.

The list includes hints on how to convert the various Applesoft statements to ZBasic
equivalents.

ProDOSTM Appendix D-22

APPLE ProDOS APPENDIX

Applesoft ZBasic
Commands Equivalent
BLOAD/BSAVE See the BLOAD and BSAVE functions on the master disk.
CALL ZBasic uses a constant as an address (not a variable). Parameters not allowed.
CLEAR See CLEAR in the main reference section for ZBasic's additional options.
COLOR ZBasic uses this statement for all graphics modes (not just low-res).
CONT Not supported (ZBasic is a compiler).
DEF FN More options in ZBasic. See DEF FN and LONG FN in the main reference section.
DIM ZBasic only allows constants in DIM expressions. See DIM.
DRAW Not available (see DRAW.FN example on the master disk).
FLASH Not available.
FRE Not applicable (and not necessary since ZBasic doesn't do "Garbage collection").
GET Not available. See Get.FN on the master disk.
GR Use: MODE 1:CLS
HCOLOR Use: COLOR.
HGR Use: MODE 5 (also see MODE 7 for double hi-res).
HGR2 Not applicable
HIMEM Not applicable
HLIN Use PLOT,xy TO x2,y2
HOME Use CLS.
HPLOT Use PLOT
HTAB Use LOCATE x, PEEK(37) (also see PRINT@/% and INPUT@/%)
IN# Use INSLOT
INVERSE Use CHR$(15). See "Inverse Characters" in this appendix.
LOMEM Not applicable
NORMAL Use CHR$(14). See "Inverse Characters" in this appendix.
ON ERR GOTO See ZBasic's ON ERROR GOSUB statement.
PDL See DEF MOUSE and MOUSE in this appendix and the main reference section.
POP Use RETURN nnnn instead.
POS(expr) Expr=0 for default device, 1 for printer and 2 for disk.
PR# See OUTSLOT, LPRINT, OPEN"C" and ROUTE.
RECALL Not available.
RESUME Use RETURN with ON ERROR GOSUB
ROT Not available.
RUN See RUN in this appendix and in the main reference section for other options.
RND(n) ZBasic returns an integer number between one and n.
SCRN Use POINT
SCALE Not available.
SHLOAD Not available.
SPEED Not available.
STORE Not available.
TEXT Not available. Use MODE 0,2,4 or 6 instead . See MODE.
TRACE Use TRON or TROFF (also see TRONX, TRONS).
VLIN Use PLOT x,y TO x2,y2
VTAB y Use LOCATE PEEK(36),y (see PRINT@/% and INPUT@/%)
WAIT Not available.
XDRAW Not available.

Many of the commands Applesoft supports have extensions in ZBasic. For instance; ELSE is supported
with IF THEN. RESTORE will allow you to position the DATA pointer to a specific item, PRINT USING is
supported, etc.

Note: When converting programs a word processor with FIND and REPLACE is very handy.

continued...

D-23 ProDOSTM Appendix

APPLE ProDOS APPENDIX

DIFFERENCES IN DISK FILE COMMANDS

Applesoft File Commands ZBasic Equivalents

OPEN A FILE FOR INPUT
PRINTCHR$(4)"OPEN filename"
PRINTCHR$(4)"READ filename" OPEN"I",filenum, "filename"

OPEN A FILE FOR OUTPUT
PRINTCHR$(4)"OPEN filename"
PRINTCHR$(4)"WRITE filename" OPEN"O"filenum, "filename"

OPEN A FILE FOR READ/WRITE
PRINTCHR$(4)"OPEN filename, L100" OPEN"R",filenum,"filename",100
PRINTCHR$(4)"OPEN filename, R10" RECORD#filenum,10

CLOSE FILES
PRINTCHR$(4)"CLOSE filename" CLOSE#filenumber
PRINTCHR$(4)"CLOSE" CLOSE

Note: Also see "Files" in the front section of this manual for more information about ZBasic's powerful file
handling commands. Also see: RECORD,READ#,WRITE#,DIM,PRINT#,INPUT# and LINEINPUT#.

PEEKS, POKES, AND SYSTEM CALLS

Applesoft ZBasic Equivalents
CALL -958 CLS PAGE
CALL -868 CLS LINE
X=PEEK(-16336) See SOUND in reference section.
X=PEEK(-16287), Y=PEEK(-16286)See MOUSE(3) and DEF MOUSE

Other PEEK and POKE statements should work as expected except those dealing with Applesoft.

Also see MACHLG, USR, CALL and LINE in the main reference section.

ProDOSTM Appendix D-24

APPLE ProDOS APPENDIX

TRANSFERRING ZBasic DOS 3.3 FILES TO THE ProDOS VERSIONS OF ZBasic

The file format for the ProDOS version of ZBasic is different than the file format for the DOS
3.3 version of ZBasic. Therefore; follow these instructions to convert files:

1. LOAD your program into the DOS 3.3 version of ZBasic.

2. Use the SAVE* command to save the source code in ASCII.

3. Exit the DOS 3.3 version of ZBasic and boot your favorite DOS 3.3 to ProDOS
 conversion program; such as CONVERT found on your ProDOS /USERS.DISK or
 APPLE SYSTEMS UTILITIES.

4. Copy the file just saved in ASCII to a ProDOS formatted diskette.

5. Execute either the 64K or 128K ProDOS versions of ZBasic and LOAD the program.

Programs created in the DOS 3.3 version should run with few, if any, changes; although
you may want to modify the programs to take advantage of the ProDOS /RAM disk or the 1
colors available in Double Hi-Res.

D-25 ProDOSTM Appendix

APPLE ProDOS APPENDIX

REFERENCE SECTION

This section of the appendix discusses commands unique to the ProDOS version of
ZBasic and commands that may have other meanings other than those described in the
main reference section.

ProDOSTM Appendix D-26

APPLE ProDOS APPENDIX

CLS command

FORMAT CLS [n]

DEFINITION Clears the screen. Same as the standard CLS statement with the following variations:

o If you are currently editing in one of the text modes, the screen will be cleared
immediately (without going through the compiler).

o If you are currently in one of the graphics modes, the command must first be compiled
before it is executed by the runtime system, and takes longer.

EXAMPLE See CLS in the main reference section for detailed information.

REMARK This command works correctly with the standard Apple 80-column card and Videx 80-
column cards (and compatible). Any control key typed at the keyboard that is not
defined as n editor command will be passed through unchanged to the 80-column
firmware. What this means is that if your card requires a CHR$(26) to clear the screen
you can press CTRL-Z to accomplish the same thing.

To use any of the other CLS options from within the editor, such as CLS nn, precede
the command with a colon. e.g. :CLS ASC("A")

D-27 ProDOSTM Appendix

APPLE ProDOS APPENDIX

COLOR statement

FORMAT COLOR [=] n

DEFINITION The COLOR codes for the ProDOS version of ZBasic are:

Modes 0, 2, 4, & 6: Text Characters only, no color.

Modes 1, 3, & 7: NUMBER COLOR
0 Black
1 Magenta
2 Dark Blue
3 Purple
4 Dark Green
5 Grey
6 Medium Blue
7 Light Blue
8 Brown
9 Orange
10 Grey
11 Pink
12 Green
13 Yellow
14 Aqua
15 White

Mode 5: NUMBER COLOR
0 Black 1
1 Green
2 Violet
3 White 1
4 Black 2
5 Orange
6 Blue
7 White 2

I IGS Note: The IIGS Super Hi-Res graphics mode is not supported directly (the //e, //c
modes are emulated).

ProDOSTM Appendix D-28

APPLE ProDOS APPENDIX

DATE$, TIME$ function

FORMAT DATE$
TIME$

DEFINITION See the main reference manual.

EXAMPLE See the main reference manual for details of usage.

REMARK These functions behave exactly as described in the standard reference section if your
system has a ProDOS compatible clock installed.

The system performs a ProDOS call to retrieve the date and time from a clock card. If no
card is installed, then the strings that are returned will be set to whatever the current
values are of the ProDOS date and time locations on the global page (00/00/00 and
00:00 normally).

If your system has no clock, and you wish to set the date and time manually, you can
include the DATETIME function in your program (from your master disk).

Since ProDOS does not have any storage space for seconds, the TIME$ seconds field
will always be "00".

D-29 ProDOSTM Appendix

APPLE ProDOS APPENDIX

DEF LPRINT statement

FORMAT DEF LPRINT [=] Slot number

DEFINITION This command is used to configure the printer slot during runtime. After this command
is used, all printer output will be diverted to the selected slot.

The slot number may be specified by any numeric expression but the value of Slot
number MUST be between one and seven.

EXAMPLE DEF LPRINT = 1

REMARK This command supersedes the configuration value, except for the initialization string.
See the notes on configuration for more info.

If value exceeds the range of 1-7, the number will be masked to stay in range.

ProDOSTM Appendix D-30

APPLE ProDOS APPENDIX

DEF MOUSE statement

FORMAT DEF MOUSE [=] expression

DEFINITION This statement defines which device (MOUSE or JOYSTICK) will be use for the
MOUSE function call.

expression=0 APPLE MOUSE INTERFACE
expression<>0 JOYSTICK

EXAMPLE DEF MOUSE=1: REM Define as a JOYSTICK
DO
 PRINT MOUSE(1), MOUSE(2)
UNTIL MOUSE(3)
END

This program will print the positions of the joystick
until you press the joystick button.

REMARK The default is equivalent to DEF MOUSE=0. The Apple //c has the equivalent of a
mouse card built-in.

If DEF MOUSE=1 is used to activate the joystick, the function MOUSE(3) will return a
value corresponding to which joystick button was pressed.

Value Meaning

0 Neither button pressed
1 Button 0 pressed
2 Button 1 pressed
3 Both buttons pressed

D-31 ProDOSTM Appendix

APPLE ProDOS APPENDIX

DIR command

FORMAT [L]DIR [+] [pathname]
[L]CAT [+] [pathname]

DEFINITION These commands display a directory of a ProDOS volume, as explained in the
reference section. DIR and CAT are interchangeable. CAT was implemented to make
conversion easier for Applesoft programmers.

When the command DIR is given by itself, ZBasic will display a directory of the currently
logged ProDOS pathname (see PATH command) in the standard 40 column format.

DIR+ operates in the same way as DIR without the "+", and will produce the ProDOS
standard 80-column display format (more information is shown). If in 40-column mode
the output will wrap to the second line.

The optional pathname specifies a directory to be displayed. The pathname can be a
full or partial ProDOS pathname. Full pathnames start with a slash ("/"), and specify the
root volume. If a partial pathname is specified, ZBasic will append this pathname to the
currently logged pathname, and display the contents of this sub-directory. Pathnames
can be any legal ProDOS pathname.

The optional "L" preceding the command will direct output to the printer. There must
not be a space between the "L" and the "DIR".

REMARK As you can see, the first line of the directory contains the name if the directory which
the listing is produced from. A slash preceding the directory name (as in the example)
signifies that this is a root (volume) directory. Sub-directory names are not preceded by
the slash.

The heading line is pretty much self-explanatory, except the ENDFILE (found on a DIR+
listing). The figures in the ENDFILE column represent the total number of bytes in that
file.

The TYPE column represents the ProDOS standard file types, with one exception --
ZBS. This file type is a ZBasic tokenized source file.

An asterisk (*) preceding a file name signifies that this file is locked. It can not be
modified in any way from within the ZBasic system.

As with the editor "LIST" command, the directory can be temporarily halted by pressing
the space bar once. Pressing the space bar again will advance the directory one line.
Pressing any other key will restart the listing. Pressing CTRL-C will abort the directory
listing.

To read a directory from within a running program, simply OPEN the directory file as you
would any other, then read the necessary information from it. See the ProDOS
Technical Reference Manual, Appendix B, for information concerning the format of
directory files.

Also see the special ZBasic ProDOS command: ONLINE.

ProDOSTM Appendix D-32

APPLE ProDOS APPENDIX

EXAMPLE ZBasic Ready
DIR

/ZBASIC
NAME TYPE BLOCKS MODIFIED

 ZBASIC.SYSTEM SYS 33 10-FEB-87 12:02
*RAM.FILLER BIN 17 31-JAN-86 11:40
*RUNTIME.OBJ BIN 28 29-JAN-87 15:49
*ZBASIC.HLP TXT 57 12-OCT-86 13:18
 DISKIO.BAS TXT 7 5-DEC-86 14:26
 GRAPH.BAS ZBS 3 6-NOV-86 10:25
 CREATE.FN TXT 1 20-JAN-87 11:31
 DRAW.FN TXT 3 29-DEC-86 17:08

BLOCKS FREE: 26 BLOCKS USED: 254

ZBasic Ready

ZBasic Ready
DIR+

/ZBASIC
NAME TYPE BLOCKS MODIFIED CREATED ENDFILE

 ZBASIC.SYSTEMSYS 33 10-FEB-87 12:02 10-FEB-87 12:51 16384
*RAM.FILLER BIN 17 31-JAN-86 11:40 10-FEB-87 12:51 9384
*RUNTIME.OBJ BIN 28 29-JAN-87 15:49 10-FEB-87 12:51 7644
*ZBASIC.HLP TXT 57 12-OCT-86 13:18 10-FEB-87 12:51 384
 DISKIO.BAS TXT 7 5-DEC-86 14:26 10-FEB-87 12:51 844
 GRAPH.BAS ZBS 3 6-NOV-86 10:25 10-FEB-87 12:51 1982
 CREATE.FN TXT 1 20-JAN-87 11:31 10-FEB-87 12:51 123
 DRAW.FN TXT 3 29-DEC-86 17:08 10-FEB-87 12:51 456

BLOCKS FREE: 26 BLOCKS USED: 254

ZBasic Ready

Note: endfile numbers may not be actual.

D-33 ProDOSTM Appendix

APPLE ProDOS APPENDIX

EDITOR command

FORMAT EDITOR [+]

DEFINITION This command is used to enter the full screen text editor from the Standard line editor.

Typing "EDITOR" on the ZBasic command line will transform any program currently in
memory from ZBasic tokenized format to full ASCII format and enter the full screen
editor.

If you use the optional "+", the program currently in memory will have the line numbers
stripped prior to entering the full screen editor. Be sure that you have not used any line
number references in your program (such as GOTO or GOSUB). Use label references
instead.

REMARK See the section entitled "Full Screen Editor" in this appendix for a complete description
of editor commands and operation.

Note: To get back to the standard line editor press ESC (or CTRL-K CTRL-Q on][+).

ProDOSTM Appendix D-34

APPLE ProDOS APPENDIX

INSLOT statement

FORMAT INSLOT(Slot Number)

DEFINITION This statement will allow you to specify the slot number of an interface card which your
program is to receive input from.

This is supplied so that you can use non-standard interface cards (i.e. other than those
supported directly by ZBasic, such as a graphics tablet).

Do not use this command to access a Super Serial Card; use the OPEN"C" command
instead.

INSLOT(0) will "re-attach" the keyboard for input.

EXAMPLE CLS
DO
 INPUT"Which slot is the widget?";Slot
UNTIL (Slot>0) AND)Slot<8)
:
INSLOT(Slot)
:
do something with the slot here...
:
INSLOT(0) <--- Set the slot back to normal.
END

(example only do not use)

REMARK See your hardware technical reference manuals for details.

Note: Any interface card that attempts to store a value into an Applesoft variable (such
as some clock cards) will not work correctly with ZBasic since there are no "Applesoft
variables" in ZBasic.

Check the technical reference manual of the device to set it to some other parameters.

D-35 ProDOSTM Appendix

APPLE ProDOS APPENDIX

MEM command

FORMAT MEM

DEFINITION This command is used to show the amount of memory remaining for text and object
code remaining and the amount of text and object code space used during each phase
of operation.

Text o Shows amount of text space used
Text Mem o Amount of text room remaining
Object o Size of object code generated*
Variable o Amount of variable space used*
Code Mem o Object and variable space remaining*

*Values returned only correct immediately after compiling (RUN).

REMARK See Memory map in this appendix for the 64K or 128K ProDOS versions of ZBasic.
Also see MEM in the main reference section.

ProDOSTM Appendix D-36

APPLE ProDOS APPENDIX

MODE statement

FORMAT MODE [=]expression

DEFINITION ZBasic uses MODE to define the characteristics of a screen. ZBasic allows a program to
integrate text and graphics anywhere on the screen in MODE 5 and 7. This feature allows
ZBasic programs from an IBM PC and other computers to run on your Apple.

ProDOSTM Version
MODE CHART

REMARK character = Graphics are defined as text characters
40 x 80 = Low Resolution Color Graphics
80 x 48 = Medium Resolution Color Graphics
280 x 192 = High Resolution Color Graphics
*560 x 192 = Double High Resolution. For IIe, IIc and //GS only.

Modes 9, 11, 13 and 15 have graphics at the top of the screen and text at the bottom,
similar to Applesoft GR and HGR commands.

MODE will set COLOR to default, while in most modes. See COLOR for the other colors
available in each mode.

*Double Hi-Res does not function in the 64K version (it requires 128k).

D-37 ProDOSTM Appendix

APPLE ProDOS APPENDIX

ONLINE command

FORMAT ONLINE

DEFINITION When the ONLINE command is issued in the Standard Line Editor, a list of all ProDOS
volumes currently connected to the system will be displayed on the screen.

Each entry will display the slot, drive, and volume name of the device.

EXAMPLE ZBasic Ready
ONLINE

S6,D1 = /ZBASIC
S3,D2 = /RAM

REMARK Since ZBasic will only operate on volumes by using pathnames, this is supplied so that
you can identify a particular volume in a drive.

ProDOSTM Appendix D-38

APPLE ProDOS APPENDIX

OUTSLOT statement

FORMAT OUTSLOT(slot number)

DEFINITION This command allows you to redirect output to the interface card located in the slot
number specified. This is not intended as an alternative to the existing ZBasic
commands (such as LPRINT or ROUTE).

This command is supplied only to allow you to interface your program with those cards
that ZBasic does not support directly (such as graphics tablets, etc.).

OUTSLOT(0) will "re-attach" the screen for output.

EXAMPLE CLS
DO
 INPUT"Which slot is the widget?";Slot
UNTIL (Slot>0) AND (Slot<8)
:
OUTSLOT(Slot)
:
do something with the slot here...
:
OUTSLOT(0) <--- Set the output back to normal.
END

(example only do not use)

REMARK See INSLOT statement and your hardware technical reference manuals for details
using slots.

D-39 ProDOSTM Appendix

APPLE ProDOS APPENDIX

PATH command

FORMAT PATH [[-][-] ...][pathname]
PREFIX [[-][-]...][pathname]

DEFINITION The PATH command allows you to set and/or display the currently logged ProDOS
pathname. PREFIX is also provided for compatibility reasons.

PATH without any parameters will display the current ProDOS prefix.

"PATH pathname" will set the current ProDOS prefix, then display it as a verification that
it was indeed set. Pathname can be either a full or partial pathname. If it starts with a
slash ("/"), ZBasic will treat it as a full pathname and reset the prefix appropriately. If you
specify a partial pathname, ZBasic will append it to the current prefix to create the new
prefix.

The "-" parameter will "step-back" the current prefix by one directory. If a pathname is
specified after the "-", ZBasic will then set this as the current prefix. You may use more
than one "-" parameter to specify stepping back multiple directories.

EXAMPLE ZBasic Ready
PATH (display current prefix)
/PROFILE

ZBasic Ready
PATH ZBASIC/SOURCE (append ZBASIC/SOURCE)
/PROFILE/ZBASIC/SOURCE (to current prefix)

ZBasic Ready
PATH-OBJECT (remove SOURCE and)
/PROFILE/ZBASIC/OBJECT (append OBJECT)

ZBasic Ready

REMARK ZBasic will not allow you to remove the prefix entirely. The system MUST have a prefix
set at all times.

ProDOSTM Appendix D-40

APPLE ProDOS APPENDIX

POINT function

FORMAT POINT (expression1 , expression2)

DEFINITION This function will return either a 0, signifying that the pixel is "off", or a 1, signifying that
the pixel is "on."

EXAMPLE PLOT 0,0
PRINT POINT(0,0)
:
CLS
PRINT POINT(0,0)
:
END

RUN

1
0

REMARK In modes 5 and 7, the POINT function cannot return the color of the pixel at the
specified coordinates, due to the method that the Apple uses to create colors on the
screen.

D-41 ProDOSTM Appendix

APPLE ProDOS APPENDIX

RENAME command

FORMAT RENAME ["]pathname1["],["]pathname2["]

DEFINITION Renames the file specified by pathname1 to the name specified by pathname2. The
comma separating the names IS required.

This command is supplied as an editor command in addition to the ZBasic statement so
that the compiler does not have to be accessed every time you wish to rename a file.

EXAMPLE RENAME ZBASIC.SYSTEM, ZBASIC

REMARK See RENAME in the main reference section for more information about using
RENAME.

ProDOSTM Appendix D-42

APPLE ProDOS APPENDIX

RUN* command

FORMAT See the main reference manual for syntax.

REMARK When saving your compiled programs to disk with the RUN* command, ZBasic will
create a SYS type file that can be executed directly from ProDOS.

64K VERSION
In addition to your object file, the file "RUNTIME.OBJ" MUST be in the same directory.

128K VERSION
In addition to your object file, the following three files must be in the directory:

RT.MAIN.OBJ1
RT.AUX.OBJ0
RT.AUX.OBJ1

As part of it's initialization, your program attempts to load the runtime modules from disk
(you don't have to do this; the compiler will generate the necessary code automatically).

If the required runtime files cannot be found, a ProDOS error message will be
generated, and you will be left in the Apple system monitor.

D-43 ProDOSTM Appendix

APPLE ProDOS APPENDIX

USR function

FORMAT See the main reference manual.

REMARK When your USR subroutine is entered, the value that was in the parentheses in the
ZBasic program can be found at zero page locations $64 and $65. This value will be a
16-bit integer in standard least-significant-byte/most-significant-byte order.

If your subroutine is to pass a 16-bit value back to the ZBasic program, it should place
the value in locations $64 and $65, again in lsb/msb order.

128K Note: Be aware that with this version the USR routine must be located in the
program auxiliary bank of memory. This is most easily accomplished by using"

DEF USRx=LINE nnnn

ProDOSTM Appendix D-44

APPLE ProDOS APPENDIX

USR5 function

FORMAT variable = USR5(slot)

DEFINITION This pre-defined USR function returns the status byte of an Apple Super Serial Card
in slot number slot.

The status byte will be returned in the lower 8 bits of variable.

The variable must be an integer variable.

If no Super Serial Card is installed in the system, the value returned will be undefined.

REMARK See OPEN"C" for more details about using communication functions and the Super
Serial Card reference manual for the format of the status byte.

D-45 ProDOSTM Appendix

APPLE ProDOS APPENDIX

FULL SCREEN EDITOR

This version includes an easy-to-use, full screen text editor. It can be used to enter and
edit ZBasic source program files, or any other text file. Some of it's features include full
screen cursor movement, long distance cursor movement, split screen operation,
cut/copy/paste/replace lines, global search, automatic indentation, full scrolling capabilities
up/down and left/right, and some other goodies.

DIFFERENCE BETWEEN THE FULL SCREEN EDITOR
AND STANDARD LINE EDITOR

ZBasic comes with a Standard line editor, as described in the main reference section, that
works the same way on all versions of ZBasic. From this editor you can do direct
commands as described in the main reference section. You cannot do direct commands
from the Full Screen Editor (other than those defined).

INVOKING THE FULL SCREEN EDITOR

To enter the full screen editor, type"EDITOR" from the Standard line editor ("EDITOR+" if
you want to strip line numbers). If you currently have a file in memory, the file will be
converted to a text file and transferred. If no file is in memory, you will enter the full screen
editor without text.

RETURNING TO THE STANDARD LINE EDITOR

To return to the Standard line editor (command environment), press <ESC> (CTRL-K D in
the 40-column editor). The file that you were editing will be re-loaded into the line editor
(with line numbers added if the file did not contain any).

ProDOSTM Appendix D-46

APPLE ProDOS APPENDIX

80-COLUMN EDITOR

If you are using and Apple //e with an 80-column text display, most of the functions are
accessed by pressing one of the or keys in combination with one of the numeric keys.

While the editor is waiting for you to enter a character, you have the option of using one of
the commands available.

HELP LINE

When you press one of the Apple keys, a short "help" line will appear on the bottom line in
place of the status line. This help line will remain on the screen for as long as you keep
pressing an or key.

The help lines are not meant to be complete descriptions of the commands available, just
memory joggers.

80 COLUMN CURSOR MOVEMENT KEYS

D-47 ProDOSTM Appendix

APPLE ProDOS APPENDIX

40-COLUMN EDITOR

Since Apple][+ users don't have Apple keys on their keyboard, control keys are used in
place of the Apple keys. These commands have been set up to match Wordstar tm, a word
processor form MicroPro where possible. For those commands that are not a part of
Wordstar tm, we tried to make the command key match the command as logically as possible
(the command is followed by an asterisk if it is not Wordstar compatible).

When one of the prefix keys (CTRL-Q or CTRL-K) is pressed a "^Q" or "^K" appears in the lower
left corner of the screen, to remind you that one of the prefix keys has been pressed. If you
change your mind, and don't want to access one of the commands, simply press the space
bar to cancel the command.

The following pages describe all of the commands and cursor movements available. Each
one operates exactly the same way, whether the machine is a][+ or one of the newer
machines.

40 COLUMN CURSOR MOVEMENT KEYS

USING THE FULL SCREEN EDITORS

The following pages contain a complete description of the Full Screen Editor. You may
want to Xerox the Quick Reference page.

ProDOSTM Appendix D-48

APPLE ProDOS APPENDIX

D-49 ProDOSTM Appendix

APPLE ProDOS APPENDIX

ProDOSTM Appendix D-50

CURSOR KEY
DEFINITIONS

This page contains the detailed descriptions of the
cursor key movements for the Full screen editor:

80 COLUMN 40 COLUMN
UP A LINE

Up-Arrow CTRL-E
Moves the cursor up one line.

UP A PAGE

-Up-arrow CTRL-R
Moves the cursor on page back in the file. A page is
defined as the current number of lines in the editing
window minus one.

UP TO TOP

Places the cursor at the beginning of the file.

LEFT A CHARACTER

Left Arrow CTRL_S
Moves the cursor one character to the left.

LEFT A WORD

-Left Arrow CTRL-A
Moves the cursor to the beginning of the word to the left
of the current cursor position.

LEFT TO START OF LINE

-Left-Arrow CTRL-Q CTRL-S
Moves the cursor to beginning of current line.

RIGHT A CHARACTER

Right Arrow CTRL-D
Moves the cursor on character to the right.

RIGHT A WORD

 Right Arrow CTRL-F
Moves the cursor to the beginning of the next word to
the right of the present position.

RIGHT TO END OF LINE

-Right-Arrow CTRL-Q CTRL-D
Moves the cursor to the end of the current line.

DOWN A LINE

Down Arrow CTRl-X
Moves the cursor down one line.

DOWN A PAGE
-Down-Arrow CTRL-C

Moves the cursor down
one page in the file.

DOWN TO END OF FILE

-Down-Arrow CTRL-Q CTRL-C
Moves the cursor to the end of the file.

APPLE ProDOS APPENDIX

D-51 ProDOSTM Appendix

-Right-Arrow CTRL-Q CTRL-D
Moves the cursor to the end of the current line.

FULL SCREEN
EDITOR COMMANDS

This following pages contain the definitions for the full
screen editor commands (cursor movement definitions
are on the previous page).

80 COLUMN 40 COLUMN

DELETE CHARACTER

DELETE Left Arrow*
Deletes the character to the left of the cursor. If the
cursor is currently at the beginning of the line, then the
editor will assume that the user means to delete the
carriage return at the end of the previous line. The
current line and the previous line will be combined, and
the cursor will be placed at the old end of the previous
line.

DELETE TO BEGINNING OF LINE

-DELETE CTRL-Q Left Arrow*
Deletes characters from the beginning of the line
through the character to the left of the cursor. The
remainder of the line will be moved to the left.

DELETE TO THE END OF LINE

-DELETE CTRL-Q CTRL-Y
Deletes characters from the current cursor position to
the end of the line.

QUIT THE FULL SCREEN EDITOR

ESC CTRl-K CTRL-D
CTRL-K CTRL-Q

This command quits the Full Screen Editor and returns
to the Standard line editor. Any text that is currently in
the text buffer will be re-loaded into the line editor, with
line numbers added to each line if the text does not
already contain line numbers.

INSERT / OVERWRITE

-0 CTRL-V
This command is another toggle, switching the editor
between Insert and Overwrite modes of operation. The
editor "wakes-up" with overwrite mode selected (as can
be seen on the bottom status line). The overwrite cursor
is the underline character. While overwrite mode is
active, any characters that you type will replace
whatever character the cursor is currently on (except
for the carriage return character at the end of a line). If
the cursor is at the end of a line, then any characters
that you type will effectively be inserted ahead of the
terminating carriage return.

When Insert mode is selected, the cursor character
changes to the caret ("^") character, and any characters
that you type will be inserted at the current cursor
position, moving any characters at and to the right of
the cursor over one position to the right. If you press

RETURN while in the middle of a line, the cursor will be
moved down a line and to the left margin, and the portion
of the line at and to the right of the cursor will be brought
down as well.

The current setting of the Insert/Overwrite switch can
be seen on the status line.

NEW
(Clear Text Buffer)

-0 CTRL-K CTRL-N*
This command will clear any text from the text buffer and
set the search string to null. It will then clear the active
window, and lace the cursor in the upper left corner of
the window. It also removes the current file name from
memory, and selects overwrite mode. If no file is in
memory when the editor is entered, this is the state that
is set when the editor "wakes-up."

LOAD A FILE

-1 CTRL-K CTRL-L*
This commands clears any text from the text buffer, and
then will prompt you for the ProDOS pathname of a file to
load. The file MUST be a TEXT type file (TXT). If it isn't
you will receive an error message.

If you have previously loaded a file, the system will
place the file name of this file on the screen for you
automatically. If this is the file that you wish to re-load
(if, for example, you really botched up the file and want
to start over again), simply press the return key, If you
want a different file altogether, press CTRL-X to remove
the old file name, and enter the new file name. The left
arrow key or the delete key can be used to correct any
typing errors. If you initiate this command by accident,
you can press CTRL-C to return to the editor with your
current file intact.

SAVE A FILE

-1 CTRL-K CTRL-S
This command will prompt you for a ProDOS pathname
to save the current text. If you have previously used
the Load command to load a file into the buffer, the
system will place the current file name on the prompt line
for you. You have the same options here as you did
when you loaded the file. Use caution with this
command. If a file already exists on the disk with the
same file name, the editor will replace whatever was
previously in the file without any warning message.

CUT LINE

-2 CTRL-K CTRL-X*
This command will remove the current line from the text
buffer and place it on the clipboard (just a temporary
holding area). The line will remain on the clipboard until
you either Cut another line, or Copy a line. This line can
be pasted from the clipboard back into the main text
buffer with the Paste command. This command will only
work with entire lines. There is no way to Cut in
increments of less than, or more than, a single line.

APPLE ProDOS APPENDIX

ProDOSTM Appendix D-52

(This command actually does a COPY, and then a
DELETE).

PASTE LINE

-2 CTRL-K CTRL-V*
This command will copy whatever line is currently on the
clipboard into the current position within the main text
buffer. The current line will be moved up in the buffer
(down on the screen) to make room for the new line.
This action does NOT remove the line from the
clipboard. Therefore, you can paste the same line as
often as you like, into as many places in the text as you
like.

COPY LINE

-3 CTRL-K CTRL-C*
This command will make a copy of the current line to the
clipboard. It does not remove the line from the main
buffer. You are then free to paste this line to your liking.

REPLACE LINE

-3 CTRL-K CTRL-R*
This command will replace the current line with the line
that is currently on the clipboard. If there is no line
currently on the clipboard, no action will be taken.

INSERT LINE

-4 CTRL-N
This command will insert a carriage return at the current
cursor position without moving the cursor. If the cursor
is at the beginning of a line, then the current line will
move down on the screen, leaving a blank line for you to
enter a new line on. If the cursor is in the middle of a
line, the portion of the line at and to the right of the
cursor will be moved down to the next line, and the
cursor will remain at the (new) end of the current line.

DELETE LINE

-4 CTRL-Y
This command deletes the current line from the text. No
copy of the line is retained in memory. Therefore, this is
not a reversible command. Use it with caution.

FIND

-5 CTRL-Q CTRL-F
This command will allow you to enter a character
sequence of up to 30 characters. The editor will then
search from the current position to the end of the file for
the character sequence. If it can't find the search
string, a message will be displayed on the last line to
this effect, and the cursor position will not change. If
the string is found, the line containing the string will be
placed at the current cursor position, and the cursor will
be placed at the beginning of the string.

FIND NEXT OCCURRENCE

-5 CTRL-L

This command searches for the last search string that
was entered using the FIND command. This command
operates in exactly the same way as the find command,
except that it does no prompt for the search string. (As
a matter of fact, the find command prompts for the
search string, and falls through to this command.)

SET TAB STOP

-6 CTRL-K CTRL-I
This command will allow you set the size of the tab
stops. The editor will prompt you for the new value on
the bottom line of the screen. The last part of the
prompt is the current value of the tab setting, which has
a default of 16. To leave this setting, simply press the
RETURN key. To change it, enter the new value. The
editor uses the same tab value as the rest of the ZBasic
system, so this command accomplishes the same thing
as the DEF TAB statement in a ZBasic program. This
also implies that if the value is changed here, then the
value will be changed for the rest of the system as well.

This tab value is used in the screen editor whenever you
press the TAB key (CTRL-I for][+ users). The cursor will
be positioned to the next calculated tab stop on the
screen. If the next tab stop is beyond the end of the
line, the cursor will be placed AT the end of the line. If
you continue to press the TAB key, the cursor will move
to the beginning of the next line (the absolute first tab
position on the screen), and then continue normally.

AUTO TAB ON/OFF

-6 CTRL-Q CTRL-I*
This command is simply a toggle to turn the autotab
feature on or off. The editor starts with autotab on. The
current setting of autotab can be seen on the status line
at the bottom of the screen. Autotab is a feature that
will allow you to enter nicely formatted source code.
When insert mode is on, and RETURN is pressed at the
end of a line, the cursor will be moved down to the next
line, and then spaces will be inserted in the new line until
the cursor is in a position underneath the first non-
space character in the line above. If insert is off
(Overwrite mode), autotabbing is only operable when
you are entering text at the end of the file. This is so
that spaces are not inserted ahead of any existing text.

RESTORE LINE

-7 CTRL-K CTRL-F*
This command will restore the line at the current cursor
position, deleting any changes that you have made to
the line. This will only work if the cursor has NOT moved
off the line since you made the changes, and/or the
screen has not scrolled sideways. Normally, while you
are editing a line, you are actually editing a copy of the
line in an edit buffer. When the cursor is moved off the
line, or if the screen is scrolled either left or right, this
edit copy of the line is moved back to the main text
buffer prior to moving the cursor. If you have made
some changes to a line, and then change your mind, an
old copy of the line still resides in the main buffer. A

APPLE ProDOS APPENDIX

D-53 ProDOSTM Appendix

copy of this old line is placed into the edit buffer over
any changes that you might have made when you
invoke this command.

PRINT LINE

-7 CTRL-K CTRL-P
This command will print the contents of the text buffer to
your printer. This command accomplishes the same
operation as the line editor's LLIST command without
any parameters. The entire contents of the text buffer
will be printed; no provision is provided for printing only a
portion of the buffer. If no printer is connected in the
slot that is currently configured, the system may "hang".
Press CTRL-RESET to warm start the editor.

SCROLL DOWN

-8 CTRL-W
This command will scroll the screen down, with the
cursor remaining in the same screen position (which
means that it will be on the previous text line). If the
cursor is currently within the first page of the text, the
screen will not scroll, but the cursor will move up a line.
The cursor will NOT move past the first line of the file.

SCROLL UP

-8 CTRL-Z
This command will scroll the screen up, with the cursor
remaining in the same screen position (which means
that it will be on the next line). If the cursor is
currently within the last page of the text, the screen will
not scroll, but the cursor will be moved down a line. The
cursor will NOT move past the last line of the file.

FREEZE SCREEN FROM THAT LINE UP

-9 CTRL-K CTRL-T*
This command will freeze the top of the screen. A
separating line will be drawn at the current cursor
position, and the portion of the screen above this line
will be frozen. The line that the cursor is in will remain
within the new active portion of the screen (the active
window). While the screen is frozen, the cursor will not
move into the frozen portion, and no changes will be
made within the frozen portion.

Only the screen is frozen. You can still move the lines
that are in the frozen portion into the active window and
make changes, but these changes will not appear in the
frozen window.

To "thaw out" the window, press the control key
sequence again. The separating line will be removed,
and the screen will be refreshed, leaving the cursor at
whatever position it was at.

FREEZE SCREEN FROM LINE DOWN

-9 CTRL-K CTRL-B*
This command freezes the bottom portion of the screen.
A separating line will be drawn at the current cursor
position, and the portion of the screen below this line will
be frozen. The text line that the cursor was on will
remain within the active window. This command is very
much line the Freeze Top command. To "thaw out" the
bottom window, press the command key sequence
again.

These two Freeze command are entirely separate from
each other. You can have up to two frozen windows on
the screen; a top window and a bottom window, leaving
a third, active window in the middle of the screen
between the two frozen portions.

This can be handy if you have a couple of different
subroutines in a couple of different sections of your
program, while accessing those subroutines in a third
portion of your program.

